

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Modelling the

Human Memorization Process

in an Autonomous Agent

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Verena Himmelbauer
Matrikelnummer 0725523

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: em. Prof. Dr. Dietmar Dietrich
Mitwirkung: Dipl. Ing. Alexander Wendt

Wien, 16.07.2015

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Modelling the

Human Memorization Process

in an Autonomous Agent

MASTER´S THESIS

in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Verena Himmelbauer
Registration Number 0725523

to the Faculty of Informatics
at the the Vienna University of Technology

Advisor: em. Prof. Dr. Dietmar Dietrich
Assistance: Dipl. Ing. Alexander Wendt

Wien, 16.507.2015

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

 II

Abstract

With growing capabilities of nowadays technical equipment the amount of data that has to be

processed is constantly increasing. Conventional systems that are in use until now will be reaching

their limits when it comes to handling the increasing flood of data in a reasonable amount of time.

Therefore new approaches have to be explored in order to provide solutions for future systems. State

of the art solutions with static programming flows are going to be less and less efficient while expo-

nentially rising in complexity, whereas classical Artificial Intelligence has not yet provided sufficient

solutions to the problem of vast amounts of data. Those systems that are currently successfully used

are limited to very small application areas dealing with small and separated tasks and information. In

contrast to artificial systems the human mind is perfectly able to comprehend complex situations and

process vast amounts of data that is associated to them in almost no time. Therefore a new bionic

model for human-like perception based on psychoanalytical theories is followed in this work. Like for

a human mind it is necessary that the systems of the future adapt to newly arising situations and also

to perform better if the same situation arises again. The existing cognitive architecture is therefore

supplemented by a new permanent store in order to enable the system to store and use experiences

over several simulation runs. Furthermore the existing file-based declarative semantic memory was

parsed into the new database. Finally a first episodic memorization process is implemented, which

will allow the agent in the future to use prior experiences in its decision process.

 III

Kurzfassung

Mit steigender Leistungsfähigkeit neuer Technologien wachsen gleichzeitig die Anforderun-

gen an die Leistungsfähigkeit der modernen Datenverarbeitung. Konventionelle Systeme, wie sie der-

zeit in Verwendung sind, werden in Zukunft an ihre Grenzen stoßen, wenn es darum geht, den zuneh-

menden Strom an Daten in einer vertretbaren Zeit zu verarbeiten. Daher ist es nötig, neue Lösungsan-

sätze zu erforschen, um den Anforderungen der Zukunft gewachsen zu sein. Die Effizienz statischer

Programmabläufe nimmt immer mehr ab, während gleichzeitig die Komplexität exponentiell zu stei-

gen droht. Die klassische künstliche Intelligenz war bisher nicht in der Lage, eine effiziente Lösung

für die Verarbeitung großer Datenmengen zu finden und jene Systeme, die heutzutage erfolgreich

eingesetzt werden, beschränken sich daher auf begrenzte Anwendungsgebiete mit kleinen abgekap-

selten Aufgabenbereichen und Informationsinputs. Im Gegensatz zu computergesteuerten Systemen

ist der menschliche Wahrnehmungsapparat perfekt in der Lage, komplexe Situationen zu analysieren

und sich an diese in kürzester Zeit anzupassen.

Aus diesem Grund beschäftigt sich diese Arbeit mit einem bionisch inspirierten Ansatz von menschen-

ähnlicher Wahrnehmung, basierend auf Theorien der Psychoanalyse. Wie der Mensch auch, müssen

Systeme der Zukunft in der Lage sein, flexibel auf neu aufkommende Situationen zu reagieren. Gleich-

zeitig ist es erforderlich, dass bei wiederholtem Auftreten eines bereits gelösten Problems diese Auf-

gabe schneller und effizienter gelöst würde als zuvor.

Die bereits existierende kognitive Architektur wurde daher im Verlauf dieser Arbeit um einen perma-

nenten Datenspeicher ergänzt, um das System in die Lage zu versetzen, Erinnerungen über mehrere

Simulationsläufe zu speichern und zu verwerten. Weiters wurde das existierende datei-basierte dekla-

rative semantische Gedächtnis in die neue Datenbank transferiert. In einem letzten Schritt wurde ein

Prozess zum Speichern episodischer Erinnerungen in das System implementiert. Diese Umstellungen

werden dem Agenten in der Zukunft ermöglichen seine bereits gemachten Erfahrungen zur Verbesse-

rung seines Entscheidungsprozesses zu benutzen.

 IV

Acknowledgements

First of all I want to thank my advisor em. Prof. Dr. Dietmar Dietrich for supervising my work despite

already being in his well-deserved retirement. Further, I would like to thank my second advisor Dipl.

Ing. Alexander Wendt for sharing his experience and insights on the project with me. He also distin-

guished himself by spreading optimism and good spirits when things looked pretty grim.

I would also like to thank my friend Jürgen for his constant encouragement and backup during the

whole course of this work. For the hours of discussion on programming topics and your advice. Your

support was always noticed and appreciated. Thanks for putting up with my moods, old friend!

Further thanks go to my family for believing in me during the course of my studies. To my siblings

for pointing out that some of my sentences might be hard to read and even harder to understand. To

my father who is to blame for me ending up with computers instead of something I cannot imagine

today and to my mother for setting an example of how to manage a family besides being successful in

work and in life.

Finally, I want to thank my partner for his patience and support during the hardships of this work. You

were not only a mental aid, but a well-respected discussion partner on diverse topics that came up

during the course of this work. Thank you for pushing me forward and for sharing my concerns and

thoughts during all this time.

 V

Table of contents

1. Introduction .. 1

1.1 Background .. 1

1.2 Motivation .. 2

1.3 Problem Statement ... 4

1.4 Task Description .. 6

1.5 Methodology .. 7

2. Related Work and State of the Art ... 9

2.1 SiMA - Simulation of the Mental Apparatus & Applications .. 9

2.2 Data Storage Technologies .. 13

2.2.1 Relational Databases .. 14

2.2.2 NoSQL .. 16

2.3 Memory Approaches in other Cognitive Architectures ... 18

2.3.1 CHREST ... 20

2.3.2 ICARUS ... 23

2.3.3 ACT-R – Adaptive Control of Thought Rational ... 27

2.3.4 SOAR – State Operator Apply Result .. 30

2.3.5 BDI – Belief, Desire, Intention ... 33

3. Database Selection & Integration ... 37

3.1 Database Selection ... 37

3.2 Resource Description Framework .. 40

3.2.1 RDF Data Model and Terminology .. 40

3.2.2 RDF Schema ... 41

3.2.3 Querying with SparQL ... 43

3.2.4 N-Ary Relations .. 45

3.3 Implementation of Database Integration .. 47

3.3.1 Project Structure ... 47

3.3.2 Database Integration ... 49

4. Data Structure Conversion and Migration .. 52

4.1 Automatic Migration to RDF ... 52

4.2 Alternative Migration Concept .. 55

4.2.1 Primary Process Data Structures .. 57

4.2.2 Secondary Process Data Structures .. 63

4.2.3 Associations .. 65

4.3 Conversion Implementation ... 67

4.3.1 Manual Conversion .. 67

 VI

4.3.2 Search Space Migration and Memory Access .. 70

5. Memorization Process .. 73

5.1 Concepts of the Memorization Process .. 73

5.2 Memorizing Experiences ... 75

5.2.1 Memorization Trigger ... 76

5.2.2 Filtering the Memory .. 76

5.2.3 Creating an act .. 77

5.3 Implementation of the Episodic Memory... 79

5.3.1 Memorizing Experiences .. 79

6. Simulation .. 82

6.1 Test Environment ... 82

6.2 Test Case 1 – Declarative Lexical Memory ... 84

6.2.1 Simulation run with original memory ... 85

6.2.2 Simulation run with RDF database ... 87

6.2.3 Results .. 89

6.3 Test Case 2 – Episodic Memory .. 89

6.3.1 Simulation run with active memorization process .. 90

6.3.2 Results .. 94

7. Conclusion and Future Work ... 96

7.1 Conclusion ... 96

7.2 Future Work ... 98

Literature .. 104

Internet references .. 107

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Abbreviations

ACT-R Adaptive Control of Thought-Rational
ARS Artificial Recognition System
ARS-PA ARS-Psychoanalysis
ARS-PC ARS-Perception
DB Database
DM Drive Mesh
LIDA Learning Intelligent Distribution Agent
OWL Web Ontology Language
RDF Resource Description Framework
SmaKi Smart Kitchen
SOAR State, Operator Apply Result
TI Template Image
TP Thing Presentation
TPM Thing Presentation Mesh
WP Word Presentation
WPM Word Presentation Mesh
XML Extensible Markup Language

 1

1. Introduction

With growing capabilities in sensor systems, the requirements for building automation are constantly

increasing. In the future, one can expect such systems to be equipped with hundreds of thousands of

sensors in order to analyse complex situations. To successfully accomplish analyses of this kind, huge

amounts of data have to be processed and interpreted. Such an interpretation, however, demands more

than the current approach of simply following pre-set procedures that depend on certain sensory input

data. Computer science has explored various options to address these newly arising challenges. One

of these options is the Simulation of the Mental Apparatus & Applications (SiMA) project

[SIMAHOME15], which aims to provide a model of the human mind by combining psychoanalysis,

neuroscience, and computer science. The idea is that a model as closely resembling a real human mind

as possible should be able to accomplish many tasks in building automation in the future that are so

far a restricted field of application for humans.

1.1 Background

In recent years, computer science has made many advances in the area of intelligent systems; however,

so far these systems are unable to fulfil the expectations that were raised after the first successes in the

late fifties. At present, there is an ever increasing amount of application areas for autonomously acting

intelligent agents, ranging from public building security systems which identify possibly dangerous

objects to private home automation, such as an intelligent kitchen which starts brewing coffee while

you brush your teeth or triggers an alarm when a child comes near the hot stove. SiMA has its

beginnings in a project that was started with the intention of getting a few steps closer to the latter of

these examples. The Smart Kitchen project (SmaKi) [Rus03, p. 19] aims to perceive situations in a

kitchen and be able to react preventively, unlike conventional passively reacting systems taking into

account the whole environmental situation. This project was based on the concept of Perceptive

Awareness, which enables a control system to increase comfort, security, safety and economy [Lan10,

p. 1]. This is achieved by perceiving and recognizing situations and setting the appropriate actions or

countermeasures. Such a system is equipped with sensors, which partially simulate the human senses

and partially exceed human capabilities (e.g. air composition). In order to be able to deal with the huge

amount of data arising in this context, it has to be reduced to the most important information (e.g. hot

instead of 400 degrees Celsius). One of the project’s major findings was that this vast amount of

sensorial data needs very elaborate information handling in order to be processed [Deu11, p. 1]. As it

is very likely that future scenarios with far more input data and more complex environmental situations

Introduction

 2

to consider will overload the current control-systems, the Artificial Recognition System (ARS) project

was brought to life.

Back then the main goal was to find an approach to manage the immense flood of data that will be

produced by the sensor nodes of future control buildings. The approach, which was finally chosen to

be implemented in ARS was a bionic one. A bionic approach basically demands to transfer biological

principles into technical ones. The assumption behind such an approach is that biological principles

have been developed in the long process of evolution and are therefore near to optimal [DFZB09,

p.418]. Even though the first model which was originally presented in 2005 had to be abandoned, it

provided the team with many findings which resulted in the new ARS model which is used until today

[DFZB09, pp. 53–54]. One major problem of the first approach was the usage of different theories

from neuropsychoanalysis which were partly incompatible to each other. As the usage of one model

alone was impossible due to the fact that none of the existing theories were providing a model covering

all areas in equal detail or even leaving some of them out, work on a new model was started. As no

unitary psychoanalytical model was available it was decided to develop the new model which builds

on the concept of Perceptive Awareness and adds further concepts from neurobiology, psychology

and psychoanalytical theories, based on the work of Sigmund Freud.

In the last few decades, many scientists have been stressing the theory that all human thoughts are

generated in our sensor and motor systems [Lan10, p. 2]. Due to the tight coupling between

psychoanalytical concepts and bodily needs it was necessary to change the intermediate test

environment from building automation to an embodied system. As the area of building automation is

not a feasible test environment for developing a system that is inspired by the human brain, the Bubble

Family Game was introduced as a test environment [DGLV08, p. 1]. This environment is a simulated

world populated by embodied autonomous agents, which are equipped with a neuro-psychoanalytical

decision unit. Such an environment may contain a number of agents, various types of food, different

terrains and some points of interest [Deu11, p. 62]. The agents roaming in this world trying to satisfy

their bodily needs, by checking their environmental situation and taking decisions based on the sensory

information they get.

In the course of time the basic research questions have changed and the old project name no longer

covered the actual research interests of the project. Therefore, since February 2015 ARS is continued

under the name Simulation of the Mental Apparatus & Applications (SiMA). A more detailed

description of the actual state of SiMA and its concepts is given in chapter 2.1.

1.2 Motivation

Since 2005 when the first ARS model was presented, many people, from different research areas, like

human scientists and technical engineers, have been contributing to this project. As an agent cannot

act without any knowledge about its environment or tasks, a file-based mock-up memory has been in

use for a long time now. In order to reach the ultimate goal of autonomously deciding agents, however,

the ability to learn from experiences and consequently to remember already experienced situations is

absolutely necessary for an agent. Based on the outcomes of former decisions, one may react faster or

better than in a first encounter of a difficult situation [DGLV08, p. 1]. Furthermore the accessibility

Introduction

 3

of former experiences might enable an agent to discover new solutions to its problems, for example,

if the experiences from the past were not satisfying in their outcome.

A long-term memory, providing the ability to store and retrieve memories will not only improve the

outcome of the agent’s decisions, it also adds the possibility of implementing learning mechanisms to

SiMA in a future step. Learning means not only to remember things, but also to reason about the

remembered experiences, which enables an agent to gain new knowledge without actually

experiencing a certain situation. For example, knowing that birds have wings and a beak, may enable

the agent to identify a flamingo as a bird even though it never learned the fact “a flamingo is a bird”.

Such abilities might be considered to be one of the last steps towards an agent that is up to undertake

tasks that required human interference until now.

In the future intelligent robots could go to places that are too dangerous for human beings, like for

example areas of nuclear disasters or burning buildings. When the catastrophe of Fukushima occurred

robotic systems were used, but they were not able to take the place of humans in full [ROBO11]. It

took 5 weeks until the first robots were able to enter the place of the catastrophe, in order to explore

the situation. This exploration, however was dependent on a working transfer signal to human

controllers as robots nowadays are not able to react flexible to unknown situations. Existing robot

systems are able to work on specialized tasks they were intended for, but cannot adapt themselves to

anything unexpected. According to [FUKU14] it is to be expected that for the next 40 years humans

have to work on the cleanup of the nuclear power plants. After the first emergency works on the

severely damaged buildings 2 people were missing, 17 were injured and 2 were signed off sick

[FUKU11]. But this were only the immediate effects to those humans that risked their lives in order

to save others. It is practically unknown how many victims the work on the contaminated power plant

will claim over time. This incident confronted humanity in a very painful way with the insufficiency

of the current state of the art. Until robots have some sort of intelligence that enables them to react and

learn from new experiences there is no way that they could take over the place for human beings in

such life threatening situations as the Fukushima catastrophe. Further – less dramatic, but still much

longed-for is the help in everyday jobs that are boring or exhausting for human beings, or perform

tasks that cannot even be done by humans. Some people expect AI systems to permanently watch our

bodily state and diagnose illnesses [WIRED]. A system that is able to track and remember all

symptoms a person experienced may be imagined to be more accurate than a doctor that is out of time

or interest to listen to a patient that forgets half of the problems she experienced. Other factors like

shame or misjudgement of the severity of one's problems could be excluded by such a system as well.

Again a system that is able to diagnose illnesses correctly has to learn about the habits and bodily

states of its human owner in order to prevent wrong diagnosis.

In order to gain experience during run-time a system has to store the gained experience in some sort

of storage. Even though for short runs an in-memory solution should be sufficient, a long program run

will inevitably lead to a lot of memories that have to be kept in the agent´s long-term memory. If too

much information has been gathered a pure in-memory solution is going to slow down the system,

until further execution is out of the question. The reason for this is that the system will run out of main

memory after running the simulation for some time. In order to prevent such a situation counter-

strategies have to be found. One apparent solution to the problem of in-memory overload is to

Introduction

 4

“outsource” the long-term memory into a database and fetch only the currently important parts of the

long-term memory to the in-memory store of the simulation environment. Another solution, which

may be combined with the first one, is the implementation of a forgetting mechanism. This may be

done by simply deleting information that was experienced a long time ago, or an even more elaborate

approach to forgetting is the introduction of activation levels, marking the last usage of a certain part

of the memory and forgetting those parts that are not used for a long time.

1.3 Problem Statement

Simulation of the Mental Apparatus & Applications (SiMA) is a simulation environment for

autonomous agents based on the psychoanalytical model of human minds. At the moment, agents in

this system are not capable of collecting and storing memories themselves. As the process of decision

making implies accessing some sort of knowledge, a long-term memory is currently simulated by

parsing a Protégé Frames file [WTN+, p. 1] representing knowledge of the agent into the in-memory

storage, from where it is retrieved by the agent when needed. Even though this temporary solution

allows to test the functionality of the system model, it is not a sufficient permanent solution. In order

to enable the agent to react flexible to environmental changes and enable it to improve itself without

human interference it is necessary to have a long-term memory that can really memorize experiences.

The main research question for this work can be therefore formulated as:

Research question 1: “Which features need to be implemented, in order to enable SiMA to collect

experiences?”

The aim of this thesis will therefore be to enrich the SiMA project with a long-term memory, allowing

the agent to proactively gain experiences at runtime. As this will be the first time for the SiMA agent

to save and recall memories, one challenge of this work will be to filter and decide which experiences

are to be saved. As in the human experience process, the agent cannot decide which information might

be of importance in the future. Therefore, he keeps his experiences in his short-term memory until

they are moved to the long-term memory for permanent storage or are forgotten [MEMORY]. Part of

this thesis will be to formalize and implement the procedures that decide which memory parts will be

saved to the long-term memory. To decide which information is of value, the agent needs to be aware

of his needs and goals and conclude from those which of his actions have a connection. Therefore the

first sub-research question is:

Research question 2: “How shall the agent decide which memories are to be kept?”

In order to create memories that enable the agent to reconstruct situations, or even infer new

knowledge from them, it is necessary for the agent to link several experienced images together to

create a sequence of events. The term “image” is used for structures representing perceived situations,

while a sequence of events is referred to as an episode, or like in SiMA an act. Basically, such an act

consists of several atomic images, each representing one state of the environment, linked by

associations marking the temporal connection between the images. In Figure 1.1 an example for an

environmental situation can be seen. It shows one of the basic use cases which exist in the SiMA

project. This use case requires the agent to remember how to handle the obstacle (the stone) in its way

Introduction

 5

and get around it, in order to eat the cake. It also depicts very vividly the necessity of further

information, in order to turn this image into valuable information.

Figure 1.1: Image of SiMA environment

In the further course of its actions the agent is going to eat the cake behind the stone. However, from

the agent’s point of view, there is currently only a stone to be seen. Only by linking further images,

providing the information that it finally found something to eat, just after it looked behind that stone,

adds some use to the first picture. This is of course one of many examples of possible connections

between separate images. One may imagine that other valuable links between images are possible in

the future, like for example similarity links, marking the matching degree between the images. Based

on such information links the search and reasoning processes could be further improved. An agent

aiming to interpret never experienced situations consequently needs not only to remember experienced

situation, but also their connection to other experiences. The next research question can therefore be

formulated as:

Research question 3a: “When shall the act generation be triggered?”

Research question 3b: “How shall the act construction be implemented?”

Due to the current file-based storage approach, storage problems may arise in simulations running

over a long time. These problems are caused by the circumstance that all information has to be either

held in the working memory and the system will run out of allocatable main memory over time. Even

though it would be possible to read and write a text-based file, it will not be possible for a large amount

of data. The parsing process alone would take too long, let aside the search for the data which is of

importance. Therefore the first step towards an agent making experiences and saving them for future

use has to be the extension of the existing framework by the implementation of a more flexible data

storage solution. As the application area of a simulation environment is not a very common use case,

one cannot expect to find best practices for the question what data storage solution may be best. Very

clear requirements come from the fact that SiMA is a scientific project which makes an open source

solution highly favourable. Also general requirements of long-term projects like stability and long-

term support will play a role in the decision process. In the future, an effective query language could

take over some of the filtering processes that are currently done in the system itself, always provided

their application is not contradicting the psychoanalytical theories behind the filtering process. Besides

considering these basic demands the main task will be to decide for a database solution that is fit for

Introduction

 6

the special requirements that come with a simulation requirement. The research question for this part

of the work is therefore:

Research question 4: “Which of the existing database paradigms are most suited for SiMA?”

Furthermore, there is an obvious trade-off between keeping all information at hand in an in-memory

store and being able to store a near endless amount of data in a local or server-hosted store. An in-

memory store is until a certain amount of data is reached, a very fast solution, as all the data can be

accessed immediately. If too much data has to be managed in the in-memory store, however the system

will run out of allocatable main memory and no advantage can be gained from this storing method.

Local or server storage needs to perform read and write operations and is therefore slower on short-

term runs, but gains advantage over an in-memory solution when the amount of data increases. There

are many database solutions providing a switch between in-memory and local or server store solution,

which might turn out to be an interesting option.

It is important to note that for this work it is out of scope to change any of the current information

representation or the systems access to it and that the data structures probably have to be converted

between the new database system and the interface access in the SiMA architecture. This might turn

out as a serious bottleneck, depending on the chosen database and saving approaches. Nonetheless the

chosen approach shall be fit for future use and therefore, if possible, the need of future adoptions

should not influence the decision unless the solution should turn out not to work at all with the current

set-up. Another research question is therefore:

Research question 5: “How shall the current knowledge base be migrated?”

1.4 Task Description

The aim of this work is to enrich the agents in this system with a basic long-term memory, which

enables the agents to store memories for future advantage. In [Zei10, p. 1] the foundation for this work

was laid by the definition of the internal representation and an information management system

providing an interface between the decision- and information representation layer and handling the

stored knowledge. However, in order to realize the final aim of this work, some adjustments to the

current set-up have to be done.

The first task of this thesis is therefore to change the currently used file-based knowledge storage to a

more advanced database solution, thus enabling the system to outsource memories from the main

memory to the data store during runtime. This will enable it to keep track about its experiences for a

long time without utilizing the working memory excessively. The conversion of a file-based storage

approach into a database system will enable the agent to work with larger amounts of data and enrich

the SiMA system with the capability of using database queries as a supplement to the already

implemented search processes. The chosen system has to work with the existing models and concepts

in SiMA as it is out of scope for this work to redesign the data structures, or the current search process.

In order to make an informed decision about the technologies that will be used, some research on state

of the art database solutions shall be performed. Furthermore, other well-known agent systems along

Introduction

 7

with their long-term memory approaches shall be presented, in order to decide for a solution that is fit

to fulfil all the requirements that come with a project with the scope of SiMA.

The second task of this thesis is the extension of the current framework to enable the agent to gather

experiences and save them into the newly added knowledge storage. This means that the system will

be supplemented through appropriate algorithms and methods to extend the SiMA agent’s capabilities

considerably, it shall give the agent the ability to save important experiences in order to enable it to

include them in its decision process. This implies the implementation of algorithms that filter out

unnecessary information in order to save only those experiences which are likely to improve the

agent’s decision process in the future. Even though the agent will be able to save experiences and

consequently access them in the further course of its life cycle, or even another program run, it is likely

that the new knowledge will not bring any improvement to its behaviour immediately. This is due to

the fact that the agent´s search algorithms or decision process will not be adjusted in the course of this

work as it is simply out of scope. If the agent has too many equally important and fitting experiences

to consider, it is likely to slow the decision process down. Therefore, further improvements like to

consider newer experiences as more important or even forget older ones may be necessary before the

new long-term memory is actually contributing real benefits to the system.

1.5 Methodology

When developing a project in a scientific environment, it is always a good idea to look around for

other approaches and solutions to the topic, in order to prevent “reinventing the wheel” or to avoid or

at least anticipate problems that were experienced by others. Therefore the beginning of this work is

an extensive research on state of the art cognitive architectures and their approaches to memory and

knowledge representation as well as on data storage solutions currently available. Basic questions for

this state of the art research are:

• What data storage solutions are available and what are their general advantages and

disadvantages?

• What is the intended or preferred application area of the presented data stores?

• What memory aspects are utilized by the cognitive architectures?

• Which information representation was chosen by the cognitive architecture in order to

represent the memory contents?

• What approach was chosen to search and find the information the agent needs at runtime?

• How is new information gathered and saved?

One of the expected impacts of this thesis on the SiMA project is the ability to deal with larger amounts

of data. This shall be achieved through the conversion of a file-based storage approach into a database

system that allows the simulation environment to fetch and hold only the currently relevant data in the

working memory. Therefore, the first step is the choice of an existing database solution. Criteria for

the selection of this database system are performance, stability, and project specific requirements, like

for instance the usage of open source software. In addition to the classical relational database systems

which have been dominating the world of data storage for a long time, many specialized data store

Introduction

 8

paradigms have been presented in the last few years. Many of them were created with the new

requirements of web applications, like big amounts of unstructured data, in mind and are therefore

highly interesting alternatives to the relational approach. Some RDF databases even provide basic

reasoning concepts by using the RDF schema based knowledge language OWL, which is also

considered for the selection of an appropriate database system although it will not be used in this

thesis.

Currently, SiMA uses a tool called "Protégé" to maintain and create some basic information that is

simulating remembered situations for the agent’s decision process. This data is loaded and parsed into

the in-memory storage at runtime and then parsed into Java data structures. In order to save the existing

data to the new database, a reasonable representation of the existing Java data structures has to be

found. Depending on the chosen database solution even some sort of conversion might be necessary.

For example, many NoSQL databases present their data in structured text or in triple representation

which would require the implementation of a conversion routine for the stored data. At present, it is

absolutely inevitable to reconstruct this information into the data structures discussed herein.

However, in future implementations it should be possible to further reduce the amount of loaded data

by fetching not the whole data structure but only information currently needed by the agent.

Considering the life span of the SiMA project, one has to keep in mind that new requirements as well

as options may arise in the future. Consequently, maintainability is of great concern in this phase of

the project and has to be kept in mind when integrating the new database system into SiMA. Through

the introduction of interfaces and exchangeable functions, better maintenance and adaptability for the

future shall be guaranteed.

Concurrently, first tests for saving data structures will be done in order to create a data structure that

is fit for storing memories as well as searching through them. After the basic data structures can be

saved the non-trivial topic of defining acts will be considered and implemented. In order to extend the

current framework by a memorization process, appropriate algorithms and methods as well as concepts

for filtering and storing experiences will be developed and implemented. This will include research

on algorithms and mechanisms that will enable the agent to decide which information in his short-

term memory should be combined to form an act and afterwards saved to the long-term memory. This

will enable the agent to gain experiences and manage them in its short- and long-term memory as well

as taking them into account when experiencing similar situations, extending the SiMA agent’s

capabilities considerably. Finally, the functionality of the whole system is validated by the successful

execution of the already existing use cases, using the new database system. The use cases used to

validate the system will be defined in the first phase of the project.

 9

2. Related Work and State of the Art

There exist many cognitive architectures, using diverse theories on information representation and

memories. While several systems utilize only one permanent memory, others divide theirs into

different sub-categories, each specialized for certain tasks. Some approaches provide truly persistent

storage that is used and extended over several program executions, while others simulate a long-term

memory only in the cognitive sense, do not store their new knowledge after program termination. The

first part of the following chapter will discuss some prominent solutions for permanent data storage,

along with their strengths and weaknesses, whilst the second part will focus on presenting some well-

known cognitive architectures along with their memory approaches and implementations.

2.1 SiMA - Simulation of the Mental Apparatus & Applications

As already mentioned in chapter 1.1 project ARS was originally started in the year 2003 to provide an

answer to the growing demands that are put on building automation systems. After it was detected that

a kitchen equipped with sensors and actuators, has considerable problems to deal with the large amount

of data, when treating the information with common approaches. However the ultimate goals (namely

processing incoming sensor data in real time and reacting to unknown situations) are not to be solved

by algorithms alone [ZLM09, p. 383]. As a result of this insight the path of simulating the human mind

was taken. In order to show intelligent behavior, embodiment and emotional intelligence can be seen

as inevitable. For a model of the human mind, which is technically realizable and still correct from

our actual knowledge about the human functionality, a close cooperation between human sciences and

technical engineers was needed. When first steps were taken to implement a system providing abilities

for data processing and decision making, two sub-groups were founded [Vel08, p. 10]. The first group

ARS-PC (PerCeption) dealt with perceiving objects, events, scenarios and situations and the resulting

model is based on neurological and neuropsychoanalytic theories [ZLM09, p. 383]. ARS-PA (Psy-

choAnalysis) was employed with the reasoning unit, which is responsible for the process of decision

making and based on the psychoanalysis. Due to the fact that a holistic, non-contradicting psycholog-

ical concept of the human mind was needed, the approach which is in use until today is based on the

first and second topographical model defined by Sigmund Freud [Lan10, p. 50]. The second topo-

graphical model contains the widely known concepts of Ego, Id and Super-Ego, in contrast to the first

topographical model where unconscious and preconscious/conscious were distinguished [DFZB09, p.

16].

Related Work and State of the Art

 10

Secondary

Process

Primary

Process

Drive

Track

Defense Mechanisms

Perception

Track

Selection of Need Selection of Action

Knowledge

Store

Neuro Symbolic

Environment, Body, Homeostasis

Figure 2.1: SiMA layers plus memory module design based on [SDW+13, p. 6650]

Architecture and Concepts

In Figure 2.1 the basic layers of SiMA with its memory module are presented. Neuro-symbols are used

to represent perceived images from the environment [VBPG09, p. 1964]. Examples of such neuro-

symbols could be a face, a voice or a person. A separation between a primary process and a secondary

process can be seen. According to the first topographical model of Sigmund Freud the primary process

performs all unconscious data processing whilst the secondary process performs all pre-conscious and

conscious data processing [Deu11, p. 68]. The Id represents the drives and affects of the agent and is

part of the primary processing. Its functions are located in the drive track and perception track. The

Super-Ego contains internal rules that are usually gained in childhood and define what is considered

to be “socially acceptable” for the agent. It works as a counterpart to the Id, which tries to satisfy its

needs immediately. The Super-Ego itself has to be predefined by the developer and contains

commandments, bans and information about action handling for predefined scenarios. The Ego mainly

works with preconscious or conscious information and is therefore mainly in the secondary process

positioned. However, some modules of it (e.g. the defense mechanisms) work with unconscious data,

which makes them part of the primary process. Its main tasks are mediation of requests from Id and

Super-Ego and the reality check of those demands [Deu11, p. 69]. For example demands may be

altered or even postponed if something in the environment implies this would be better for the moment

(in the figure shown as selection of need and selection of action). SiMA´s memory or knowledge store

is connected to the primary process as well as to the secondary process. At the moment it is a file that

is parsed into in-memory at runtime and no information can be stored to it. All information in the

primary process is represented by thing-presentations, while data which is processed by the secondary

process is defined by word-presentations. Thing-presentations contain information about sensorial

data and may be grouped into visual (like colour, size or shape), taste, audio, olfactory and tactile data.

Affects represent the drive-demand intensity of a thing-presentation and have to be connected to one

Related Work and State of the Art

 11

in order to get some meaning. A word-presentation is a description of an object by symbolic means

(like for example verbal expressions, hand gestures or sound combinations). They summarize thing-

presentations and affects to the concept of one object. A very important concept of SiMA are the

drives, which represent the motivations for decision making. It combines a drive source (a body organ

or process), a drive aim (an action that will satisfy the bodily demand) and a drive object on which the

aim may be executed, with a quota of affect, stating how important the drive currently is.

Figure 2.2: Data flow and decision cycle in SiMA [DSBD13, p.6669]

Processing Cycle

A control loop in SiMA starts with the five input sources that can be seen in Figure 2.2. There exist

four basic inputs, namely sexual, self-preservation, environment perception and body perception. Self-

preservation drives represent bodily needs (e.g. blood sugar) while sexual drives are internal demands

seeking for pleasure [Deu11, p. 70]. Both are input sources from the agent´s body. From the symbolic

information that is gained from self-preservation drives and sexual drives, a drive, without quota of

affect, is created [Deu11, p. 140]. The next step is to calculate a quota of affect and pass the infor-

mation on to the Ego. Environment perception and body perception are inputs from the environment.

The environment perception provides sensorial data about the environment itself, whilst the body per-

ception informs the system about actuator positioning and sensorial feelings like for example pain

[DSBD13, p. 6670]. They are combined with a feedback input from the secondary process, represent-

ing fantasies from the preconscious [DSBD13, p. 6671]. For all inputs it holds that their importance

has to reach a certain limit in order to be transferred to the Ego [ZLM09, p. 385]. The Super-Ego

receives information about the environment from the Ego and returns an operation consistent with the

current situation. The Ego has to use its defense mechanisms to resolve conflicts which occur between

the drives coming from the Id, the Super-Egos rules and the reality. The incoming demands are first

altered by the Ego, in order to increase their chance to be selected. While the information is transferred

from the primary to the secondary process, the thing-presentations are completed with word-presen-

tations. From now on they exist in parallel, but only the word-presentations are used for the processing.

 Sexual drive track

Action track

Self-preservation drive track

Body perception track

Environment perception track

Drive track

Perception track

Imagination

track

Selection of desire & demand track

Defense track

Selection

track

F39 – F40 – F64

F1 – F2 – F65 F48 – F57 – F49 – F54 – F56 – F63

F14 – F46 – F37 – F35 – F45 – F18 F10 – F11

F12– F13

F55 – F7 – F6 – F19

F26 – F51

F21 – F20 – F8 – F61 – F66

F52 – F29 – F53F30 – F31 – F32

F47

Related Work and State of the Art

 12

In the end the Ego then calculates a “decision” based on the information about the environment and

the other modules demands, which is passed on to the actuator control [ZLM09, p. 385].

Memory and Information Representation

Until today SiMA has gone through many changes that were applied after close examination on po-

tential system drawbacks. One of these modifications was the change from an episodic memory to an

approach which seemed more suitable for an embodied agent [Deu11, p. 73]. In [ZDI+08, pp. 383–

389] a new approach for representing information is introduced to SiMA. The main reason for this

change was the widespread opinion that memory is highly dependent on interaction with the environ-

ment, which is hard to realize with a “storehouse” approach. As stated before the psychoanalytical

approach was chosen for the reasoning units approach, therefore information which is passed between

the three modules is not divided between memory sub-groups like episodic or semantic memory, but

represented in three basic modules called thing-presentation, word-presentation and affect, which were

described in the beginning of this chapter [ZLM09, p. 385].

For search, storage and retrieval of memory the information representation module (see Figure 2.1) is

responsible [Deu11, p. 74]. This module is connected to the reasoning unit which may use this con-

nection to access information from memory. In order to save some perceived information to the

memory it has to be converted from sensor data to thing-presentations. Thing-presentation-meshes can

be used to group temporally associated thing-presentations which represent a situation. For the repre-

sentation of a temporal context word-presentations have to be used.

TP4

Memory Cloud

TP2

Association

TP1A1

Non-weighted

4

5

TP3

TP5

2

1

WP1

Figure 2.3: Memory Cloud based on [ZLM09, p. 386]

The described information representation modules are used to form so called memory traces. A

memory trace is a concept stemming from psycho-physiological theory, which represents permanently

preserved memories in the mind [ZLM09, p. 386]. In Figure 2.3 the process of creating a memory-

cloud from memory-symbols is depicted. The associated memory-symbols affect A1 and thing-

presentation TP1 have an association which is weighted with 4 to the thing-presentation TP2. Due to

the fact that their association weights are above a certain threshold, together with TP4, which has an

association weight of 5 to TP2, they form a memory cloud. The resulting memory cloud is associated

with the word-presentation WP1. Memory-symbols in a cloud may be connected to other symbols

Related Work and State of the Art

 13

outside the cloud, like one can see in Figure 2.3 on the connections TP2-TP3 and TP2-TP5. As the

association weight is determined by concurrent appearance, it is possible that these weights increase

over time and the symbols are included in the memory-cloud.

Currently in SiMA symbolized sensor data representing situations, so called template images, have to

be predefined in memory-clouds [ZLM09, p. 386]. There they are compared to incoming perceived

images of the environment. If the perceived image does not match any of the existing ones (within a

certain range of tolerance) a new template image is stored. If a stored memory-symbol matches a

perceived one it is directly activated. If two symbols are directly activated at the same time their con-

nection value increases. However, their connection value may decrease over time again. Besides direct

activation there is also indirect activation, if a symbol is activated through a directly activated symbol.

Anyway this sort of activation is not increasing the association weight.

Actually there is no learning implemented in SiMA, also the memory (shown as database in Figure

2.1) is a declarative semantic one and no episodic memory has been implemented until today. The

knowledge base is created at system start from a Protégé-Frames file, which has to be created by the

developer manually. Protégé-Frames is an ontology modelling paradigm, particularly useful for on-

tologies with a closed-world assumption [WTN+, p. 1]. The information from this file is converted to

the already introduced concepts like thing-presentations, word-presentations, thing-presentation-

meshes and word-presentation meshes at program start. The converted information is then put into

HashMaps (please refer to [HASHMAP] for further information) from where it can be accessed in the

agent´s life cycle.

2.2 Data Storage Technologies

Since the 1960s, when the term “database” first came up, many different data storage technologies

have been developed. Many of them were created with the aim to become a perfect fit solution for

absolutely every area of application. In the times of Web 2.0 applications and cheap hard disk storage

have changed the general mind-set. Nowadays one has a variety of technologies to choose from, many

of them designed to meet the requirements of a certain application area. If one has to decide for a

storage system three main aspects should be taken into account before starting with the storing process

itself:

• What is the nature of the data and the requirements of the overall application in which it shall

be accessed?

• Which options and constraints are offered by the storage technology itself?

• Where shall the data be located?

The nature of the data and the requirements of the application in which it shall be accessed are of

importance in order to make an informed decision about how to represent the data in a storage system.

Such requirements might be access frequency, data change frequency and amount of data added. Other

requirements might be consistency of data, stability of the system and security issues. As it is not

possible to provide one perfect solution for all requirements, different emphasis for different needs are

Related Work and State of the Art

 14

provided by the data storage systems. For example, putting an index on the database improves the

search speed of retrieval operations, the drawback coming with this improvement is the need of

additional storage space and reduced write speed, as every new entry has to be indexed. The data itself

may bring up many challenges for the database. For example, in some database applications, there

may be the need to store billions of records, in others the data may be multi-format (records are in

different formats like text, images, videos etc.). At the same time the storage technology itself has to

be considered, as different systems provide different representation models, like for instance the table

like representation of a relational database, or the subject-predicate-object representation of a triple

store. Depending on the area of application one may have to choose where the data will be located, in

other cases the location is already determined by the application area. Examples of data locations are

local stores on the desktop and big server solutions. Some data stores might be restricted to local use,

or are at least notably reduced in their performance if used on a server. Besides those possible

restrictions the location is only as far connected with the other two aspects as it might impact the

performance of the overall system if the chosen approach is not suitable for the size of the stored data

or the access frequency. Also for the most technologies the location can be rather easily changed

during a project´s life cycle [Law14, p. 285]. For instance, one can change from a local relational

database system to an installation located on a server by simply changing the access data in the code

and providing the database system of one's choice on the respective location. Having said that much

about how to approach the topic in general, the following pages will present some of the most

promising approaches in database technologies. Generally those technologies can be distinguished

into relational databases and NoSQL databases. According to [Bar10, p. 1] a rivalry between the two

camps of NoSQL and relational database followers has been building up, though both approaches have

been designed for very different problems, which will become apparent in the next chapters.

2.2.1 Relational Databases

Relational databases have their origins in 1970, when the relational database model was introduced

by Edgar Codd. The basic principle is the usage of a table set, where each table represents an entity or

object using named columns describing the objects attributes or fields [Lea10, p. 12]. Each row in this

table represents one record or tuple. For example, one can have the table food and the columns of the

table Food are ID, Name, Type, Colour and Taste. A record for some marble cake has the

corresponding field values “1”, “marble cake”, “cake”, “brown-yellow” and “sweet” (see Figure 2.4).

The name arises from the relations that exist between the tables which are also represented by columns.

For example a table Agent could have a relation “favourite food” to the table Food. This can be

represented by adding to the table agent a column favourite food in which the so called “primary key”

of the table Food is saved as a “foreign key”.

In Figure 2.4 one can see that the record with the name “Arsin” has a value of “1” for the column

FavouriteFood, which basically means that Arsin likes to eat marble cake above everything. Primary

keys act as a unique identifier amongst every data set (data row) of each table. Even though a wide-

spread practice is to use a continuous numbering as a primary key it is also possible to define a single

unique column or combine several columns to a unique identifier to act as primary key. Foreign keys

are used to define the relations between database records. Note that the statement “Arsin likes to eat

Related Work and State of the Art

 15

marble cake above everything” could be also represented by simply writing into the column Favour-

iteFood “marble cake”, not making the column a foreign key column. The statement would still be the

same, but the additional information about the food “marble cake” would be lost. However, one could

still use the query language SQL (Structured Query Language) to search for a food called “marble

cake” and assume that this is the meant food.

Food Agent

ID Name Type Colour Taste ID Name Age FavouriteFood

1 ham meat pink salty 1 Bodo 1 1

2 marble cake cake brown-yellow sweet 2 Arsin 10 2

3 grapefruit fruit orange sour 3 Anouk 3 2

Figure 2.4: Example tables with relation

As long as only one food with that name exists this would work perfectly well, but of course there is

no guarantee that this will always be the case, which is the reason why foreign keys are used for stating

relations in a unique way. Due to the fact that there exist standards which are kept by most vendors,

relational databases are interchangeable [Law14, p. 285]. Even though there are minor variation of the

implemented SQL features, the change from one relational database to another should be compara-

tively easy. Relational databases are designed to work at high precision and have to meet the ACID

(atomicity, consistency, isolation, durability) standard [Lea10, p. 13]. The atomicity property requires

the database to perform a transaction completely or not at all, consequently a fail of one part of an

operation will terminate the whole operation. Consistency requires the database to move between valid

states, considering all the constraints, triggers and so on. Isolation means that only complete transac-

tions are visible to the “outside”, which ensures concurrency control. With durability the ability to

keep all persisted changes despite system crashes, power loss is addressed. All these properties make

relational databases the first choice of many business applications, where precision and integrity are

of high importance, but may add unnecessary overhead for a top-tier website system.

Disadvantages and Limitations

Even though there is almost no requirement that cannot be met by relational databases, there are some

limitations to them, where other database solutions may overcome them. According to [Lea10, p. 13]

relational databases don’t work very well in a distributed setting, as joining tables becomes a real

challenge there. Also, most relational databases do not support distribution natively. Data partitioning

is not part of the relational database concept, which means it has to be implemented specifically for

each project. Although this would be some effort, one cannot avoid it when the limits of the powerful

and expensive single machines are reached. Another limitation is the tabular representation of data.

Every piece of data that shall be saved to a database has to be converted into tables even if the data is

not fitting for this form. This can add high complexity to the data manipulation processes and therefore

reduce the performance of the system significantly [Lea10, p. 13].

One of the biggest advantages of relational databases also leads to one of their biggest drawbacks –

the requirement of ACID transactions. In comparison with other database solutions, performing all

Related Work and State of the Art

 16

these constraints slows a relational database down significantly. Furthermore this implies that

relational databases cannot handle incomplete information. As already mentioned SQL is the main

querying language for relational databases, which is an advantage as well as a limitation. For

structured data it is really convenient and works nearly without competition, but with other types of

data it is much more difficult. Furthermore the big set of features adds high complexity and cost and

is not necessarily needed by some applications [Lea10, p. 13]. Adding new data not matching the

present database schema is possible, but might require rebuilds [WDM+12, p. 220]. To circumvent

problems with unstructured data records solutions for providing a more extendable data model have

been researched. One approach to a more extendable data model is the application of the “Universal

Data Model”. The Universal Data Model is basically a generic data model, which aims to provide a

representation in which all sorts of data may be converted to. In [WDM+12, p. 220] a variation of this

model was successfully used to integrate data from arbitrary sources into one relational database.

While this would enable the database to be completely adaptable for new data sources, it would slow

down the execution time. Another disadvantage of this approach would be the limitation to string

values and the loss of cardinalities.

2.2.2 NoSQL

With the advent of Web 2.0 the advance of the so called NoSQL (Not Only SQL) databases from the

niches of software development to widespread usage has begun. They have been introduced to solve

problems which were poorly served by relational database solutions. The biggest advantage these

storage approaches have in common is the ability of handling unstructured data, which primarily made

them so attractive for the usage in Web 2.0 applications [Law14, p. 285]. Well known examples of

such databases are Dynamo or Big Table which were developed by Amazon and Google [Lea10, p.

12, [Sto10, p. 10]. A very interesting advantage which some, but not all NoSQL databases provide, is

the option to use them in a distributed setting, meaning that a single database can be distributed over

several inexpensive machines. For high traffic websites, depending on massive scalability, low latency

and the ability to grow on demand, this is a big argument for the usage of NoSQL databases, but there

are several other non-website-scenario scenarios where this might be a better suiting setup than the

usage of one expensive high performance machine. Also, most NoSQL storages are open source

[Law14, p. 286] and therefore have another argument for smaller budgets or open source developers.

According to [Lea10, p. 13] NoSQL databases process data faster than relational ones and give more

flexibility to the developers, but to achieve this high performance more adjustment have to be done.

This processing power can also be attributed to the work spreading over several machines, which

results in lower latency even if a large number of read and write operations are performed [Bar10, p.

1]. NoSQL being only a collective term for non-relational databases, leaves to say that different

NoSQL databases use different approaches as to how to handle their data. NoSQL systems are based

on the CAP (Consistency, Availability, Partition tolerance) theorem and the BASE (Basically

Available, Soft State, Eventual Consistency) paradigm. The BASE paradigm states that NoSQL

databases renounce some of their consistency in order to improve their availability and performance

[BLS+11, p. 484]. CAP states that a distributed computer system can only provide two of the three

parts of CAP simultaneously. Consistency means again that all parts of the system see the same state

at the same time, availability demands that every request is answered in some way and partition

Related Work and State of the Art

 17

tolerance enables a system to operate despite some failure in one part of a system. Many NoSQL

systems approach the partition tolerance problem by mirroring database clusters between multiple data

centres. However, this means that high consistency is not possible at all times. Changes will be applied

at some time, but there is a high possibility that at some point a single node or group of nodes is not

up-to-date. Obviously partition tolerance is no problem for relational database systems running on

single machines [Bar10, p. 1]. Up to this day there exist four types of NoSQL databases: key-value

stores, column oriented databases, document oriented databases and graph oriented databases

[BLS+11, p. 484]. The following pages aim to provide an insight into the different NoSQL database

concepts.

Document-oriented stores

Document-based stores are intended to manage semi-structured data, which is stored in some sort of

“document”. In the language of a NoSQL database “document” means a collection of various fields

of information [Bar10, p. 1]. The offered functionalities differ widely, but the basic concept is the

usage of some sort of internal standard format. The main advantage of this storage approach is the

ability to add a different number of fields of varying lengths to the document [Bar10, p. 1, [Lea10, p.

13]. This sort of data store is very useful for semi-structured data and according to [Bar10, p. 1] they

are very well suited for object oriented programming models. Popular implementations are CouchDB

from Apache Software Foundation, 10gens MongoDB and Basho Technologies´ Risk [Lea10, p. 13].

Key-value stores

A Key-value store is exactly what its name implies – it stores values indexed by keys and works

equally well for structured and unstructured data. [Lea10, p. 13] states that key-value stores achieve

extremely low latency under high load, when paired with a fast network and a large number of servers.

Examples of key-value stores are Amazon´s SimpleDB, Amos II or Scalaris.

Column-oriented databases

Column-oriented databases are designed for closely related data, which is stored in one extendable

column. The basic principle is to store column by column rather than row by row. The table “Food”

from Figure 2.4 would look like: 1, 2, 3; ham, cake, fruit; pink, brown-yellow, orange; salty, sweet,

sour. Examples for column-oriented databases are Facebooks Cassandra and Apache Software

Foundations Hbase [Lea10, p. 13].

Graph-oriented databases

Graph-oriented databases have the ability to add new information very easily [WDM+12, p. 221].

Many graph based databases are so called triple stores based on the Resource Description Framework

(RDF). Triples are built in a sentence like manner, having a subject, a predicate and an object. A triple

in RDF, stating that marble cake is Arsins favourite food, would look like: S: Arsin P: FavouriteFood

O: marble cake. The advantage of RDF databases is the fact that in contrast to other NoSQL databases

there exist standards and a unified query language, which is called (SPARQL). However [WDM+12,

p. 224] state that queries scale very badly and that execution time is proportional to database size,

structure of the query and limitation. Their usage in large databases is therefore restricted to queries

Related Work and State of the Art

 18

with low complexity. One great advantage of graph databases is their ability to integrate new models

on the fly without the necessity to change anything on the existing data [WDM+12, p. 223]. They also

support federation with the cost of a 30% slow down for each additional repository. Examples for

graph-oriented stores are AllegroGraph [ALLEGRO] and Neo4j [NEO4J].

Disadvantages and Limitations

For NoSQL databases goes the same as for relational databases – the advantage leads to some

disadvantage as well. When one looks for consistency and reliability, the database system itself will

not guarantee it natively – it has to be added specifically for each application. This is the trade-off that

is done in order to achieve a very good processing performance. Also, most NoSQL data models have

to be simpler to achieve the much desired performance boost. Even though some hybrids exist, most

NoSQL databases don’t work with SQL and require therefore manual queries which may become very

time-consuming for more complex tasks [Law14, p. 285, [Lea10, p. 14]. As NoSQL databases are so

different to each other there will never be anything like a unified query language or API [Bar10, p. 2].

As most NoSQL databases are open source products, they offer little or no customer support at all. In

contrast to relational databases, the choice of one NoSQL system will possibly limit the further

development process to a handful of programming languages and access methods, as each NoSQL

database has its own APIs, libraries and preferred programming languages. Other problems, which

will decrease within the next years, are the little number of professionals with the knowledge about

these new technologies and the lack of maturity in most of the products [Lea10, p. 14]. Predictions for

the future of NoSQL databases are that they will be mainly adopted for specific applications where

large amounts of data and scaling are involved. At this point Monty Widenius shall be cited: “Non-

SQL gives you a sharp knife to solve a selected set of issues. If you find SQL too hard to use, you

should not try Non-SQL.”, basically meaning that one should know the advantages and disadvantages

of relational and NoSQL databases well, in order to decide for the best fitting option [Bar10, p. 1].

2.3 Memory Approaches in other Cognitive Architectures

Until today a great deal of research on cognitive architectures has been done, however a long time of

research on any topic usually results in many opinions and different definitions. Generally a cognitive

architecture should act in a way which can be said to be intelligent, but a general view on how this

intelligence should look like has not been established until now. A definition widely accepted is that

an agent of such a system should be able to act satisfactory in situations which are partly or totally

unknown to it [VMS07, p. 151]. In order to do so, these systems have to provide some sort of

functionality to use existent knowledge to “imagine” possible future outcomes of its current situation.

Some people working on the topic suggest that a cognitive system needs to learn from experience in

order to improve performance over time and some even demand the ability of self-reflection. Some of

the architectures resulting from the research on this topic specialise on planning and problem solving,

while others try to model human behavior, like emotions or motivation, along with their drawbacks,

like a limited area of view. In the following some terms that are essential for understanding the

presented architectures are discussed.

Related Work and State of the Art

 19

As can be seen from the previous examples, there are various interpretations of the topic of cognition.

However, two basic approaches have evolved over time [VMS07, p. 152]. The so called cognitivist

system approach treats cognition rather algorithmic, making use of symbolic information processing

representational systems. It adopts many theories from artificial intelligence, like for example the

hypotheses of Newell and Simon [VMS07, p. 154]. They stated that a physical symbol system is

sufficient for general intelligent actions and that heuristic search should be used by such systems in

order to solve tasks. In heuristic search rules are applied to symbol structures until a structure

providing a solution is produced. In contrast to this approach, the emergent system supporters plead

for a dynamical, self-organized approach to cognition, by using connectionist systems. They see

cognition as the process that enables an agent to act reasonably in its environment. Therefore, in

emergent systems, perception is considered to be a reaction to environmental changes. Also, they are

bound to real-time operations within their environment, which is not the case for cognitivist systems.

In an emergent approach embodiment is obligatory, while even though many cognitivist architectures

have some sort of embodiment, they do not need it by rule.

In order to be able to act in a way that may be considered intelligent, an agent of a cognitive architec-

ture needs to have some information about its environment and a basic understanding of situations

that are likely to happen. Based on this knowledge the agent should be able to decide how to react to

similar or even totally new events. Depending on the cognitive architecture the agent may then be able

to memorize his new experiences, which may be of use for other situations in the future. These expe-

riences are stored in the long-term memory. When it comes to implementing such a permanent

memory, again there are many approaches, which are often influenced by theories on the human brain.

Work in psychology highly suggests that the human memory is separated into several sub-categories

of memory, each having different functional responsibilities [Deu11, p. 73]. The psychological theory

of separating the memory in distinct types has been realized in many artificial intelligence projects

until today. According to [ZLM09, p. 384] the most common memory approach in autonomous agents

is the implementation of an “episodic” and a “semantic memory”, based on the theories of E. Tulving

and A. Baddeley. The episodic memory represents what one “remembers” in contrast to the semantic

memory which represents what one “knows” [DGLV08, pp. 7–8]. With an episodic memory, for ex-

ample, it is possible to remember regularities which were not realized originally and combine them

with actually experienced events. According to [NLA07, p. 1560] episodic memory greatly enhances

the reasoning and learning capabilities of agents. For long-lived agents however such a powerful

memory raises numerous challenges, like providing access to all collected memories in a reasonable

amount of time.

Another psychological theory, that is often adopted, is the so called chunking theory. It states that the

human mind uses discrete collections of features, all having a strong association to each other

[GLC+01, p. 236]. The resulting conceptual groups are called chunks [SGL09, p. 2]. A popular

example of such a group of elements, that gains a meaning when grouped, are words which are

constructed through the grouping of single letters. According to [GLC+01, p. 236] the diverse research

on chunking has also resulted in different meanings and applications. However, two widespread

approaches are the so called goal-oriented chunking and the perceptual chunking. Goal-oriented

chunking assumes that the process of chunking is a conscious one and therefore controllable, whilst

Related Work and State of the Art

 20

automated and continuous learning through perception is assumed by the latter one. The most common

definition of a chunk is that of a declarative unit of knowledge or information.

The “unified theory of cognition” is a very popular theory, which was presented by Allen Newell in

the year 1990. He basically stated, that the mind is one single system and that any cognitive model

should provide a theory for all of its functions. Consequently a system based on the unified theory

should provide a concept for knowledge representation, a learning process along with a way to react

to unknown situations and to achieve its objectives. According to Newell some of the advantages that

are supposed to result from this approach are the ability to attack real-world problems and that it is

possible to integrate the huge knowledge that is provided by cognitive neuroscience methods

[ABB+04, p. 1037].

There are several agent-based simulation systems dealing with the problem of storing and retrieving

memories. In the following sections some of them will be presented. As the main interest of this work

lies in storing and retrieving agent memory data, particular focus will be on answering the following

questions:

• What memory aspects are used by the system?

• How is the memorized information represented?

• What approach was chosen to search and find the information the agent needs at runtime?

• How is new information gathered and saved?

However, as the application areas and approaches differ widely, not all the questions can be answered

for each of the presented systems.

2.3.1 CHREST

CHREST (Chunk Hierarchy and Retrieval Structures) was developed to be a general-purpose archi-

tecture, simulating selected areas of the human mind [SGL09, p. 1]. The favoured test scenario for this

architecture is a chess setup where circumstances threatening the king shall be recognized. As the

architectures name already indicates, one of CHREST´s basic concepts is the adoption of the chunking

theory [SGL09, p. 2]. A remarkable feature that makes CHREST stand out from several other archi-

tectures is the fact that it imposes costs for cognitive operations, to make the simulation of the human´s

cognitive system even more realistic. The imposed constraints and the modelled processes were ob-

tained from empirical studies on human behavior. Examples for restraints are limitations on the visual

short-term memory and the systems learning rate, the time for moving the eye is set to 30ms and also

the time for mentally moving a chess piece is simulated by an internal system clock [GL10, p. 2,

[SL07, p. 3]. This approach is in high contrast to many other systems which are designed to attach

greater importance in succeeding in complex tasks on large amounts of data. Despite those self-im-

posed constraints CHREST has proven itself a successful model of the human mind in various appli-

cation areas like physics representation, ageing and perception, language acquisition and chess exper-

tise [SGL09, p. 2].

Related Work and State of the Art

 21

E
nviro

nm
en

t

Perception

Short-Term Memory

Long-Term Memory

Sensory Memory
Learning

Attention

Strategies

Hypo-

thesis

Recognition

Figure 2.5: CHREST architecture based on [SGL09, p. 2]

Architecture and Concepts

In Figure 2.5 a basic depiction of CHREST´s architecture is shown. CHREST possesses an elaborated

attention and perception system, simulating eye movements to the actual areas of attention [SGL09,

p. 2]. The sensory memory is a short term memory responsible for storing the objects currently in

view. For example, if the system learned in an earlier game that the king, being positioned on field c6,

was in check by a rook on c2, it would probably lead its attention to field c2 after realising the king is

on field c6. Newly added information may lead the system to direct its attention to other parts of the

scene during the course of the program execution. This is part of CHREST´s approach to decide which

information is of relevance and which may be safely ignored [GL10, p. 2]. The thus limited perception

and the already mentioned cost for cognitive operations act as an effective filter for separating useful

information from needless distraction. The perception system is also responsible for the systems learn-

ing process, using the links between chunks in the long-term memory to determine whether it is part

of a previously learnt chunk [PDH+07, p. 3]. This leads to a very close interaction between perception,

learning and memory. Perceived information directs the attention and consequently perception. Fi-

nally, perception decides which information is learned and stored to memory [GL10, p. 2].

Processing Cycle

A typical program cycle in CHREST starts with perceiving an image, which is limited to the area of

view. The perception is also done in a cyclic process, where at first the last used heuristics are cleared

and then the actual centre of view is determined [LGS09, p. 187]. Then, until the presentation time or

the number of allowed fixations is reached, all fixated items are stored in a list and put into the sensory

memory. The perceived information is then used to search for a familiar pattern in the long-term

memory. Patterns that were found are then transferred to the short-term memory. In order to decide to

where the attention should be paid, previously learnt information from the sensory memory and heu-

ristics are combined. This behavior is based on the fact that what has led to gaining important infor-

mation in the past, may as well be of importance in the current situation [GL10, p. 2]. This retrieved

Related Work and State of the Art

 22

knowledge is then combined with domain specific knowledge and information from the peripheral

view to determine the next point of attention and determine whether the king is in a check [LGS09, p.

2].

Memory and Information Representation

CHREST´s long-term memory represents its data, connected by semantic links, in a graph like net-

work. This “chunking network” is a discrimination network which is responsible for retrieving and

sorting chunks [GL10, p. 2]. Chunks are familiar patterns, which are held in nodes by the network.

Beginning from the root node test links are used to go through the network, tracing those links where

a match could be found [LGS09, p. 185]. New information is added by two learning mechanisms

which make use of pattern matching: if a new pattern is sent to a node and the pattern mismatches the

chunk stored at the node as well as the test links succeeding the node, a new test link is created from

the mismatching part of the pattern and added to the long-term memory. If only the test link is a

mismatch, additional information from the partially matching pattern is added to the already stored

chunk, adding more detail to the already existing one, by this means extending the tree structure by

branches and depth. The process of enriching already existing information is called familiarisation,

whereas adding a totally new chunk is referred to as discrimination [SGL09, p. 2]. Again CHREST

simulates measured human behavior, by using learning mechanisms that slow down the learning at

the beginning, but gain speed after the system has gotten more acquainted with the knowledge domain

[LGS09, p. 186]. Efficiency in a large data store is a typical problem of cognitive architectures, which

is not shared by CHREST. Even if it aims to simulate a human chess master who has an average of

250ms when retrieving a pattern from his or her memories, CHREST can easily compete even within

a network of 300,000 chunks [LGS09, p. 186]. A typical chunk in CHREST may represent the position

of a chess piece on a field, like “white king on square g1” [SGL09, p. 2]. The short-term memory,

which is divided in a visual and a verbal part, can hold up to four chunks, which is imitating the

average short-term memory capacity of a young human adult [SL07, p. 2]. Chunks in the short-term

memory are references to those stored in the long-term memory. Due to the familiarisation process a

system with a lot of prior knowledge may be in possession of chunks with a lot of detail added and

consequently hold much more information in the short-term memory than a system with only basic

knowledge [LGS09, p. 2]. However, larger patterns must prove to be of real consequence for the actual

situation in order to be held in the short-term memory.

A very essential part of CHREST is the concept of templates, which is an attempt to explain human

expert recall abilities [LGS09, p. 186]. For example, it would explain how a chess master manages to

recall chess positions after only seeing them for 1 or 2 seconds [GL10, p. 2]. Templates are schema-

like structures which are created from often reoccurring patterns [SL07, p. 2]. A template combines a

constant core information together with variable information which is held in so called slots, which

allow rapid encoding of values. To mark two nodes, which are in the possession of similar features,

similarity links are used. A similarity link is created if two chunks were retrieved into the short-term

memory and the two nodes match. If the chunks in the nodes are of different type but have similar

descendant test links, a so called generative link is created instead. When a node has built up a satis-

factory number of these links and the so connected nodes match an overlap criterion, the information

of these nodes is combined to form a template.

Related Work and State of the Art

 23

In Figure 2.6 an example for a visual training setup along with a possible memory outcome is pre-

sented. On the left side a chess-like board with field numberings and game figures (represented by the

letters on the fields) are shown. This setup is used to fill and test the agent´s memory by presenting it

for some seconds. After a certain amount of time has passed the agent has to recall as much as possible

of the shown setup. Due to the theory about human expert recall abilities, which was explained earlier

in this chapter, after a period of training the agent should be able to recall much more of the shown

setup.

r k

p p

p

p q p

P Q

P P

P

R K

Node: 240
< [Q 3 5] [P 2 6] [q 4 4] >

< [Q 3 5] >

< [P 5 5] [P 3 7] >

Node: 1034

< [Q 3 5] [P 5 5] [P 3 7] >

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Figure 2.6: Example situation with discrimination network

On the right side of Figure 2.6 a part of an agent’s discrimination network is shown. The grey rectan-

gles represent test links, while the white rectangles represent “real” nodes, each having a unique num-

ber and containing a chunk of information. In node 240 one can recognise the scene that is marked by

the rectangle containing the fields from line 4 to 6 between columns 2 to 4. As this part of the setup

was already encountered before, the agent is also likely to remember this part of the setup, even if only

shown shortly. In node 1034 one can see a node which was created through discrimination after en-

countering a pattern which contained [Q 3 5], but mismatched the rest of the pattern which was stored

in node 240. Therefore a new test link, containing the mismatching information, leads to node 1034

containing the new pattern.

The usage of discrimination networks might be an interesting option for the SiMA long-term memory

implementation. It should be possible to save the SiMA data structures in such a structure, however

performance might become an issue, due to the complexity of the SiMA data structures.

2.3.2 ICARUS

Being originally designed an architecture for reactive execution [LCT11, p. 4], ICARUS considers

interaction with the physical world as much more important than many other cognitive architectures.

Its primary aim is to provide a computational theory of intelligent behavior and a unified theory. Ac-

cording to [CTN09, p. 109] the basic principles of this cognitive architecture are: cognitive reality of

Related Work and State of the Art

 24

physical objects, cognitive separation of categories and skills, primacy of categorization and skill ex-

ecution, hierarchical organization of long-term memory, correspondence of long-term or short-term

structure and modulation of symbolic structures with utility functions. Even though the system mod-

ules all have their own tasks and purpose, they depend on each other, which is due to the declared aim

to provide a unified theory [LCT11, p. 1].

Architecture and Concepts

In Figure 2.7 ICARUS´s basic architecture and its four main modules are depicted [CTN09, pp. 109–

111]. In order to describe its environmental situation for the actual cycle ICARUS utilizes a short-

term memory called perceptual buffer [LCT11, p. 5]. Elements in this memory are called percept and

specify one particular object in the environment by its type, unique name and a set of attribute-value

pairs, describing the object's actual state. The motor buffer is responsible for transferring skill signals

from the short-term skill memory to execution in the environment. The conceptual memory has a

short-term aspect which is also known as the belief memory and a long-term aspect representing the

known conceptual structures. Beliefs are inferences that are created by the agent on observation of the

environment, representing the current problem state [LCT11, p. 20]. Goals are the agent´s objectives

or desires, while intentions represent the activities which are to be carried out in order to change the

actual state of the environment to reach the current goal. The skill memory contains the knowledge

about executable skills that can be utilized to reach the respective goal. While the long-term aspect of

this memory contains all executable skills, is the short-term aspect responsible for transferring the skill

that was chosen to be executed to the motor buffer. In order to be able to represent situations (for

example in skills or goals) in a more general way, special atoms known as pattern-match variables

are used. For example the specific pattern (on blockA blockB) can be expressed in a more general way

like (on ?x ?y), to state the fact that one thing is on top of another, instead of restricting it to “blockA”

and “blockB”.

Processing Cycle

Like in other architecture´s the actions that are executed are determined in processing cycles. In each

cycle ICARUS first updates its beliefs about the environment, by adding them to the perceptual buffer,

from where they are matched against long-term concepts. This is done by the inference module, which

uses a bottom-up approach to match percepts until it has added all beliefs that are deductively implied

by the actual perceptions and concept definitions, to the belief memory [LCT11, p. 11]. As a result of

this process the inference module finds all logically implied beliefs about the environment for each

cycle and the beliefs about the environment are constantly updated. After the conceptual inference is

done the system determines which skill clause (also called action) can be applied to the actual situa-

tion. This is done by simply checking which skill clause conditions are met and whether the clauses

effect would change the actual situation (if the effect matches the actual state, there is no use to apply

it) [LCT11, p. 17]. If several skill clauses would match, one of them is selected randomly and an

intention, containing all details about sub-skills, bindings and conditions, is created and afterwards

carried out. In order to reach a certain goal ICARUS may use sub-skills which are chained one after

each other, containing a pointer to their parent skill. In several cycles skills in this chain are executed

Related Work and State of the Art

 25

until the top-level intention was executed. After task completion, ICARUS halts and awaits new com-

mands. If the system, during execution of a skill chain, realizes that the next skill cannot be carried

out, it is considered to be an error. Possible error sources may be too general or too specific memories

or influences from the environment like other agents [LCT11, p. 19]. If such problems arise the system

simply drops all intentions along with their ancestor intentions and starts again.

Environment

Perception Ski ll Execution

Categorisation

Long Term

Conceptual Memory

Means End Analysis

Long Term

Skill Memory

Skill Retrieval

Motor Buffer

Short Term

Skill Memory

(Intention Memory)

Perceptual Buffer

Short Term

Conceptual Memory

(Belief Memory)

Figure 2.7: Schematic diagram of ICARUS based on [CTN09, p. 110]

Memory and Information Representation

As can be seen in Figure 2.7 ICARUS utilizes several memory aspects in order to manage its

knowledge. One of these memories is the perceptual buffer, which is a short-term memory containing

the perceived information about the current environment. Based on this information some higher-level

inferences are created and stored in a belief memory, which is also referred to as the short-term con-

ceptual memory. Usually knowledge that is held in this memory contains information about the phys-

ical relations among objects. Belief memory elements combine a predicate and a set of symbolic ar-

guments to form a list. Arguments in this list have to be connected to the long-term memory, by refer-

ring to one of its objects. From this it follows that no short-term knowledge can exist without a corre-

sponding long-term counterpart, leading to a strong relation between those two memories [LCT11, p.

7]. However, for programming convenience static beliefs, that will not change over time and therefore

need no link to the long-term memory, may be defined for the belief memory [LCT11, p. 7]. Concepts

which can be instantiated by beliefs in this memory are held in the long-term conceptual memory

[LCT11, p. 7]. They are symbolic and relational structures, describing classes of situations in the en-

vironment. Clauses in this memory have a body stating the matching conditions for the short-term

memory and a head specifying their name and arguments. In the body it is defined which objects have

to be present and which other concepts, like numeric relations or other Boolean constraints have to be

Related Work and State of the Art

 26

true. The long-term as well as the short-term aspect of the conceptual memory contain modular ele-

ments that are composed dynamically during performance or learning [LCT11, p. 3]. Those memory

elements are represented by list structures, on which pattern matching is performed in order to match

long-term and short-term memory information.

In order to take action in its environment, ICARUS utilizes further memories which are linked by

performance mechanisms. One of these memories is the long-term skill memory which stores infor-

mation about actions that can be used in the environment. The information structure of a skill has a

high resemblance to the elements of the conceptual memory [LCT11, p. 12]. As before the head con-

tains name and arguments, the body defines which entities have to be present and the conditions that

have to be matched along with the effects that trigger in the case of performing this action. When it

comes to taking action the system utilizes a short-term intention memory where a skill clause from the

long-term skill memory is instantiated in order to execute an action in a particular way [LCT11, p.

16]. This memory keeps instances of skill clause elements, describing in which way the agent executes

a particular skill. ICARUS intentions may have sub-intentions, but the system can only focus on one

intention at a time.

As ICARUS is written in the programming language Lisp, it also expects all its input parameters, like

conceptual clauses, skill clauses, goal stacks and beliefs, to be defined by this language [LCT11, pp.

28–29]. The definition of conceptual memory elements shows therefore a similarity to Horn clauses

which are adopted by the programming language PROLOG. A concept in ICARUS´s memory might

look like:

((on ?block1 ?block2)

:percepts ((block ?block1 xpos ?xpos1 ypos ?ypos1)

(block ?block2 xpos ?xpos2 ypos ?ypos2 height ?height2))

:tests ((equal ?xpos1 ?xpos2) (>= ?ypos1 ?ypos2) (<= ?ypos1 (+ ?ypos2

?height2))))

The first line already contains two pattern match variables, which are indicated by question marks. In

this case the line states that ?block1 can be put on ?block2. However the first line gives no infor-

mation about what ?block1 and ?block2 might be, as this is defined in the the following lines

after the label :percepts. The percepts section defines, what the agent must perceive in order to

take action. The first percept block, which is marked by parenthesis states that ?block1 is a block

with some undefined xpos and ypos. For the variable ?block2 the same is known, plus it has a

height. After the percept block a test block follows, stating that the xpos of ?block1 and ?block2

(?xpos1 ?xpos2) have to be equal, it also states that he ypos of ?block1 has to be greater or

equal the ypos of ?block2 . At last it states, that the height and ypos of ?block2 have to be greater

or equal than the ypos of ?block1. In order to be able to apply this concept all percepts and tests

must hold.

For SiMA little information can be drawn from the very specific approach of ICARUS. As Lisp is a

programming language of its own, ICARUS´s particular approach of defining and persisting its

memory, may be considered as of low consequence for SiMA´s long-term memory implementation.

Related Work and State of the Art

 27

One may notice however that a file-based approach, with preloading into in-memory storage of the

program was chosen. The chosen information representation differs greatly from the concepts in SiMA

and are possibly not suitable for an approach based on psychoanalytical theories. Reason for this as-

sumption is that ICARUS uses a rule-based system, which is much more related to programming and

machine “thinking” than the current concept which is used in SiMA. A collection of if-then statements

cannot be used to represent the SiMA data structures, like for example a thing-presentation-mesh, in

a reasonable manner.

2.3.3 ACT-R – Adaptive Control of Thought Rational

The project Adaptive Control of Thought Rational (ACT-R) aims to provide an integrated agent sys-

tem, able to handle real-world problems and capable of handling masses of data [ABB+04, p. 1037].

Its modules are conceptually based on the presumed functions of the cortical regions (special areas of

the brain) and their functionality is combined by a central production system. It belongs to the section

of production systems, making use of production rules in order to initiate state changes to the system

[Zei10, p. 28]. As this architecture is strongly focused on the cognitive process of memory storage, it

does not consider other motivational factors, like for example emotions, for its decision process

[Lan10, p. 10].

Architecture and Concepts

ACT-R´s basic architecture (see Figure 2.8) contains several modules, each devoted to process a dif-

ferent kind of information for the whole system. Each module progresses independently of the others,

but makes its computations available in its own buffer. According to [ABB+04, p. 1038] the perceptual

and motor processing has a high influence on the nature of cognition. Furthermore the integration of

information from the external world can be of high value for the cognitive processes. Hence, even

though ACT-R originally focused on higher level cognition and not perception or action, it implements

nowadays a perceptual-motor system. It is based on a manual buffer, which is responsible for hand

movement, and a visual module keeping track of locations and the existing visual objects [ABB+04,

p. 1038]. The visual module is divided in a visual-location module, responsible for determining the

location of objects and a visual-object module, which has the task to recognize objects [ABB+04, p.

108]. The central production system, combines the information from the separate modules` buffers

and decides for a production rule to be executed. Production rules represent ACT-Rs procedural

memory and contain knowledge about actions that can be executed under special circumstances. An

example for such a production would be: IF declarative memory precondition is met THEN execute

this action. The production system is not sensible about the computations and processes which are

running inside the separate modules, but is restricted to the selective information that is provided by

the modules in their buffers, when deciding for a production rule to execute [ABB+04, p. 1037]. The

declarative module is responsible for retrieving and providing information from the system memory,

while the goal module keeps track of the actual intentions ACT-R supports parallelisation for most

parts of the architecture, however, some actions have to be processed in a serial manner as they are

dependent on the communication between the modules [ABB+04, p. 1038].

Related Work and State of the Art

 28

External World

Visual Module Manual Module

Visual Buffer Manual Buffer

Goal Buffer

Intentional Module

Retrieval Buffer

Declarative Module

Execution Module

Selection Module

Matching Module

Production System

Figure 2.8: ACT-R basic architecture based on [ABB+04, p. 1037]

Processing Cycle

ACT-R´s processing cycle starts with the visual module identifying objects and providing its infor-

mation in the visual buffer, so that the production system may fetch it from there. The central produc-

tion system, combines the information from the visual buffer with information from the other modules

in order to decide for a single production rule to be executed. The procedural memory, which is in

ACT-R represented by its production rules, is responsible for detecting patterns in this information

and decides what to do next [ABB+04, p. 1044]. In order to match situations in the environment, with

the current goals and information from the memory a pattern matching process is required. Therefore

the production system contains a matching module, which is performing a pattern-recognition algo-

rithm on the information that is provided by the buffers [VMS07, p. 164]. If the production system

finds, that several production rules could be applied in the current situation, the thus acquired infor-

mation is passed to the selection module, which in turn performs a conflict-resolution. In principle

several production rules could apply to the actual situation, but due to the seriality of the system only

the rule with the highest utility will be selected for application [ABB+04, p. 1044]. The utility value

is calculated by taking into account the probability of reaching the goal when the rule is executed, the

goal's value and the cost of reaching the goal. The cost and probability values are learned by experi-

ence with the production rule. The thus selected production rule is then used to initiate a state change

in the system. This is done by updating all buffers for a new processing cycle, by putting chunks into

the encapsulated modules` buffers. In order to set an action in the external environment a chunk with

an action request is put in the manual module´s buffer. The manual module is then used to control the

hand actuators to interact with the environment. To accomplish the final objectives production rules

Related Work and State of the Art

 29

may create sub goals. New sub goals are pushed on top of their parent goals in a goal stack, which is

used to manage the relation of all goals. One drawback of ACT-Rs processing is the fact that it is

nearly impossible to interrupt an ongoing goal [TCM03, p. 4]. The reason for this is that in order to

change a goal, the system's attention has to be directed to something which is unrelated to the current

objective.

Memory and Information Representation

ACT-R provides two sorts of long-term memory, namely a declarative memory, which represents the

long-term semantic memory and a procedural memory which is represented by production rules

[ABB+04, pp. 1042-1044]. The declarative memory contains information about personal and cultural

context, while the production rules represent knowledge about the performance of actions [ABB+04,

p. 1042]. All information in ACT-R is represented by chunks. They are used to pass information be-

tween the modules and the production system and represent knowledge from the memory. A chunk

combines attributes (also called slots) and values, in addition to the usual structure of a chunk, ACT-

R chunks also have a name for convenience. Each slot of a chunk is constrained to a single value. A

crucial part of ACT-R is the activation process, which basically decides the probability that some

chunk of information is retrieved from the memory. The activation of a chunk is decided by its base-

level activation, reflecting how useful the respective chunk has been in the past and its association

strength to the elements contained in the current goal. In absence of respective stimuli, an agent should

still be able to plan its moves in a beneficial way in order to reach his goal. Therefore, some sort of

goal tracking is inevitable for any cognitive architecture [ABB+04, p. 1041]. Again chunks are used

to model the system's final objective. In this case a chunk representing an end-state of the declarative

memory is put into the intentional module at system start [TCM03, p. 3]. This makes the intentional

module to a short-term memory for goals, while other short-term information is tracked by the buffers.

An example for chunks, which are used as an information representation for all information, except

for declarative knowledge can be seen in Figure 2.9. Each of the two chunks consists of 3 slots each

having an attribute an exactly one value [ACTR]. The first chunk is called Action023 and represents

the fact that “the dog chased the cat”. The second chunk has the name Fact3+4 and states that 3+4=7.

Action023

 verb chase

 agent dog

 object cat

Fact3+4

 addend1 three

 addend1 four

 sum seven

Figure 2.9: Action and fact representation in ACT-R

Just like ICARUS ACT-R is a Lisp program and the input files, containing all program information,

like the long-term memory, are written in Lisp as well. For the scope of this work ACT-R´s approach

is therefore inapplicable. The chosen information structure seems to be highly efficient, however a

comparison to the complex data structures which are used in SiMA (described in chapter 2.1), is not

appropriate due to the differing natures of the structures.

Related Work and State of the Art

 30

2.3.4 SOAR – State Operator Apply Result

SOAR (State, Operator, Apply, Result) is a general cognitive architecture, which was started in 1983,

aiming to define a model of the human cognitive apparatus [Lai08, p. 1]. SOAR´s declared goal is to

support all abilities expected of an intelligent agent, like employing the full range of problem solving

methods, learning about all aspects of a task and its performance and representing and using appropri-

ate forms of knowledge [LC14, p. 1]. The hypothesis SOAR builds on is that all goal-oriented behavior

can be modelled as selecting and applying operators to states. A state represents the current situation

and in order to change this situation operators are used to initiate the transformation of a state. All

decisions are made at run-time, by interpreting the current environmental situation from the short-term

memory and combining it with relevant knowledge from the long-term memory.

Architecture

In Figure 2.10 the basic components of SOAR´s architecture are presented. A perception module

passes information from the environment to the working memory. The working memory is responsible

to keep track of the current situation and goals. The decision procedure´s tasks are to detect impasses

and select operators. An operator is SOAR´s concept to initiate state changes solely in the working

memory or in the environment [Lai08, p. 3]. An impasse is a situation in which the current information

is considered to be not sufficient to decide for an action. The long-term memory is split up in a proce-

dural memory, a semantic memory and an episodic memory. The procedural memory contains the

production rules, which contain knowledge about which action may be executed if a certain precon-

dition is fulfilled [LC14, p. 7]. The semantic memory stores general knowledge about the world, whilst

the episodic memory contains memories about the agent experiences [LC14, p. 95].

Processing Cycle

SOARs program procedure builds on a processing cycle, which is repeated until a halt action is issued

or the user interrupts the processing [LC14, p. 21]. At first the latest perception (input from the body

sensors) is passed into the working memory, which holds all information about the current environ-

mental situations and the actual goals. Based on the perception and the information that is held in the

working memory the proposal is started. In this step productions are fired and retracted to propose

operators that meet the actual requirements. If no further proposals are possible, a new state is created

either by selecting a new operator or detecting an impasse. In this case a sub-state, in which SOAR

tries to solve the impasse, is created. If the impasse was resolved SOAR can use its learning mecha-

nisms, to store the new problem solving approach to its long-term memory [LC14, p. 30]. In the ap-

plication step productions are fired to apply the operator. Finally the output commands are sent to the

external environment and the program returns to the beginning of the cycle.

Memory and Information Representation

SOAR originally distinguished only between permanent knowledge (procedural memory) and tem-

poral knowledge (short-term memory or working memory). Today it supports 2 additional long-term

memories (episodic and semantic, see Figure 2.10). The reason for this extension was the finding that

productions alone were insufficient for more complex environments [LC14, p. 1]. In order to represent

Related Work and State of the Art

 31

the agents’ permanent knowledge SOAR uses productions, which can be compared to conventional

“if-then” statements, known from common programming languages [LC14, p. 7]. Production rules

define the actions which shall be fired if all conditions are met and are therefore the main drive of the

processing cycle. They are stored in the long-term procedural memory.

Body

Perception Action

D
e

ci
si

o
n

 P
ro

c
e

d
u

re

 Working Memory

PerceptionPerception

Procedural Semantic Episodic

Figure 2.10: The SOAR Architecture based on [Lai08, p. 5]

SOARs short-term memory, the so called working memory, tracks information from the sensors, in-

termediate inferences, goals and operators. In short, it reflects the current knowledge of the world

[LC14, pp. 13–15]. It encloses so called working memory elements (WME´s), each containing one

separate information about the world or its objects. Every WME has the form of an identifier-attribute-

value triple. Identifiers are used to connect several WMEs, each describing one attribute, into one

object of the working memory. While every triple can exist only once at the same time, there is the

possibility of multi-valued attributes, meaning that the same identifier and attribute are existent with

different values [LC14, p. 14].

Declarative facts about the world, such as water is wet, or that cats are animals, are stored in the

semantic memory [Lai08, p. 7]. In SOAR the semantic memory is created from structures that are held

in the working memory. SOAR´s episodic memory stores information about when and where certain

events have been experienced. It includes and connects specific instances of the working memory

structures. Through those connections temporal relationships and the context of past experiences can

be reconstructed. Again cues are used to search for the best match, save that the definition of a best

match is influenced by recency and working memory activation. The activation level represents the

Related Work and State of the Art

 32

last usage for any sort of knowledge. Episodic memory is task-independent and enables many sophis-

ticated cognitive abilities, like internal simulation and learning.

SOAR´s memorization process can be divided in three phases: encoding the agent’s state, storing the

information as episodic knowledge and take measures to support future retrieval. SOAR uses con-

nected digraphs to store its states. By constructing a cue, which is a directed connected acyclic graph

containing task-relevant relations and features, the memory can be queried for memories [DALL12,

p. 1]. A cue-matching process searches for the episodes best match, which is defined as the most recent

and most similar episode that is stored in the memory. If an episode that has at least one feature in

common is found, the cue-matching process returns it. A working memory activation system increases

the activation level of a WME every time it is used by a rule. In the further course of the agent’s life

time this activation level automatically decreases over time, so that recently used information is con-

sidered more important than older one [NLA07, p. 1561]. In order to avoid memory blow up SOAR

uses the fact that changes between agent states are very small and many structures are going to repeat

themselves over the time the agent knowledge builds up and therefore can be reused [DALL12, p.

1].This leads to a worst case of linear scaling for episodic memory processes in comparison to the

state changes.

As a storage solution for its episodic and semantic memory SOAR uses the relational database system

SQLite, in order to facilitate standardized storage and querying of knowledge [LC14, pp. 95–114].

This enables users to use any standardized SQLite program or component to access the information

gained. Although a disk-based storage is possible, it is recommended to use the in-memory mode for

most runs. To improve performance several configuration options are provided by the system. First, a

lazy-commit parameter may be set to true, which will cause the system to make changes to the mem-

ories permanent only after the SOAR kernel has shut down. Fewer disk writes greatly improve the

performance of the system [LC14, p. 102]. Secondly, A thresh parameter is used to set the upper bound

of augmentations after which an elements activation is stored. As every WME augmentation is sorted

by activation, this enables the user to keep a balance between updating activations and the number of

long-term identifiers that have to be resorted. Furthermore, there are two parameters that are connected

to the SQLite cache, which is a storage structure that keeps in memory information from the database,

in order to speed up some operations like querying [LC14, p. 103]. There is the page-size parameter

to set the page size of the cache in bytes and a cache-size parameter to set the general cache size, in

terms of pages. Finally, it is possible to speed up the system by the performance parameter, which

reduces data consistency by no longer waiting for writes to complete, before continuing the execution.

A textual representation of an episode be seen in Figure 2.11. The chosen example represents a PAC-

MAN-like game, which is introduced in the SOAR Tutorial [Lai14, p. 46]. There exists one blue agent

in the environment, information about which was saved to line 11 in the episodic memory representa-

tion of that scene. The line states that the thing with id13 has the name “blue”, an actual game score

of “0”, an x-position of 6 and a y-position of 16. This is also an example of a multi-valued attribute,

which could also be read as the triples “<id13> ^name blue”, “<id13> ^score 0”,

“<id13> ^x 5” and ” <id13> ^y 9”.

Related Work and State of the Art

 33

==

 Episode 1

==

0: (<id0> ^io <id1> ^operator <id3> ^operator* <id3> <id4> <id5> ^reward-link

 <id6> ^superstate nil ^svs <id2> ^type state)

1: (<id1> ^input-link <id8> ^output-link <id7>)

2: (<id2> ^command <id10> ^spatial-scene <id9>)

3: (<id3> ^direction west ^name move-to-food)

4: (<id4> ^direction east ^name move-to-food)

5: (<id5> ^direction south ^name move-to-food)

6: (<id7> ^move <id11>)

7: (<id8> ^eater <id13> ^my-location <id12> ^random 0.9357064366340637)

8: (<id9> ^id world)

9: (<id11> ^direction west)

10: (<id12> ^content eater ^content-name blue ^east <id16> ^north <id15>

 ^south <id14> ^west <id17>)

11: (<id13> ^name blue ^score 0 ^x 6 ^y 16)

12: (<id14> ^content bonusfood ^east <id19> ^north <id12> ^south <id18>

 ^west <id20>)

13: (<id15> ^content wall ^east <id22> ^north <id21> ^south <id12> ^west <id23>)

14: (<id16> ^content normalfood ^east <id24> ^north <id22> ^south <id19>

 ^west <id12>)

15: (<id17> ^content normalfood ^east <id12> ^north <id23> ^south <id20>

 ^west <id25>)

…...

ID_13

0 16 6 blue

Figure 2.11: Eaters game with episodic memory content

As SOAR uses a triple representation of its memory contents, it is possible to represent the information

in a graph view as well as in a textual representation. SOAR therefore offers the possibility print

contents of the memory to a file, which can be opened by any Graphviz renderer, for further inspec-

tions [Lai14, pp. 213–214]. A graphical representation of the blue agent is as well presented in Figure

2.11. Identifiers are always presented in circles, attributes are indicated by a labelled arrow, with a

value belonging to that attribute at the end of it.

There are several aspects of SOAR´s long-term memory approach, which are of interest for the long-

term memory implementation of SiMA. First of all it is of importance to acknowledge the cost of a

“real” permanent storage in the form of a disk-based approach, which was experienced by the SOAR

developers. Also the possible countermeasures to performance loss, if such an approach is still chosen,

may be of interest in the further progress of this work. Secondly, the triple representation which was

chosen for the representation of the working memory elements, seems to be an interesting approach

to information representation. Furthermore the usage of a relational database could be adopted for

SiMA, as it is written in the programming language Java and is therefore absolutely compatible with

a remarkable number of relational database implementations.

2.3.5 BDI – Belief, Desire, Intention

Meeting real time requirements is a very difficult task for any cognitive architecture, as it puts very

hard time constraints on processing and decision making. The architecture of BDI (Belief, Desire,

Intention) was developed to meet these constraints, by reducing time consumption in its planning and

Related Work and State of the Art

 34

reasoning processes [CTN09, p. 111]. Due to this approach it is able to react to the environment,

without changing the agent´s original intentions. Notable at this point is that BDI is no specific imple-

mentation, but was originally created as a planning theory and has many implementations until today.

Environment

Perception External Actions

Desires

Plan Library Beliefs

Interpreter Intentions

Instanciated Plans

Event Queue

Selected Intentions

Internal

Action

Events

Plan as recipes

Figure 2.12: BDI architecture based on [CTN09, p. 112]

Architecture and Concepts

In Figure 2.12 a schematic depiction of a BDI´s architecture is presented. Together with the name

giving components belief, desire and intention, the interpreter forms the main structure of BDI. Beliefs

represent facts about the environment and inference rules, which in turn can produce new belief

through inference on the existing knowledge [CTN09, p. 111]. Through execution of intentions and

perception of the environment the agent´s beliefs are updated regularly. Knowledge about how to

achieve intentions is stored in sequences of action which are referred to as plans and are stored in a

plan library. A plan always states the conditions under which it can be executed and may also contain

subgoals that have to be achieved. Execution of a plan containing subgoals may lead to the invocation

of new plans. The term intention is used for plans that were picked to be executed by the agent in order

to reach its goals. An intention takes the form of a stack containing plan instances. Goals, in BDI

referred to as desires, describe the state which the agent strives to reach [CTN09, p. 111]. An inter-

preter is responsible for the coordination of the different components in BDI. In order to control the

components it manipulates their contents. An event queue keeps track of historical information, which

can be the acquisition or the removal of a belief, the reception of a message or the acquisition of a

desire [HFsP+04, p. 2].

Related Work and State of the Art

 35

Processing Cycle

First newly perceived events are updated in the event queue. Afterwards the plan library is checked

for new desires that may arise from the recently perceived events. From all the potentially fitting plans

one is selected and transferred into an instance plan and pushed onto an intention stack. Depending on

whether it was triggered by an internal event, for example by a plan, or an external event, it is pushed

onto the existing intention stack or respectively a new stack is created. After executing an intention

the cycle starts again. BDI tries to cut down decision time, by sticking to a committed strategy without

considering any other solutions, even though they may be better than the one that was picked. The

only two ways for the agent to drop a goal are the accomplishment of it or to realize that all applicable

plans have failed and the goal therefore cannot be accomplished [CTN09, p. 112].

Memory and Information Representation

The original BDI structure was not presented with any concept of a long-term memory or a learning

approach. The basic concept depends on a plan library where predefined plans are stored for retrieval

by the interpreter at runtime. However the BDI concept does not exclude the implementation of a

long-term memory and learning by principle. One example of a learning BDI based architecture is

dMars where different learning levels were implemented [GHES05, p. 193]. A plan typically consists

of a trigger or invocation condition, a context or precondition, a maintenance condition and a body

[DLG+04, p. 9]. The trigger states a condition under which a plan may be taken into consideration.

The context states which conditions have to be true in order to start a plan execution. A maintenance

condition may define conditions which have to be true over the whole plan execution. Finally the body

contains actions, goals and subgoals, that are needed to fulfill the final goal.

Environment plan-id: p007

trigger:

 (achieve (p-sanded ?obj))

context:

 (and (p-handfree ?ag ? hand)

 (p-at ?obj free))

body:

 (*pickup ?obj)

 (achieve (p-at ?obj vise))

 (achieve (p-sand-in-vise ?obj))

agent r2

board
sander vise

sprayeragent r1

Figure 2.13: Simplified BDI plan based on [GHES05, p. 187]

In Figure 2.13 a simplified BDI plan along with a representational environment is shown. The envi-

ronment contains two agents and several objects which may be used by them. The plan contains a

trigger, a context and a body. The trigger states that if the goal is to sand an arbitrary object, the plan

may be taken into consideration. In this case the variable ?obj is used as a placeholder for anything

that is contained in the environment. The context states that the agent's hand as well as the object have

Related Work and State of the Art

 36

to be free for use, in order to start the execution of the body. To mark external actions * are used, like

in the first line of the body, which states that the object which shall be sanded has to be picked up. The

external action is followed by two goals which are to be sent to the event queue if the plan is executed,

from there other plans may be picked up in order to achieve the final goal. In this case the goals are to

put the object into the vise and to sand it there.

In dMars two levels of learning were successfully introduced: learning from the environment and

learning from direct interaction with other agents [GHES05, p. 193]. In the first case the agent may

try to learn why an intention has failed, in the second case it may choose to communicate with another

agent in order to get more learning examples or a reason why his intention failed, when the agent is

not able to explain it without help. For the learning process the “learning from interpretation system”

ACE was embedded into the architecture. ACE operates on logical decision trees, therefore dMars

generates an ILP (Inductive Logic Programming) learning set containing training examples, back-

ground theories, ACE configuration, desired output, etc. This learning set splits up in several files with

different extensions (like for example .kb, .s and .bg), which are then transformed into a decision tree

for the agent.

The dMars approach to learning and memory is, just like the ones ICARUS and ACT-R (see chapter

2.3.2 and 2.3.3), one that adopts the power of logic programming languages to gain long-term memory

information. Logic programming has proofed itself to be an efficient tool for many agent systems, but

is rather incompatible with the current structure that is used in SiMA (see chapter 2.1).

 37

3. Database Selection & Integration

As discussed in chapter 2.2 there are several database strategies, with different strengths and

drawbacks available. Out of the presented data stores, three approaches seem to be of particular

interest for the implementation in SiMA. First the classical relational approach due to its widespread

usage, community and the fact that it is very flexible in that sense that any static concept can be

modelled with it. As long as the structures are well-known and seldom changing this approach is a

very stable one. Another promising approach is the usage of a graph-oriented one. The usage of triples

and graph structures has already found its application in other simulation environments like for

example CHREST or SOAR (see chapter 2.3.1 and 2.3.4). Additionally, there are several advanced

implementations of Resource Description Frameworks (RDF) like OWL (Web Ontology Language)

[OWL] that offers even further functionalities, like reasoning. Finally, there is the document-oriented

approach, which is of interest due to its flexibility in the structure of its stored data.

3.1 Database Selection

In this section the decision process for a fitting database solution for SiMA is covered. In [WDM+12,

p. 1] some preliminary research on all three approaches, with special focus on their practicability for

dynamic data models, was done. The three approaches were compared by examining their capabilities

in model extension, data integration, data access, querying and their distributions abilities. In the

following a short summary of the most important findings, with respect to this work, is presented. The

findings of the preliminary work will be supplemented by in-depth research if needed.

Model Extension

Model extension is of high importance to a complex data structure model like it is used in SiMA. Even

though the data structures like thing-presentation, thing-presentation-mesh etc. are fixed, a flexible

model can be of use for SiMA. Reason for this is the broad definition of the data structures, which

leads to many empty and unused attribute. In a flexible model it would be possible to leave unused

attributes out and by that save space and writing time. According to [WDM+12, p. 220] a relational

database is not really flexible even though it is possible to change the data model later on. However,

this may require a rebuild as the concept of this database technology is to define the data model before

importing the data. In order to meet the problem of the unused attributes in SiMA the Universal Data

Model pattern might be implemented (see chapter 2.2.1). However, this would be a workaround and a

native flexibility support in a database system should be preferred to this approach. Graph-oriented

Database Selection & Integration

 38

databases support flexible data models on the fly [WDM+12, p. 223]. It is as simple as adding a new

node to add a further attribute to the model. The same may be said about document-oriented databases

[WDM+12, p. 223], just that in this case it is not a node, but some sort of String that has to be added

to the document.

1: (defclass CAKE

2: (is-a TPM%3AENTITY)

3: (role concrete)

4: (single-slot value

5: (type STRING)

6: ;+ (value "CAKE")

7: ;+ (cardinality 1 1)

8: (create-accessor read-write))

9: (multislot class_association

10: (type INSTANCE)

11: ;+ (allowed-classes)

12: ;+ (value [TP%3ASEN-

SOR_EXT%3AVISION%3ASHAPE%3

 ACIRCLE] [TP%3AINTENSITY%3AMEDIUM])

13: (create-accessor read-

write)))

Figure 3.1: Cake object representation in Frames

Data Integration

Data integration plays a very prominent role in this work, as the data, which is until now mocking the

agent's memory, is needed for the agent to interact with the simulation environment. As in many other

agent systems, the agent needs some initial knowledge to be able to take action in its world. Therefore

a transformation of the existing data to the new system is obligatory. According to [WDM+12, p. 223]

for all three database technologies a special integration toolset is needed or recommended to perform

data integration.

In Figure 3.1 a snippet of the Frames file, which is currently used to represent the agents memory (see

chapter 1.3), is presented. The shown file snippet is used to describe the class “CAKE”. Line 1 defines

that the class is called cake, while line 2 define that it is a subclass or representative of the classes

“TPM” and “ENTITY”. It is a concrete class (in contrast to an abstract one that cannot be instantiated),

which is stated in line 3. It owns a String value “CAKE” as an attribute (line 5-8) as well as some

associations to TP classes (line 9-12).They define that the cake has the shape of a “CIRCLE” (located

in the TP subclasses SENSOR_EXT ->VISION->SHAPE) and an “MEDIUM” “INTENSITY”, which

Database Selection & Integration

 39

is a subclass of TP as well. Line 13 is a mere program instruction and of no interest for the conversion

process.

The underlying Frames file is managed in a tool called Protégé, which also offers some export abilities

for RDF. This option highly speaks for the use of RDF as the manual conversion of the existing data

might turn out to be very time consuming. If a document-oriented database is used the Frames file

might be processed by a text parser, as the structure of the Frames file is already very close to a

document-based approach. If a relational database is used, first the data structure schema has to be

defined and then the information has to be written into the database. In this case it would be preferable

not to use the Frames file, but to link into the Java program and use the Java data structures that are

already parsed for the usage in the simulation.

Data Access and Querying

For all three database technologies it is possible to use automatic query generators for simple query

generation [WDM+12, p. 224], but in SiMA simple “select all” statements will not suffice, more com-

plex queries are the ones of interest. Here the relational database is clearly the best performer as it

works for large amount of data as well as for complex queries [WDM+12, p. 224]. Graph databases

offer a very flexible querying, but may suffer from performance problems depending on the situation.

Document-oriented databases perform well in suitable queries, but generally the missing JOIN state-

ment reduces the query flexibility.

Distributed Systems

For SiMA the usage of distributed systems is not planned in the near future, nonetheless it may as well

be taken into account as an additional (less important factor) for the decision process. As it was already

covered in chapter 2.2.1 relational databases are not made for the use in distributed systems and there-

fore perform not too well. Both other approaches allow to use federated repositories, however, in the

graph-oriented approach every additional repository slows the querying down by another 30%

[WDM+12, p. 224].

Functionality Relational database Graph-oriented Document-oriented

Model extension - ++ ++

Data integration + ++ +

Querying ++ + -

Distributed Systems NA ++ +

Figure 3.2: Performance of database support for selected functionalities based on [WDM+12, p. 224] and

additional research

Summary

In the course of this section three data store approaches were compared with respect to their suitability

for SiMA. In Figure 3.2 a summary of the checked functionalities is given. As can be seen the graph-

Database Selection & Integration

 40

oriented approach seems to be the most promising one, especially because of the flexible model and

the option to convert the existing data model to RDF. With respect to the mentioned performance

problems it has to be tested whether they affect SiMA too much and if they can be diminished in some

way. The next chapter will cover the chosen database solution and the features it is providing for this

work.

3.2 Resource Description Framework

The Resource Description Framework (RDF) is originally a W3C data standard for data interchange

on the web [W3CRDF]. In order to represent RDF data one has several options to choose from

[BHS03, p. 1]. First of all there is the possibility to use an XML representation. Then there is the

option to use a triple representation, which was already mentioned in this work and finally there is

the possibility to present the data in a graph structure which has the advantage of semantic interpre-

tation for human readers. According to [BHS03, p. 1] all existing RDF system use object relational

databases as a base to store RDF data. Although, originally designed for representing metadata about

web resources, RDF is nowadays more often used as a generic data model for structured data manage-

ment and reasoning [KDA11, p. 240].

3.2.1 RDF Data Model and Terminology

Due to the fact that RDF is merely a standard and not a technology developed by one company or

person, there exist a lot of terminologies, which are used synonymously. In the following section the

concept of the RDF data model and the most common terms will be explained. The whole RDF data

model consists of only three data types, but many different names and notations are used:

• Resource: Resources are uniquely identified objects [BHS03, p. 2]. They are represented by

unique identifiers called Uniform Resource Identifier (URI) [AH08, p. 33]. There is also an

internationalized form of the URI in use, which is called Internationalized Resource Identifier

(IRI). The IRI simply extends the character set of the URI to nearly all characters of the

Universal Character Set [IRI]. URIs look exactly like URLs, which are known from the World

Wide Web, which is due to the origins of RDF. An example URI referencing a cake in SiMA

could be http://ars.org/cake.

• Property: Relations or attributes of resources are defined by properties [BHS03, p. 2]. They

may be used to define the relation between two resources or to attach a value by some meaning

to a resource. Properties are like resources defined by URIs. Examples for the usage of a

property would be http://ars.org/cake http://ars.org/hasColor “PINK”

or http://ars.org/cake http://ars.org/hasAssociation

http://ars.org/mothersbreast. The first example links the resource cake to the

value “PINK” by the property http://ars.org/hasColor. The second example

associates the two resources http://ars.org/cake and

http://ars.org/mothersbreast with each other.

Database Selection & Integration

 41

• Statement: A statement is the combination of a resource, its property and value [BHS03, p.

2] [BHS03, p. 2]. A statement can be written like P(R,V) (for example

http://ars.org/hasColor(http://ars.org/cake, PINK)) or simply in

sentence form like R P V (like already used in the property example. This sentence like form

is borrowed from elementary grammar and it is very common to refer to the elements of a

statement as subject, predicate and object [AH08, p. 31]. In combination with the sentence

analogy the term triple is often used instead of statement. It is noteworthy that a value or

object of a triple can be a resource as well. If the object is not a resource it is often referred to

as a literal. The main difference between URIs and literals is that the latter one´s content is

not unique. Figure 3.3 shows the difference between the two concepts. If the triple

ars:BASICCAKE rdfs:label “CAKE” is inserted 2 times the subject

ars:BASICCAKE gets 2 new literals with the value “CAKE” attached. On the other hand, if

the triple ars:BASICCAKE rdfs:subClassOf ars:CAKE is inserted twice the

resulting graph and rdf triple store will contain the triple only once. Another difference

between URIs and literals is that only URIs are allowed in subject and predicate position of a

triple. Reason for that is that the literal represents a primitive data value and there is no use to

attach a description to such a value [KDA11, p. 241].

• Notation: When writing about triples it is also very common to leave the first part of the URI

out, in order to make the sentence more readable. For example http://ars.org/cake

http://ars.org/hasColor “PINK” may also be written as cake hasColor

PINK. Note that this is only for communication purposes and not valid RDF syntax. In order

to keep a valid RDF syntax and provide readability it is possible to define namespaces, like

they are known from XML. For the further course of this chapter for http://ars.org/

the namespace “ars” shall be used. For the RDF schema the namespaces rdf and rdfs are

used instead of http://www.w3.org/1999/02/22-rdf-syntax-ns# and

http://www.w3.org/2000/01/rdf-schema#. If a namespace is defined in an RDF

document one can use the namespace followed by a colon instead of writing the whole prefix

down. For example http://ars.org/cake can be written as ars:cake.

• Graph representation: In Figure 3.4 both already introduced statements are transferred into

an RDF graph. As can be seen all resources are surrounded by circles, even if they are attached

to another resource representing the object of the triple, while literals like the value “PINK”

are shown in a rectangular shape. The connecting property is used as a label for the edge

between them.

3.2.2 RDF Schema

As the RDF model makes no assumption about the application area of the data, there exist no concepts

for modelling any specific data information, like for example types or classes [BHS03, p. 2]. In order

to overcome this shortcoming schemas may be used. For general use a very generic schema called

“RDF schema” was proposed by the W3C, but for different application areas it is possible to define

different schemas. The RDF schema provides a number of classes, properties and attributes to struc-

ture RDF data in a standardized manner. In Figure 3.5 a selection of the RDF schema elements is

Database Selection & Integration

 42

presented. The RDF schema allows to define a fine grained structure, like it may be known from

several programming languages. There are elements for the definition of classes and subclasses

(rdfs:Class and rdfs:subClassOf) as well as for marking the definition of a datatype (rdfs:Datatype and

rdf:type).

ars:BASICCAKE

„CAKE“

rdfs:label

„CAKE“

rdfs:label

ars:BASICCAKE ars:CAKErdfs:subClassOf

Figure 3.3: Concept Example URI versus Literal

It is also possible to explicitly mark resources and literals or to define a subproperty (rdfs:Resource,

rdfs:Literal and rdfs:subPropertyOf). In addition to data type and class definition it is also possible to

put some sort of “constraints” on the data by using the elements rdfs:domain and rdf:range.

„PINK“

ars:cake

ars:carrot

Figure 3.4: Graph representation of RDF data

The range property may be applied to properties in order to state that all objects which are used in

combination with that property are of a specific class type. For example the triples ars:isCake

rdf:range ars:sweets and ars:mothersgift ars:isCake ars:marblecake states

that ars:marblecake has to be of class ars:sweets. The domain property does the same thing

for the subject of a triple. In Figure 3.6 a possible application of the RDF schema to the example of

the frames data which was presented in Figure 3.1 is shown.

Element Type Element Type

rdfs:Class Class rdfs:subClassOf Property

rdfs:Datatype Class rdfs:subPropertyOf Property

rdfs:Resource Class rdf:type Property

rdfs:Literal Class rdfs:domain Property

rdf:Property Class rdf:range Property

Figure 3.5: Selection of RDF schema elements based on [W3SCHOOL]

Database Selection & Integration

 43

This example is reduced to the information that was provided in Figure 3.1, in a more wholesome

example ars:ENTITY, ars:TPM etc. would have more information attached to them. For example there

would be an edge with the label rdf:type to rdfs:Class too. One can see from that example, that this

sort of information representation puts nearly no restriction on to the information that can be stored.

Therefore the difficulty lies foremost in finding a representation model which is suitable for the appli-

cation area to which the triple store is applied. When it comes to information representation, SiMA

has different requirements than a common web application or wiki store, for which RDF stores are

mostly used. The next chapter therefore covers in detail how the existing data model is mapped to a

triple store representation and the decisions that were taken during the design process.

ars:CAKE

rdfs:Class

„CAKE“

ars:ENTITY ars:TPM

rdf:type
rdfs:subClassOf

rdfs:label

rdfs:subClassOf

ars:rdfType

rdfs:label

ars:CIRCLE rdfs:subClassOf ars:SHAPE

ars:MEDIUM ars:INTENSITYrdfs:subClassOf

Figure 3.6: RDF schema application for a cake

3.2.3 Querying with SparQL

RDF being a W3C standard it suggests itself that the mainly used query language is a W3C recom-

mendation as well [KDA11, p. 241]. Even though for querying RDF one may choose between some

query languages, which are partly SQL-based and partly XML-based [RDFQUERY], the most com-

mon one is SparQL. SparQL is an SQL-like query language and supports the following types of query:

• SELECT: Like in SQL n-tuples of query results are returned. Results are returned with their

binding. For example if the select all query SELECT ?subject ?predicate ?object

WHERE {?subject ?predicate ?object.} is applied on the graph of Figure 3.4

the result would look like presented in Figure 3.7. Every part of the triple is returned in

connection with the binding that was applied to its place in the statement. Further information

on SELECT queries can be found in [SPARQL].

• DESCRIBE: This query returns a result RDF graph [KDA11, p. 242]. The simplest possible

clause needs an IRI as a parameter: DESCRIBE <http://ars.org/cake>, but it is also

possible to pass no IRI but a WHERE statement instead: DESCRIBE ?x ?y

<http://ars.org/> WHERE {?x ars:hasAssociation ?y}. The RDF which

is returned may vary as it depends on the publisher of the information [SPARQL]. It is

noteworthy, however that a sparkle result graph is a textual description of a graph rather than

a graphical one with nodes and edges. For further information please refer to [SPARQL].

Database Selection & Integration

 44

• ASK: ASK queries provide a Boolean answer, indicating whether a query has an answer or

not [KDA11, p. 242].

• CONSTRUCT: Like DESCRIBE the CONSTRUCT query returns a graph as result [KDA11,

p. 242]. This graph is constructed by substituting variables in the graph template and

performing a union on them. CONSTRUCT statements can be used to specify new

information based on existing data [AH08, p. 130]. For example it is possible to define that

some act contains an image if the image has an association to it: CONSTRUCT {?act

ars:containsImage ?img} WHERE {?img ars:hasAssociation ?act}.

?subject ?predicate ?object

http:ars.org/cake http:ars.org/hasColor “PINK”

http:ars.org/cake http:ars.org/hasAssociation http:ars.org/carrot

Figure 3.7: Result of SELECT ALL statement on Figure 3.4

In addition to those query statements SparQL supports ORDER BY and LIMIT features [AH08, p.

100]. With the first one, it is possible to define the ordering of the result by a binding (this could be

for example a date or association weight). With the latter of the two, one can limit the result to a certain

number, which could be used on an ordered result set to return only five associations with the highest

weight.

ars:BASICCAKE ars:ThingPresentationMeshrdf:type

ars:WALL

rdf:type

ars:ARSIN

rdf:type

ars:AssociationAttribute_COLD ars:hasAssociation

ars:AssociationAttribute_SWEET ars:hasAssociation

ars:AssociationAttribute

rdf:type

rdf:type

[dsTypeCount="3"^^<http://www.w3.org/2001/XMLSchema#integer>;dsType=<http://ars.org/ThingPresentationMesh]

[dsTypeCount="2"^^<http://www.w3.org/2001/XMLSchema#integer>;dsType=<http://ars.org/AssociationAttribute]

Figure 3.8: GROUP BY and COUNT Data Structure Types example

With the aggregates COUNT, MIN, MAX, AVG and SUM some basic math can be applied to certain

contents of the RDF store [AH08, p. 101]. For example SELECT ?dsType (COUNT(?dsType)

as ?dsTypeCount) WHERE { ?s rdf:type ?dsType . } GROUP BY ?dsType

searches for all objects (?dsType) which are connected by a rdf:type predicate. A GROUP BY

clause is applied on the values of the ?dsType binding, putting all triples with the same ?dsType

Database Selection & Integration

 45

together in some “collection”. On all of those collections a separate COUNT operation is performed.

In Figure 3.8 an example graph with the resulting output for this query is shown.

The possibility to FILTER and UNION results add further options for searching through ones

knowledge base [AH08, pp. 107–109]. FILTER may be used to put some constraints on the results,

while UNION puts the results of two queries together. All of the presented options can be combined

into subqueries, thereby providing many options for the usage in SiMA.

3.2.4 N-Ary Relations

One might notice from the previous subchapters that RDF is characterized by binary relationships,

which leaves some design issues [NARY], if someone has to provide meta-information or simply add

more than just one value to the same subject:

• Issue 1: If an association has a weight or probability (see Figure 3.9) - How shall the relations

attributes be described?

1.0

ars:cake ars:carrot

ars:hasWeight

ars:hasAssociation

Figure 3.9: Issue 1 - describe instances of relations

• Issue 2: If two or more values have to be linked to one subject (see Figure 3.10) – How shall

relations between more than two instances (n-ary relationships) be represented?

ars:cake

„STRONG“

„SWEET“

Figure 3.10: Issue 2 - More than one value for one subject

In order to overcome the natural limitations of RDF some design patterns have been introduced by

the community [NARY].

Database Selection & Integration

 46

Solution 1 – Introduce new classes

In Figure 3.11 the solution to Issue 1 can be seen. In order to represent, the association weight between

the carrot and the cake a new association class, combining the weight and the carrot is introduced.

1.0

ars:cake

ars:carrot

ars:hasWeight

ars:hasAssociation
ars:association_1

ars:hasAssociationObject

Figure 3.11: Class representation solution to Issue 1

 For Issue 2 the solution can be seen in Figure 3.12. In order to be able to reason about a “strong sweet

taste” a new class representing a “taste” is introduced and the taste values are assigned. One should

notice however that for using the RDF triple store only as a database without reasoning concepts, it

would be sufficient to represent the taste of a cake like shown in Figure 3.10.

ars:cake ars:CakeTaste

ars:hasTaste

ars:hasTaste

ars:hasIntensity

„STRONG“

„SWEET“

Figure 3.12: Class representation solution to Issue 2

The presented pattern is very close to the SiMA concept, as in Java the data structure representation

already knows the concept of associations, containing the association weight and other association

information. Also Issue 2 and its solution are close to the concept of the mesh structures which are

used in the SiMA implementation.

Database Selection & Integration

 47

Solution 2 – Reification

In RDF there is another concept which could be used for presenting n-ary associations, however, it is

not recommended by the W3C [NARY]. Reason for not recommending to use the so called reification

is a conceptual mismatch. Reification is a build-in RDF option to describe RDF statements, which

were described earlier in this chapter, by RDF [REIFICATE]. For example, it would be possible to

add information about the time when the statement was recorded (see Figure 3.13), or who created it.

ars:act_eat_cake

rdf:Statement

rdf:predicate

ars:image_1

ars:triple_1

rdf:type

ars:hasImage

rdf:object

"2013-06-
06T10:38:45+0300"^^xsd:dateTime

ex:created_at

rdf:subject

Figure 3.13: Reification example with timestamp

From a conceptual point of view usually n-ary relations do not characterize the statement, but add

additional information to it. Therefore it would be more natural to talk about an “association” or a

“taste” rather than adding statements about statements.

3.3 Implementation of Database Integration

The following section covers the actual implementation of the concepts presented in this chapter. The

first subchapter deals with the project structure, the used frameworks and the general dependencies.

In the second subchapter the most important classes and methods are highlighted and explained.

3.3.1 Project Structure

In the course of this work the SiMA project was expanded by a new subproject called ArsDatabase.

Basically all of this works implementation has taken place in that project, therefore the project struc-

ture will be presented in the following chapter in full. The used development language is Java [JAVA]

and for the RDF database realization the Java framework Sesame [Bro02, pp. 54–68] was chosen. It

provides a sophisticated API which supports creation, parsing, storing, inferencing and querying RDF

data. Sesame is in active development and has a large community, which were essential factors for

choosing it. Active development is a crucial factor in case that any bugs or other problems are experi-

enced during the implementation process. Furthermore, it is more likely that support for the framework

will be available for a long period, which is of high interest for a long-term project like SiMA. A large

and active community can accelerate the general implementation process, as it is more likely that

someone has already experienced the same problems and therefore a solution can be found without

efforts in community forums instead of having to ask questions oneself. Additionally Sesame provides

Database Selection & Integration

 48

support for in-memory deployment as well as for local storage and server deployment. This flexibility

in storage location could be of relevance in the future and was therefore another reason for selecting

Sesame. Other frameworks like for example Allegrograph [ALLEGRO] offer similar features when it

comes to community support and stability, but require a server to deploy the database and are therefore

limited and would add complexity to the project setup of SiMA. After providing an insight to the

general project structure special, attention will be paid to the data structure conversion and the final

implementation of the memorization process.

<<import>>

<<import>>

<<import>>

<<import>>

<<import>>

<<import>>

Realization

SiMA

datastructures

itfSearchSpace

Access

Figure 3.14: Package Diagram ARSDatabase and correlated projects

As the integration of a database introduces a totally new functionality to the SiMA project, with very

few dependencies or correlations to other projects, it was decided to introduce a new subproject to

SiMA. It would have been an option to put it to the topically fitting ARSMemory, but to provide a

better interchangeability of the database it was decided not to do so. Figure 3.14 shows a comprehen-

sive package diagram of the new ARSDatabase project and all already existing projects as far as

they are relevant. The graphic demonstrates how independent this project really is, as it uses resources

from only two of the currently ten subprojects in SiMA. The classes implementing the SiMA data

structures (see chapters 2.1 and 4.2 for more details), are situated in the ARSDecisionUnit project

and form the first dependency of the new project. Further dependencies to this project are the codelets

Database Selection & Integration

 49

managing the current goal and the perceived images. More detail on the usage of the codelets will be

provided in chapter 5.3. The second project dependency is the interface that handles the access to the

long-term memory. It is situated in the ARSMemory project and was already used to access the stub

long-term memory data which was already mentioned in the problem statement in chapter 1.3. Details

on the implementation of the interface will be provided in chapter 5.3.

A closer look at the packages of the ARSDatabase project shows that there are four main project

parts that can be distinguished from each other. The first part (package conversion) deals with

the conversion of the SiMA data structures to a triple representation. In order to ensure independence

from a certain RDF database solution in this part of the project an intermediate triple representation

class was introduced. This representation can be passed to the database package from where it is

translated into a Sesame triple representation and saved to the database. The memory package con-

tains the memorization process, which has to make use of the conversion as well as the database pack-

age. Additionally the initial database migration class RDFSearchSpaceCreator was placed in

that package. Due to the implementation of the itfSearchSpaceAccess interface it is only

necessary to change one line of code in order exchange the database system with the stub memory

data for the whole SiMA project. From there on classes continue using only the interface and no further

changes to any of the other projects are necessary. Finally a visualization package was imple-

mented in order to validate and visualize the results of this work.

3.3.2 Database Integration

In order to handle the communication between the simulation environment and the RDF database the

package database was implemented. In Figure 3.15 a class diagram of the package is shown. An

essential part of this package are the two constant classes, which are supposed to guarantee the correct

cooperation of the saving and loading procedures. The class TripleConstants holds the

translated predicate names from chapter 4.1, while the class DatabaseConstants contains

information like the URI prefix, other repository data and some prepared queries. Constants are of

great importance for any project as they improve the maintainability of the project in the future. The

main advantage they provide is that only one position in the code has to be changed if any changes are

made. Together with the SesameConnectionHelper, which is responsible for managing the

repository access, these classes form the top layer of the database package.

The SesameConnectionHelper provides a method called getActiveSesameRepository

in which the actual repository solution can be fetched for access. For SiMA three different repository

options were implemented during the course of this work. The provided options are a native store, a

memory store and an in-memory store. The native store is optimized for large databases which are too

big to keep them entirely in memory. Data of a native store is directly stored to disk instead of keeping

it in memory. In contrast to this store a memory store leaves it to the user when to save the data to the

store and an in-memory store is for runtime use only and all data will be lost after a run. Which

approach is best depends on the actual use case, which is why all three options are provided.

Database Selection & Integration

 50

SesameBasicDataStructureDAO

+searchObjectStringValue(subjectIRI:String, predicate:String):String

+resetLoadedDataStructures():void

SesameDataStructureDAO

+searchDataStructureIRIsByDS_ID(dsID:int):List<String>

+searchDataStructurePAs(matchingCriteria:clsDataStructurePA):List<clsDataStructurePA>

+searchAllDataStructureByDS_ID(dsID:int):List<clsDataStructurePA>

+searchByIRI(dataStructureIRI:String):clsDataStructurePA

+searchPossiblyMatchingDataStructures(unknownDataStructure:clsDataStructurePA):List<clsDataStructurePA>

SesamePrimaryDataStructureDAO

+searchIsCandidateForRepression(subjectIRI):boolean

SesameDriveMeshDAO

+searchByIRI(dataStructureIRI:String):clsDriveMesh

SesameThingPresentationMeshDAO

...

SesameThingPresentationDAO

...

SesameEmotionDAO

...

SesameAssociationDAO

+searchAssociations(dataStructureIRI:String):List<clsAssociation>

+searchByIRI(dataStructureIRI:String):clsAssociation

+searchBasicAssociationInformationForIRI(dataStructureIRI:String):HashMap<String,BindingSet>

+searchAssociationsForAssociatedElementDSID(dsID:int):List<clsAssociation>

+searchExternalAssociations(poDataStructure:clsDataStructurePA):List<clsAssociation>

SesameSecondaryDataStructureDAO

+searchMoContent(dataStructureIRI:String):String

SesameWordPresentationDAO

...

SesameWordPresentationMeshDAO

...

SesameTripleDAO

+getAllDataStructures(basicDataStructuresOnly:boolean):List<clsDataStructurePA>

+getAllDataStructurePairs(basicDataStructuresOnly:boolean):List<clsPair<clsDataStructurePA,List<clsAssociation>>>

+searchAll():List<clsDataStructurePA>

+executeQueryString(queryString:String):List<BindingSet>

+searchObjectNodes(subject:String,predicate:String):List<BindingSet>

+searchSubjectNodes(predicate:String,object:String):List<BindingSet>

+saveTriples(triplesToBeSaved:List<TemporaryContainerTriple>):void

+saveTriple(tripleToBeSaved:TemporaryContainerTriple):void

SesameConnectionHelper

+getActiveSesameRepository():Repository

TripleConstantsDatabaseConstants

+getSesameNativeRepository():Repository

+getSesameRestorableMemoryRepository():Repository

+getSesameMemoryRepository():Repository

+getBasicDriveMesh(dataStructureIRI:String):clsDriveMesh

Figure 3.15: Class diagram of the database package

Database Selection & Integration

 51

The database package contains the sub package dao in which the real functionality of the package

is implemented. The responsible class for retrieving and saving one or several triples is the

SesameTripleDAO. In addition to predefined methods for often needed functions, it also provides

an option to pass customized query strings to the database.

Finally there is the package dao.datastructures where for all of the described data structures

from chapter 4.1 a data access class is provided. Every class offers a method to get a data structure by

its IRI. The result of that method is always the corresponding Java object of that data structure.

Internally the method fetches the triple representation of the object and fills a new Java instance with

the values from the database.

In order to reduce redundancy of code the abstract class SesameBasicDataStructureDAO is

generalized by all other classes in that package and provides a method to fetch all information that is

possessed by any clsDataStructurePA in the project. The generalizing classes only have to

implement further methods that are needed for their specific data structure.

Another class which is worth further explanation is the SesameDataStructureDAO which is

mainly a convenience class. The class was designed to provide a general class for managing all data

structures and basically renders it unnecessary for most developers to access any other class of this

package. It provides a general method to search any data structure by its IRI and will utilize the

corresponding access class to construct the correct data type from the database information.

Furthermore, data structures can be searched by their DSID or an example data structure. If an example

data structure is passed to the method searchDataStructure(clsDataStructurePA) the

database is queried for any data structure having either its DSID, DSInstanceID, or moContent in

common. If any of the given attributes matches the data structure it is added to the result set.

In this chapter the database selection and integration into SiMA has been covered. First a database

analysis and the final selection of a suitable database technology was presented. The rest of this chapter

covers the selected technologies features and the implementation in SiMA.

 52

4. Data Structure Conversion and Migration

The integration of a new data store solution into SiMA is a two-step process. As already mentioned in

chapter 3.1 the SiMA simulation cannot run without the agent having any basic knowledge about its

world. Therefore, after successfully adding the technical dependencies like libraries and implementing

the connection to the database, the next step towards a memorizing agent will be to convert the existing

file-based data from the static declarative semantic memory to a triple representation. The first section

of this chapter covers the automatic conversion provided by the tool Protégé and discusses the ap-

plicability for the current SiMA setup. In chapter 4.2 an alternative triple model for a manual conver-

sion of the SiMA data structures is developed. This approach was developed with the goal to store

only the necessary information, unlike the automatic approach, which makes extensive use of addi-

tional descriptive information, which is not required by SiMA, thereby building up a considerable

information overhead. Finally, chapter 4.3 presents the final solution that was implemented to SiMA

as part of this work. In the course of this final subchapter all details on the project structure, as well as

dependencies to other parts of the SiMA project are given.

4.1 Automatic Migration to RDF

In chapter 3.1 the option of automatically converting the existing Frames file structure in RDF was

mentioned. This chapter deals with the conversion result provided by the tool Protégé Frames and its

applicability for the SiMA project. In Figure 4.3 a screenshot of the Protégé instance browser and the

RDF export options are shown. The instance which is currently shown in the view is again the cake,

which was already used as an example in chapter 3.2. When exporting the frames data to RDF it is not

possible to export only selected information. If export to RDF is chosen, one is limited to saving all

the existing data in two separate files. As can be seen from the screenshot, Frames differentiates be-

tween the class and the instance of an object, which is also transferred to RDF by exporting the infor-

mation into two separate RDF files. The class information of the Frames file is used to generate an

RDF schema file (see chapter 3.2.2 for detailed information on schemas), whilst the instance infor-

mation forms the other file, containing the concrete information.

Data Structure Conversion and Migration

 53

http://protege.stanford.edu/

rdfTPM:ENTITY:CAKE:BASIC

CAKE

ENTITY

TP:SENSOR_EXT:VISION:SHAPE:CIRCLE

TPM:ENTITY:CAKE:BASIC

TPM

CAKE

TP:INTENSITY:MEDIUM

AA:CAKE_BASIC:SWEET

AA:CAKE_BASIC:PINK

TP:SENSOR_EXT:ALIVE:FALSE

frames:rdfvalue_type

rdf:type

rdfs:label

frames:rdftype

frames:rdfvalue

frames:rdfclass_association

frames:rdfclass_association

frames:rdfclass_association

frames:rdfelement

frames:rdfinstance_association

frames:rdfelement

frames:rdfALIVE

Alive

TP:SENSOR_EXT:ALIVE:FALSE

false

TP

1.0

ASSOCIATIONATTRIBUTE

AA:CAKE_BASIC:PINK

ASSOCIATIONATTRIBUTE

frames:rdfTP:SENSOR_EXT:VISION:COLOR:PINK

frames:rdfASSOCIATIONATTRIBUTE

rdf:type

frames:rdfvalue_type

rdfs:label

frames:rdfvalue

frames:rdftype

frames:rdfweight

frames:rdfvalue_type

rdfs:label

frames:rdftype

frames:rdfelement

rdf:type

rdf:type

1.0frames:rdfweight

frames:rdfTP:SENSOR_EXT:TASTE:SWEETframes:rdfelement

ASSOCIATIONATTRIBUTE

ASSOCIATIONATTRIBUTE

frames:rdfvalue_type

frames:rdftype

AA:CAKE_BASIC:SWEETrdfs:label

INTENSITYframes:rdfvalue_type

TPframes:rdftype

MEDIUMframes:rdfvalue

TP:INTENSITY:MEDIUMrdfs:label

frames:rdfINTENSITYrdf:type

ShapeTypeframes:rdfvalue_type

TPframes:rdftype

CIRCLEframes:rdfvalue

TP:SENSOR_EXT:VISION:SHAPE:CIRCLErdfs:label

frames:rdfSHAPErdf:type

rdfs:Classrdf:type

frames:rdfTPM:ENTITYrdfs:subClassOf

CAKErdfs:label

frames:rdfinstance_association

Figure 4.1: Automatically generated RDF representation of cake instance

Data Structure Conversion and Migration

 54

In Figure 4.1 a graph view, resulting from the automatic conversion of the cake example instance is

presented. The resulting output however is not too satisfactory, when it comes to naming conventions

or the realization of concepts. For example the class hierarchy between TP, INTENSITY and ME-

DIUM is mashed up to be represented as an URI with the name “rdf_:TP:INTENSITY:MEDIUM”.

This is not desirable at all considering the actual data model concept which is currently used in the

SiMA simulation environment. For example the concept of a TP, which equals the class cls-

ThingPresentation, is not understood as one data structure type, but it is mixed into names and

used as a literal. Another flaw is the redundancy of node contents, which partly results from misun-

derstanding the data structure type concept and partly from the approach to connect every URI with a

literal containing its name again.

ars:BASICCAKE

„CAKE“

ars:CAKE

rdfs:type

rdfs:label

rdfs:subClassOf

ars:classAssociation

ars:classAssociation

ars:CIRCLE

rdfs:subClassOf

ars:SHAPE

ars:MEDIUM ars:INTENSITYrdfs:subClassOf

rdfs:subClassOf

ars:VISION

rdfs:subClassOf

ars:SENSOR_EXT

rdfs:subClassOf

ars:TP

ars:ENTITY ars:TPMrdfs:subClassOf

rdfs:subClassOf

ars:classAssociation

ars:ALIVE

rdfs:subClassOf

„false“rdfs:label

ars:instanceAssociation

ars:PINK

ars:COLOR

rdfs:subClassOf

rdfs:subClassOf

rdfs:type

ars:ASSOCIATION
ATTRIBUTE

„1.0"

ars:weight

ars:PINK

ars:TASTE

rdfs:subClassOf
rdfs:subClassOf

„1.0"

ars:weight

ars:instanceAssociation

rdfs:type

Figure 4.2: Refactored RDF graph

In Figure 4.2 a refactored version of the automatically generated RDF structure is presented. The main

difference to the automatically generated version is the transformation of data structure types to unique

nodes. On the example of the “ars:TP” node (marked by a grey node in Figure 4.2) one can see the

advantage over a literal usage of it. As was explained in chapter 3.2, literal values are not unique and

every new literal input creates a new node. If one looks at the conversion only from the Frame side,

however it still makes sense even though some configuration options would be favourable. If the later

usage of the data is taken into account, however the automatic conversion generates a lot more nodes

than are actually needed for the usage in SiMA. If one compares the refactored graph of Figure 4.2

with the automatically generated one in Figure 4.1, it can be seen that nearly twice the amount of

nodes has been created in the automatic one. Considering that this is only one example entity of many,

Data Structure Conversion and Migration

 55

one can imagine the impact of so many redundancies on the performance of the whole knowledge

base.

In addition to some flaws that naturally come with automatic generation there are two main reasons

to withdraw from using the automatic generation. The first reason for not using the automatic genera-

tion is that the generated structure is not in the least similar to the Java representations of the data

structures which are used by the simulation framework. Besides the fact that the naming and resem-

blance of the structures is dissimilar, the parsing process which is done by SiMA at the beginning of

a simulation adds further debugging information to the data, which is not contained in the Frames file

and therefore the converted RDF data. For example a control variable “moDS_ID” is generated and

some “moDebugInfo” values are set. The second reason is that due to the fact that the memorization

process will have to make use of the Java version of data structures when storing memories, a conver-

sion between the Java classes and the triple store has to be implemented anyways. As the automatically

generated RDF structure differs so much from the Java model, the conversion from Java data struc-

tures to the triple store would take more effort than to make use of the SiMA parsing process and

convert the existing knowledge base with the same methods as will be used by the memorization

process. The original plan to build upon the automatically converted RDF data was therefore aban-

doned in favour of a Java based solution.

Figure 4.3: Screenshot of Protégé Instance overview and RDF Export

4.2 Alternative Migration Concept

Due to the fact that the automatic conversion produces a considerable information overhead, it was

necessary to develop a new triple model instead of using the model which was generated during the

automatic conversion. The following chapter presents an alternative triple model to convert the exist-

ing Java data structures. This model is going to be used for migrating the static declarative semantic

memory as well as for the memory contents generated for the new episodic memory at runtime.

Data Structure Conversion and Migration

 56

clsDataStructurePA

-rdfIRI:String

#moDS_ID:int

#moDataStructureType:eDataType

#moContentType:eContentType

#moDebugInfo:String

#moDSInstance_ID:int

#log:Logger

clsAssociation

#mrWeight:double

#moAssociationElementA:clsDataStructurePA

#moAssociationElementB:clsDataStructurePA

clsPrimaryDataStructure

#mnCandidatForRepresssion:boolean

clsSecondaryDataStructure

#moContent:String

clsEmotion

clsLogicalStructureComposition

#moAssociationMapping:HashMap<ePredicate,List<clsSecondaryDataStructure>>

-moContent:eEmotionType

-mrEmotionIntensity:double

-mrSourcePleasure:double

-mrSourceUnpleasure:double

-mrSourceLibid:double

-mrSourceAggr:double

-mrExternalAssociatedContent:clsAssociation

clsWordPresentation

clsHomeostaticRepresentation

clsPhysicalRepresentation

clsThingPresentation

-moContent:Object

clsPhysicalStructureComposition

#moExternalAssociatedContent:clsAssociation

#moInternalAssociatedContent:clsAssociation

clsThingPresentationMesh

-moContent:String

-mrAggregatedActivationValue:double

-moActivations:HashMap<eActivationType,Double>

-moCriterionWeights:HashMap<eActivationType,Double>

-moCriterionMaxValues:HashMap<eActivationType,Double>

-mrCathexis:double

clsDriveMesh

+moContent:String

-mrQuotaOfAffect:double

-mrPsychicSatisfactionValue:double

-moDriveComponent:eDriveComponent

-moPartialDrive:ePartialDrive

-moExternalAssociatedContent:clsAssociation

-moInternalAssociatedContent:clsAssociation

clsWordPresentationMesh

-moNullObject:clsWordPresentationMesh

clsAct

+m_strAction:String

-moAssociatedContent:clsSecondaryDataStructure

Figure 4.4: Overview of SiMA data structure hierarchy

In the following for every data structure that has been realized in the Java implementation of SiMA a

table containing the resenting triples is presented. While the usage of <…> generally marks the oc-

currence of an IRI the usage of “…” marks a string value that is saved to the database. For the access

of a data structure attribute [ds.attributename] will be used and if a list has to be converted to a triple

it will be marked by writing get(i) after the data structure attribute. It means that for every item in the

Data Structure Conversion and Migration

 57

list a triple will be generated. In addition to IRIs and string values the database may also contain RDF

specific types, which are presented in the tables without any mark-up. RDF types are at the moment

without use for the project, it is merely a question of preparing the database for any future uses like

RDF/OWL reasoning.

4.2.1 Primary Process Data Structures

As introduced in chapter 2.1 the primary process is responsible for the unconscious data processing.

Its information is processed by the pleasure principle, thus meaning that the priority for processed

information is decided by drive demands instead of considering requirements the current situation

might bring up [Zei10, pp. 51-52]. Primary process data structures do not contain any logic relations

and conflicting information is processed in parallel and passed on to the secondary process without

filtering.

Thing-Presentation

The basic data structure of the primary process is the thing-presentation [Zei10, p. 49]. In SiMA´s

technical definition thing-presentations represent environmental, bodily and homeostatic information

and automated motion sequences. The representing class is the clsThingPresentation [Zei10,

pp. 49–61]. It includes sensorial characteristics of objects, which can be divided into taste, visual,

audio, olfactory and tactile information [ZLM09].

clsThingPresentation

-moContent : Object

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

S P O

<ds> <ars:hasMoContent> “[ds.moContent]”

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

Figure 4.5: Thing-presentation and its conversion to RDF triples

Data Structure Conversion and Migration

 58

As the thing-presentation is one of the basic data structures, it has no complex associations to offer.

As can be seen in Figure 4.5 all of its attributes can be converted directly into string values. The

moContent may contain values like “CIRCLE”, for describing a round shape or “#228373” for the

description of a colour, whilst the moContentType states what the moContent is about. Examples are

“ShapeType” or “Colour”. The moDataStructureType states that it is a data structure of the type “TP”

and is unvarying for any thing-presentation and the String moDebugInfo is for debugging purposes,

but will be transferred to the database as well. The moDS_ID is used as a data structure identifier for

example moDS_ID “12” will always belong to the ShapeType - Circle, whilst the ShapeType - Square

has the moDS_ID “354”. For testing purposes the moDSInstance_ID was created to identify different

instances of a data structure. During conversion tests it turned out that many parts of the code have

dependencies on this value and it was therefore decided to transfer it to the database as well. As can

be seen the subject of the triples is always the data structures own IRI. As described in chapter 3.2 all

predicates are IRIs as well. For the moDataStructureType it was decided to use the RDF.type predicate

from the RDF schema which was introduced in the same chapter.

Thing-Presentation-Mesh

In order to define which thing-presentations belong to the description of one thing, a data structure

called thing-presentation-mesh is used [Zei10, pp. 49–61]. The thing-presentation-mesh is a pure

technical model to connect thing-presentations, therefore representing the concept of an object. In

Figure 4.6 a typical instance of a clsThingPresentationMesh, which is the corresponding

Java class, is presented. The example shows a primary process representation of a cake. Thing-

presentation-meshes combine some informal attributes with two lists of associations.

The first list contains internal associations, representing the object characteristics, like its colour, shape

or taste. External associations on the other hand represent dynamic information like the object position

or distance. It is important to note that associations are used in the primary as well as in the secondary

process. Thing-presentation-meshes are also the primary processes’ way to represent images which

will be used for constructing experiences in the memorization process.

As can be seen in the hierarchy diagram (

Figure 4.4) associations are on the same hierarchy layer as the two processes. Associations generally

define two elements that have some sort of connection to each other. A good example of such an

application of an association is again the cake being associated to the taste “SWEET”. One thing-

presentation may be associated to several thing-presentation-meshes, leading to a connection between

them. As can be seen in Figure 4.6 every association owns a weight marking the relevance of the

association. In total there exist nine association types in the implementation, each marking a different

sort of association. For example clsAssociationAttribute is used to connect a thing-presen-

tation-mesh to a thing-presentation representing its attributes and clsAssociationDriveMesh

connects a thing-presentation-mesh to a drive mesh.

The thing-presentation-mesh has many values in common with the thing-presentation as they share

the same ancestor the primary process. The thing-presentation-meshes moContent contains some sort

of object name like “STONE”, “CAKE” or “STOMACH”.

Data Structure Conversion and Migration

 59

tpm23 : clsThingPresentationMesh

mrCandidateForRepression = false

moActivations = moActivations33

moCriterionMaxValues44 : HashMap<K,V>

size = 0

moCriterionWeights45 : HashMap<K,V>

moActivations33 : HashMap<K,V>

size = 0

moContent = "CAKE"

moContentType = eContentType.ENTITY

moCriterionMaxValues = moCriterionMaxValues44

moCriterionWeights = moCriterionWeights45 size = 0

moDataStructureType = eDataType.TPM

moDebugInfo = "CAKE to be eaten"

moDS_ID = 38

moDSInstance_ID = 37591914

moExternalAssociatedContent = moExternalAssociatedContentCake

mrAggregatedActivationValue = 0.0

mrCathexis = 0.0

rdfIRI = http://ars.org/ENTITY_38_37591914_1

moInternalAssociatedContent = moInternalAssociatedContentCake

moInternalAssociatedContentCake :

ArrayList<E>

elementData = AA71, AA74, ...

size = 5

moExternalAssociatedContentCake :

ArrayList<E>

elementData = AP153, AP155, ...

size = 7

AP153 : clsAssociationPrimary

moAssociationElementA = tpm162

moAssociationElementB = tpm163

mrWeight = 1.0

moContentType = ASSOCIATIONDM

moDataStructureType = ASSOCIATIONPRI

moDebugInfo = null

moDS_ID = 702

moDSInstance_ID = 0

rdfIRI = http://ars.org/ASSOCIATIONPRI_702_0_829

tpm162 : clsThingPresentationMesh

moContentType = "CAKE"

...

rdfIRI = http://ars.org/ENTITY_38_0_2999

tpm163 : clsThingPresentationMesh

moContentType = "CARROT"

...

rdfIRI = http://ars.org/ENTITY_125_0_3899

AP155 : clsAssociationDriveMesh

moAssociationElementA = dm66

moAssociationElementB = tpm169

mrWeight = 1.0

moContentType = ASSOCIATIONDM

moDataStructureType = ASSOCIATIONDM

moDebugInfo = null

moDS_ID = 53

moDSInstance_ID = 0

rdfIRI = http://ars.org/ASSOCIATIONDM_53_0_2034

dm66 : clsDriveMesh

moContentType = "CAKE"

rdfIRI = http://ars.org/MEMORIZEDRIVEREPRESENTATION_51_0_1

tpm169 : clsThingPresentationMesh

moContentType = "CAKE"

...

rdfIRI = http://ars.org/ENTITY_38_0_2999

moDataStructureType = ASSOCIATIONDM

moDebugInfo = null

moDS_ID = 53

moDSInstance_ID = 0

moDriveComponent = LIBIDINOUS

moExternalAssociatedContent = moExternalAssociatedContentCake

moInternalAssociatedContent = moInternalAssociatedContentCake

moPartialDrive = UNDEFINED

mrPsychicSatisfaction = 0.20000000298023224

mrQuotaOfAffect = 0.20000000298023224

mnCandidateForRepression = false

mrQuotaOfAffect = 0.20000000298023224

AA71 : clsAssociationAttribute

moAssociationElementA = tpm23

moAssociationElementB = tp82

mrWeight = 1.0

moContentType = ASSOCIATIONATTRIBUTE

moDataStructureType = ASSOCIATIONATTRIBUTE

moDebugInfo = null

moDS_ID = 40

moDSInstance_ID = 0

rdfIRI = http://ars.org/ASSOCIATIONATTRIBUTE_40_0_1816

tp82 : clsThingPresentation

mrCandidateForRepression = false

moContent = "SWEET"

moContentType = TASTE

moDataStructureType = TP

moDebugInfo = null

moDS_ID = 39

moDSInstance_ID = 0

rdfIRI = http://ars.org/B_TASTE_39_0_1814

AA74 : clsAssociationAttribute

moAssociationElementA = tpm23

moAssociationElementB = tp126

rdfIRI = http://ars.org/ASSOCIATIONATTRIBUTE_41_0_1817

tp126 : clsThingPresentation

moContent = "SWEET"

moContentType = COLOR

...

...

...
...

...
...

Figure 4.6: Instance of a thing-presentation-mesh representing a cake

Data Structure Conversion and Migration

 60

The moContentType is restricted to one of seven values, which can be processed by SiMA. These

values are “RI”, “BODYPART”, “RIREPRESSED”, “ORGAN”, “RILIBIDO”, “ACTION” and ”EN-

TITY”. They tell the system for example if an object is an environmental object (“ENTITY”) or an

“ORGAN” like the agents stomach.

For the attributes moDataStructureType, moDebugInfo, moDS_ID and moDSInstance_ID the same as

for thing-presentations applies, except that the moDataStructureType contains the value “TPM”. In

addition to those single value attributes the thing-presentation-mesh contains some lists. For the RDF

conversion of the thing-presentation-mesh it suffices to store a link to the associated objects IRI. Of

course the associated object has to be converted as well if the link shall have some meaning. The

attributes moActivations, mrCathexis, moCriterionMaxValues and moCriterionWeights are internal

calculation values and are therefore not converted to triples. The finished conversion model of a thing-

presentation-mesh is shown in Figure 4.7.

clsThingPresentationMesh

-moContent : Object

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

-moActivations : Hashmap<eActivationType, Double>

-moCriterionMaxValues : Hashmap<eActivationType, Double>

-moCriterionWeights : Hashmap<eActivationType, Double>

#moExternalAssociatedContent : ArrayList<clsAssociation>

#moInternalAssociatedContent : ArrayList<clsAssociation>

-mrAggregatedActivtionValue : double

-mrCathexis : double

S P O

<ds> <ars:hasMoContent> “[ds.moContent]”

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

<ds> <ars:hasExternalAssociation> <[ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasAssociation> <[ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasInternalAssociation> <[ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasAssociation> <[ds.moInternalAssociatedConent.get(i)]>

<ds> <ars:hasAggregatedActivationValue> “[ds.moAggregatedActivationValue]”

Figure 4.7: Thing-presentation-mesh and its conversion to RDF triples

Drive-Mesh

The drive-mesh also belongs to the primary process and is used to represent what experiences the

agent associates with the object. It contains information about the impact of the associated thing-

Data Structure Conversion and Migration

 61

presentation on the homeostatic state based on the agent’s experiences. For example a cake could have

reduced the sensation of hunger for one agent, while another one felt sick after eating it. The corre-

sponding Java class is the clsDriveMesh.

clsDriveMesh

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

-mnCandidateForRepression : boolean

#moExternalAssociatedContent : ArrayList<clsAssociation>

#moInternalAssociatedContent : ArrayList<clsAssociation>

-moPartialDrive : ePartialDrive

-mrPsychicSatisfactionValue : double

-mrQuotaOfAffect : double

S P O

<ds> <ars:isCandidateForRepression> “[ds.mnCandidateForRepression]”

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasDriveComponent> <[ds.moDriveComponent]>

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

<ds> <ars:hasAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasExternalAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasAssociation> <ds.moInternalAssociatedConent.get(i)]>

<ds> <ars:hasInternalAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasPartialDrive> <[ds.moPartialDrive]>

<ds> <ars:hasPsychicSatisfactionValue> “[ds.mo PsychicSatisfactionValue]”

<ds> <ars:hasQuotaOfAffect> “[ds.moQuotaOfAffect]”

Figure 4.8: Drive-Mesh and its conversion to RDF triples

The attribute mnCandidateForRepression is used to mark whether the drive-mesh is an object for

suppression in the defense mechanisms, while a drive-meshes moContentType states differentiates

whether a drive-mesh is a “MEMORIZEDRIVEREPRESENTATION” or “LIBIDO”. Memorized

drive-meshes are satisfied needs, while libidinous ones are still to be fulfilled. The moDriveCompo-

nent tells whether a drive is an AGGRESSIVE or a LIBIDINOUS one. For the same need there is

always an aggressive one (for example “bite”) and a libidinous one (like “nourish”) [SDW+13, p.

6650]. The mrQuotaOfAffect states how high the bodily need is, while the moPartialDrive identifies

the source of a sexual drive [SDW+13, p. 6648]. Its moDataStructureType always contains the value

Data Structure Conversion and Migration

 62

“DM” and for all other attributes one may refer to the explanation of the thing-presentations conver-

sion. Like the thing-presentation-mesh the drive-mesh contains some links to other data structures,

which is done by connecting the drive-mesh IRI with the linked data structures IRIs.

Emotion

Finally, there is also a data structure called emotion which was introduced to SiMA in order to model

the agent´s motivational system and is represented by the class clsEmotion [SDW+13, p. 1]. Emo-

tions represent the coordination of bodily needs and the perceived reality.

clsEmotion

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

-mrCandidateForRepression : boolean

#moExternalAssociatedContent : ArrayList<clsAssociation>

-mrSourceAggr : double

-moContent : eEmotionType

-mrEmotionIntensity : double

-mrSourceLibid : double

-mrSourcePleasure : double

-mrSourceUnpleasure : double

S P O

<ds> <ars:isCandidateForRepression> “[ds.mnCandidateForRepression]”

<ds> <ars:hasMoContent> <[ds.moContent]>

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

<ds> <ars:hasAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasExternalAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasIntensity> “[ds.mrEmotionIntensity]”

<ds> <ars:asAggressionSource> “[ds.mrSourceAggr]”

<ds> <ars:hasLibidoSource> “[ds.mrSourceLibid]”

<ds> <ars:hasPleasureSource> “[ds.mrSourcePleasure]”

<ds> <ars:hasUnpleasureSource> “[ds.mrSourceUnpleasure]”

Figure 4.9: Emotion and its conversion to RDF triples

There exist six basic emotions (anger, mourning, anxiety, joy, saturation and elation) which are gen-

erated based on four emotion factors (unpleasure, pleasure, sum of all aggressive quota of affects and

sum of libidinous quota of affects) [SDW+13, p. 4]. The emotion factors in turn are created from the

Data Structure Conversion and Migration

 63

bodily needs and the perceived situation. For memories emotions are of high importance, because

memory that is associated strongly to an emotion has higher chances to be activated.

Like the drive-mesh the emotion has a Boolean value mnCandidateForRepression for marking sup-

pressible instances. The moContent describes the type of emotion like “ANGER, “JOY” and “ANXI-

ETY”, All values come from the six basic emotions. Currently all existing emotion have the moCon-

tentType “BASICEMOTION”. The mrEmotionIntensity states how strong the emotion is, while the

values mrSourceAggr, mrSourceLibid, mrSourcePleasure, mrSourceUnpleasure represent the four

emotion factors [SDW+13, p. 4]. For the meaning of all other values again, please refer to the expla-

nation of the thing-presentation.

4.2.2 Secondary Process Data Structures

As mentioned in chapter 4.2.1 the secondary process is responsible for resolving contradictory or con-

flicting information that is passed on by the primary process [Zei10, p. 52]. It is also the counterpart

to the primary process, which is following the pleasure principle, as it covers the reality principle.

Furthermore, it is also responsible for structuring information and adds temporal local and logic in-

formation to the received data structures. In the secondary process goals are formed and decisions are

taken, which requires logical structures like the word-presentation.

Word-Presentation

The basic data structure of the secondary process is the word-presentation, which is realized in the

class clsWordPresentation. Word-presentations are basically a set of symbols forming the

description of an object [ZLM09, p. 385]. For example, for human beings this could be verbal

expressions as well as gestures and sounds. Their structure is very similar to the primary process´s

thing-presentation. Like for the thing-presentation a mesh structure is used to connect the word-

presentation by associations to other data structures.

clsWordPresentation

-moContent : String

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

S P O

<ds> <ars:hasMoContent> “[ds.moContent]”

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

Figure 4.10: Word-Presentation and its conversion to RDF triples

Data Structure Conversion and Migration

 64

The main difference between a thing-presentation and a word-presentation lies in its moContentType

attribute having nine possible values, namely: RELATION, LOCATION, DISTANCE, CONDITION,

CONTENT, INTENSITY, ACTION, POSITION and ENTITY. The moDataStructureType is “WP”

and the moContent could be “CAKE” or the verbalization of a hex-colour defined by a thing-presen-

tation.

Word-Presentation-Mesh

The word-presentation-mesh is the equivalent to the thing-presentation-mesh of the primary process

in the secondary process. The corresponding class is the clsWordPresentationMesh. It also

contains internal and external associations, representing information about the object and external

information that is associated with it. Associations are used the same way as in the primary process

and are explained in chapter 4.2.1. Word-presentation-meshes are also used to represent the concept

of images in the secondary process and are of high importance for the memorization process which

will be implemented in this work.

clsWordPresentationMesh

-moContent : String

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

-moAssociationMapping : HashMap<ePredicate, ArrayList<clsSecondaryDataStrucutre>>

#moExternalAssociatedContent : ArrayList<clsAssociation>

#moInternalAssociatedContent : ArrayList<clsAssociation>

-moNullObject : clsWordPresentationMesh

S P O

<ds> [ds. moAssociationMapping.get(i).getKey()] “[ds.moAssociationMapping.get(i).getValue]”

<ds> <ars:hasMoContent> “[ds.moContent]”

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

<ds> <ars:hasExternalAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasAssociation> <ds.moInternalAssociatedConent.get(i)]>

<ds> <ars:hasInternalAssociation> <ds.moExternalAssociatedConent.get(i)]>

<ds> <ars:hasAggregatedActivationValue> “[ds.moAggregatedActivationValue]”

Figure 4.11: Word-Presentation and its conversion to RDF triples

Data Structure Conversion and Migration

 65

Word-presentation-meshes can have “RI” (Remembered Image), “ACTION” and “ENTITY” as val-

ues for their moContentType. The attribute moContent gives some name for the object or action the

mesh describes like for example “CAKE” or “FOLLOW_TARGET”. The attribute moDataStructure-

Type contains for all word-presentation-meshes the value “WPM”. The attributes moNullObject and

moAssociationMapping are for internal calculations only and therefore not converted to a triple rep-

resentation. All other attributes are converted as already described in previous data structures (see

thing-presentation and thing-presentation-mesh in chapter 4.2.1).

Act

The central data structure of this work however is the concept of an act. An act is used to connect

several word-presentation-meshes, which are used to represent environmental situations to a sequence

of happenings. In Figure 4.12 a schematic diagram of an act is presented. The act has two functions:

It connects data structures and adds additional information like a name for their whole sequence. Its

function can therefore be compared to the mesh structures that are used in SiMA. To connect acts and

their associated images the clsAssociationSecondary is used. In order to distinguish the

meaning of those associations they have different content types assigned. As can be seen in Figure

4.12 the connection to an act is marked by the term “hasSuper”, whilst the temporal association

between two images gets the value “hasNext”. As the terms imply those associations have a direction

pointing from the image to the act and from the temporally first image to the one that occurred

afterwards.

hasSuper
hasSuper hasSuper

hasSuper

ACT
„EAT CAKE“

IMAGE 01

MOVE TO CAKE

IMAGE 02

SEE OTHER AGENT

IMAGE 03

DECIDE NOT TO SHARE

IMAGE 04

CAKE GONE
Secondary

Process

Primary

Process

hasNext hasNext hasNext

Figure 4.12: Example of an act

Due to the fact that the act concept is represented by the data structure word-presentation-mesh no

separate conversion concept is needed. For further information about the representation of acts in the

RDF database, refer to the section about word-presentation-meshes.

4.2.3 Associations

As was already mentioned in the section about primary structures associations are used in the primary

process as well as in the secondary process. In the implementation there are nine different association

Data Structure Conversion and Migration

 66

types, each of them responsible for a different type of connection. The class clsAssociationAt-

tribute is used to link a thing-presentation to its thing-presentation-mesh. clsAssocia-

tionDriveMeshes link drive-meshes to thing-presentation-meshes and clsAssociation-

WordPresentations do the same for word-presentations. The class clsAssociationPri-

mary links clsThingPresentationMeshes to each other, while clsAssociationSec-

ondary are used to connect clsWordPresentationMeshes. Finally there exist the two asso-

ciations clsAssociationFeeling and clsAssociationTime. The first one connects a

clsWordPresentationMesh to a clsWordPresentationMeshFeeling (which is a gen-

eralization of a clsWordPresentationMesh). The latter one is used to connect two cls-

ThingPresentationMeshes (representing an image with an object).

As can be seen in Figure 4.13 there are many types of associations, but only the class of clsAsso-

ciationSecondary adds more information to the data structure. The other data structures differ

only in their offered operations and constructors, which is of no relevance for the RDF model.

clsAssociation

#moAssociationElementA : clsDataStructurePA

#moContentType : eContentType

#moDataStructureType : eDataType

#moDebugInfo : String

#moDS_ID : int

#moDSInstance_ID : int

#moAssociationElementB : clsDataStructurePA

#mrWeight : double

clsAssociationSecondary

-moPredicate : ePredicate

clsAssociationFeeling

clsAssociationPrimaryDM

clsAssociationEmotion

clsAssociationPrimary

clsAssociationTime

clsAssociationDriveMesh

clsAssociationWordPresentation

clsAssociationAttribute

S P O

<ds> <ars moAssociationElementA> <ds.moAssociationElementA]>

<ds> <ars:moAssociationElementB> <[ds.moAssociationElementB]>

<ds> <ars:hasMoContentType> <[ds.moContentType]>

<ds> <RDF.type.getURI()> <[ds.moDataStructureType]>

<ds> <ars:hasDebugInfo> “[ds.moDebugInfo]”

<ds> <ars:hasMoDS_ID> “[ds.moDS_ID]”

<ds> <ars:hasMoDSInstance_ID> “[ds.moDS_Instance_ID]”

<ds> <ars:hasAssociationWeight> “[ds.mrWeight]”

<ds> <ars:hasPredicate> <[ds.moPredicate]>

Figure 4.13: Associations and their conversion to RDF triples

Data Structure Conversion and Migration

 67

4.3 Conversion Implementation

This chapter presents the actual implementation of the conversion process. The first part of this chapter

explains the manual conversion process, along with its most important methods. It further discusses

the IRI generation and highlights the important classes and methods. In the second part of this chapter

the migration from the old file-based memory into the new database is explained.

4.3.1 Manual Conversion

After deciding to use the Sesame database system, it was clear that some sort of conversion to a triple

representation was needed. The package conversion was therefore introduced to the ARSDatabase

project. In Figure 4.14 a class diagram with the most relevant attributes and methods is presented. In

chapter 4.1 the data structures and their conversion to RDF triples in general was discussed. This

chapter deals with the implementation of the discussed concepts.

The final implementation is oriented on the hierarchical structure of the data structures which was

already presented in

Figure 4.4. The entry point for a convenient conversion process is the class TripleStoreUtils.

It provides a convert(…) method that accepts as an input parameter the abstract class clsData-

StructurePA. This class is the most general data structure in the SiMA data structure hierarchy,

thus meaning that all data structures can be converted by that method. From there the data structure is

passed to the class DataStructurePAToTripleConverter, which is located in the package

conversion.classes. This class has only one task, namely to decide which data structure was

provided as an input and to pass it on to the corresponding conversion class. For every data structure

of the long-term memory there exists an additional class, which converts its data structure to a

java.util.ArrayList [ALIST] of TemporaryContainerTriples. As already mentioned in the

previous chapter an intermediate triple representation was necessary to stay independent from the

concrete RDF database solution that was chosen.

The TemporaryContainerTriple provides some basic attributes that allow the correct con-

version to the database specific triples, for example an option to save whether the object part of the

triple is an IRI or a Literal. There is also a Boolean parameter that allows to mark a “basic” object.

The basic object is the topmost object of a number of linked data structures, for example the cake that

is actually seen by the agent. Any other object linked to that cake by associations is not considered to

be a basic object. Such a distinction is necessary as for search methods only basic objects shall be

taken into account.

The last part of the conversion process is the comparator package. It was originally created for

usage during the IRI generation to overcome some shortfalls of the SiMA implementation. Due to

some implementation specific requirements SiMA makes extensive use of a cloning process which

makes new instance copies of the data structure objects. Until now this was necessary in order to avoid

changing the contents of the HashMap memory. Therefore, two Java instances could still represent

the same thing in terms of long-term memory while they are two different objects for a Java program.

Data Structure Conversion and Migration

 68

However, as will be covered in chapter 6, this approach could not fully reproduce the expected agent

behavior and was therefore dropped for a more straightforward one.

AbstractToTripleConverter

#preparedDataStructures : HashMap<String, clsDataStructurePA>

#tempTriple : TemporaryContainerTriple

TemporaryContainerTriple

-subject : String

-predicate : String

-object : String

-resource : Resource

-property : Property

-literal : Literal

-objectAsResource : boolean

#tempTriple

DataStructurePAToTripleConverter

-convertBasicStructureToRDFTriples(clsDataStructurePA) : ArrayList<TemporaryContainerTriple>

-convertToRDFTriples(clsDataStructurePA, int) : ArrayList<TemporaryContainerTriple>

-convertToRDFTriples(clsDataStructurePA, boolean, int) : ArrayList<TemporaryContainerTriple>

-convertToRDFTriples(ArrayList<clsWordPresentationMesh>, boolean, int) : ArrayList<TemporaryContainerTriple>

PrimaryDataStructureToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

SecondaryDataStructureToTripleConverter

-convertBasicStructureToRDFTriples(clsSecondaryDataStructure) : ArrayList<TemporaryContainerTriple>

ThingPresentationToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

ThingPresentationMeshToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

DriveMeshToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

AffectToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

WordPresentationToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

WordPresentationMeshToTripleConverter

-convertBasicStructureToRDFTriples(clsPrimaryDataStructure) : ArrayList<TemporaryContainerTriple>

AssociationToTripleConverter

+associatedAssociationOccurence : HashMap<String, Integer>

+convertToRDFTriples(clsAssociation, int) : ArrayList<TemporaryContainerTriple>

+convertToRDFTriples(clsAssociation, int, boolean) : ArrayList<TemporaryContainerTriple>

+convertToRDFTriples(clsDataStructurePA, ArrayList<clsAssociation>, String, int) : ArrayList<TemporaryContainerTriple>

+saveAssociatedContentListLinks(clsDataStructurePA, ArrayList<clsAssociation>) : ArrayList<TemporaryContainerTriple>

EmotionToTripleConverter

+associatedAssociationOccurence : HashMap<String, Integer>

+convertToRDFTriples(clsEmotion, int) : ArrayList<TemporaryContainerTriple>

TripleStoreUtils

#dataStructuresSortedByDS_ID : HashMap <Integer, ArrayList<clsDataStructurePA>>

+convert(clsDataStructurePA) : ArrayList<TemporaryContainerTriple>

+getBasicIRI(clsDataStructurePA) : String

+getTripleStoreIRI(clsDataStructurePA) : String

DBComparator

+checkDepth : int

+compareActs() : boolean

+checkedDataStructures : HashMap<clsDataStructurePA, HashMap<clsDataStructurePA, Boolean>>

+compareDataStructurePAs() : boolean

+compareUnknownDataStructurePAs() : boolean

+compareWordPresentationMeshes() : boolean

+compareWordPresentations() : boolean

+isEqual() : boolean

+putIntoCheckedList() : void

PrimaryDataStructureComparator

+compareAffects() : boolean

+checkedDataStructures : HashMap<clsDataStructurePA, HashMap<clsDataStructurePA, Boolean>>

+compareEmotions() : boolean

+compareThingPresentationMeshes() : boolean

+putIntoCheckedList() : void

+compareDriveDemands() : boolean

+compareDriveMeshes() : boolean

+compareThingPresentations() : boolean

AssociationComparator

+compareAssociatedContents() : boolean

+checkedDataStructures : HashMap<clsDataStructurePA, HashMap<clsDataStructurePA, Boolean>>

+putIntoCheckedList() : void

+compareAssociationAttribute() : boolean

+compareAssociationDriveMeshes() : boolean

+compareAssociationEmotions() : boolean

+compareAssociationFeelings() : boolean

+compareAssociationPrimaries() : boolean

+compareAssociationPrimaryDMs() : boolean

+compareAssociations() : boolean

+compareAssociationSecondaries() : boolean

+compareAssociationFlat() : boolean

+compareAssociationTimes() : boolean

+compareAssociationWordPresentations() : boolean

Figure 4.14: Class diagram of the conversion package

Data Structure Conversion and Migration

 69

In order to migrate the HashMap contents to the new RDF store, two new Integer attributes were added

to all clsDataStructurePA. The first one is a global counter, keeping track of the number of

instances that are created, the second one marks the actual instance´s number. This so called ja-

vaInstanceID is necessary to differentiate cloned objects from their parent objects. The cloning

process was modified to first copy all values from the parent object and then create a new javaIn-

stanceID for the clone. Until now there was no real identifier for concrete data structure instances,

which made it impossible to create a unique IRI for any SiMA data structure.

1: return O.DataStructureType + "_" + O.JavaInstanceID + "_" +

O.ContentType + "_" + O.DSID + "_" + O.DSInstanceID

Figure 4.15: Algorithm - getTripleStoreIRI(O)

Even though the javaInstanceID would suffice to generate an IRI some additional information

about the data structure was added to the IRI in order to provide more readability for humans. The

final implementation of the IRI generation can be seen in Figure 4.15.

HashMap<eDataType, HashMap<String, HashMap<Integer, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>>>

KEYS

TP

WPM

TPM

EMOTION

ASSOCIATIONWP

ASSOCIATIONDM

ASSOCIATIONEC

ASSOCIATIONPRI

ASSOCIATIONTEMP

ASSOCIATIONATTRIBUTE

FEELING

DM

AFFECT

KEYS (TPM)

RI

BODYPART

RIREPRESSED

ORGAN

RILIBIDO

ACTION

ENTITY

KEYS

(ENTITY)

137

504

337

313

...

clsDataStructurePA (137)

clsThingPresentationMesh

moDataStructureType = TPM

moDS_ID = 137

moContentType = ENTITY

moDSInstance_ID = 2059532009

moExternalAssociatedContent.size() = 3

moInternalAssociatedContent.size() = 3

ArrayList <clsAssociation> (137)

clsAssociationWordpresentation: ::ASSOCIATIONWP::350:ASSOCIATIONWP|elementA:349:ENTITY:STONE:elementB:137:ENTITY:STONE

clsAssociationDriveMesh: ::ASSOCIATIONDM|:STONE:AGGRESSIVERECTUMUNDEFINEDDEPOSIT, 0.4000000059604645

clsAssociationDriveMesh: ::ASSOCIATIONDM|:STONE:AGGRESSIVESTOMACHUNDEFINEDBITE, 0.10000000149011612

clsAssociationDriveTime: ::ASSOCIATIONTEMP::393:ASSOCIATIONTEMP|elementA:392:RI:A06_BEAT_BODO_L01_I03:elementB:137:ENTITY:STONE

Figure 4.16: HashMap structure of SiMA mock-up memory

In addition to the obvious conversion of the existing data structure attributes some additional infor-

mation has to be transferred. As already mentioned in chapter 1 SiMA uses a parsed file to simulate

the agent’s memories. At program startup currently a file is parsed into a complex HashMap structure

which is presented in Figure 4.16. This structure commonly referred to as search space is currently

used during the simulation as a long-term memory mock-up. At program start the ontology file is

parsed into a HashMap with a <String, clsDataStructurePA> key-value pair. In this case

Data Structure Conversion and Migration

 70

the key is a unique String representation of the data structure in the value part. For these values a new

HashMap containing other HashMaps is created. This structure of HashMaps is constructed to pro-

vide a fast access during simulation runs and shown in Figure 4.16.

As can be seen the shown HashMap structure was designed to improve the search process during

program run. First the data structures of the memory are sorted by their eDataType (which repre-

sents the data structure type as an enum). Then the data structures are sorted by their content type, like

for example “ENTITY”, “ACTION”, “ORGAN” etc. for a thing-presentation-mesh. Afterwards the

structures are sorted by their data structure ID. Finally the clsPair<clsDataStructurePA,

ArrayList<clsAssociation>> which was parsed at program start is put into the Map. This

clsPair is the real content of the memory in contrast to the previous structure which was only set-

up in order to pre-sort the clsPairs.

In order to keep the information of the HashMap structure, the conversion process has to produce

some triples in addition to the structure information. To differentiate the main data structures of the

memory from those merely associated to them, all data structures from the clsPair are supple-

mented by the prefix “B_” (B for basic data structure) added to the front of their IRI. This is only done

to increase the readability of the database content for humans, it is not necessary for the implementa-

tion or functionality of the implemented RDF database. For the database a triple containing the infor-

mation “isSearchSpaceContent” (see Figure 4.17 for the whole triple) is added. This is necessary to

differentiate merely associated data structures from the “main contents” of the memory, when search-

ing through the database. To keep the relationship of the clsPairs from the HashMap another triple

with the predicate “hasInExternalList” is used during the conversion. Further triples that have to be

added to the database are two counters that are used to store the last value for a DSID and amount of

perceived objects. They will be needed for the IRI generation of the memorization process (covered

in chapter 5.3).

S P O

<basicDS> <http://ars.org/isSearchSpaceContent> “true”

<pair.a> <http://ars.org/hasInExternalList> <pair.b>

<http://ars.org/DSID> <http://ars.org/hasValue> “counter”

<http://ars.org/PerceivedCounter> <http://ars.org/hasValue> “counter”

Figure 4.17: Triples containing general information for the database

4.3.2 Search Space Migration and Memory Access

The RDFSearchSpaceCreator was implemented to migrate the old search space from the Frames

file into the chosen RDF database. To achieve this the original parsing process which is used by SiMA

to load the Frames file is utilized to create the original HashMap structure. The content is then passed

to the RDFSearchSpaceCreator in order to perform a conversion process. First the conversion

process iterates through all “basic” data structures and assigns an IRI to them. A data structure is

considered to be basic if it directly belongs to the clsPair structure. Then, instead of sorting the

Data Structure Conversion and Migration

 71

clsPairs into the HashMap the data structures are converted to triples by the use of the methods

that were described in chapter 4.3.1. During that process the “hasInExternalList” triple for the

relation between the pair.a and pair.b element is created as well. After all triples are set-up they

are saved to the database all together.

#refineMovementActions(poMovementActions : ArrayList<clsWordPresentationMesh>) : void

RDFSearchspaceManager

+searchEntity(poSearchPatternList : ArrayList<clsPair<Integer, clsDataStructurPA>>) : ArrayList<ArrayList<clsPair<Double, clsDataStructureContainer>>>

+searchMesh(poSearchPattern : clPair<Integer, clsDataStructurePA>, prThreshold : double, pnLevel : int) : ArrayList<clsPair<Double, clsDataStructurePA>>

+searchMesh(poPattern : clsDataStructurePA, poSearchContentType : eContentType, prThreshold : double, pnLevel : int) : ArrayList<clsPair<Double, clsDataStructurePA>>

-searchSingleEntity(eDataType : int, unknownDatastructure : clsDataStructurePA) : ArrayList<clsPair<Double, clsDataStructureContainer>>

+getAssociatedContent(poReturnType : int, poDataStructure : clsDataStructurePA) : ArrayList<clsAssociation>

-getAssociatedContent(poReturnType : int, poDataStructure : clsDataStructurePA, blCompareInstance : boolean) : ArrayList<clsAssociation>

-cloneResult(poSearchRsult : ArrayList<ArrayList<clsPair<Double, clsDataStructureContainer>>>) : ArrayList<ArrayList<clsPair<Double, clsDataStructureContainer>>>

+listSearchMesh(poReturnType : int, poDataStructureUnknown : clsDataStructurePA, prThreshold : double, poLevel : int) : ArrayList<clsPair<Double, clsDataStructurePA>>

-compareElementsMesh(poUnknown : clsDataStructurePA, pnLevel : int) : clsWordPresentationMesh

+getCompleteMesh(poInput : clsDataStructurePA, pnLevel : int) : clsWordPresentationMesh

+getMesh(poInput : clsWordPresentationMesh, pnLevel : int) : clsWordPresentationMesh

+getMesh(poInput : clsThingPresentationMesh, pnLevel : int) : clsThingPresentationMesh

+complementMesh(poInput : clsDataStructurePA, pnLevel : int) : void

DataStructureComparisonTools

-THRESHOLDMATCH : double

+compareDataStrcutureMesh(poDSUnknown : clsDataStructurePA, prThreshold : double, pnLevel : int) : ArrayList<clsPair<Double, clsDataStructurePA>>

+compareDataStructures(dataStructuresWithSameDataStructureType: ArrayList<clsDataStructurePA>, unknownDatastructure : clsDataStructurePA) : ArrayList<clsPair<Double, clsDataStructurePA>>

-sortList(sortedList : ArrayList<clsPair<Double, clsDataStructurePA>>, matchScore : double) : int

-cloneList(list : List<clsAssociation>) : ArrayList<clsAssociation>

+getCompleteMesh(poInput : clsWordPresentationMesh, pnLevel : int) : clsWordPresentationMesh

+getCompleteMesh(poInput : clsThingPresentationMesh, pnLevel : int) : void

+complementMesh(poInput : clsThingPresentationMesh, pnLevel : int, poVisitedTPMs : HashMap<Integer, clsThingPresentationMesh>) : void

RDFSearchSpaceCreator

-rdfDSList : List <String>

-removeOldFile() : void

-arsDSList : List <String>

-basicDSCounter : int

-getPairsForSearchSpaceGeneration() : TreeMap<String, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>

-createSearchSpace(arsPairs : TreeMap<String, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>) : void

-prepareTriplesForSaving(arsPairs : TreeMap<String, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>, oldFileInTriples : ArrayList<TemporaryContatinerTriple>) : void

-prepareIRIs(arsPairs : TreeMap<String, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>): void

-fillDataStructureLists(pair : clsPair<clsDataStructurePA, ArrayList<clsAssociation>>, outputFileName : String) : void

-getPairs(moSearchSpaceContent : HashMap<eDataType, HashMap<String, HashMap<Integer, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>>>) : TreeMap<String, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>

-bindObjectsAndAssociations(dataStructureTable : HashMap<String, clsDataStructurePA>, moSearchSpaceContent : HashMap>eDataType, HashMap<String, HashMap<Integer, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>>>) : TreeMap<String, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>:void

-defineElements(poAssociation: clsDataStructurePA, moSearchSpaceContent : HashMap>eDataType, HashMap<String, HashMap<Integer, clsPair<clsDataStructurePA, ArrayList<clsAssociation>>>>> : void

MemorizationProcess

+CURRENT_GOaL_REACHED : boolean

+memorizePerceivedImage(perceivedImage : clawordPresentationMesh) : void

-perceivedImagesIRIs : ArrayList<String>

+PERCEIVED_COUNTER : int

+DSID_COUNTER : int

-savePerceivedImage(perceivedImage : clsWordPresentationMesh) : void

-finishAct() : void

-buildandSaveAct() : void

-defineAssociatedContents(act : clsAct) : void

-getMemorizationProcessIRI(linkToAct : clsAssociationSecondary) : String

-getPerceivedCounter() : void

+getNewDSID() : int

clsAC_EXECUTE_EXTERNAL_ACTION

+clsAC_EXECUTE_EXTERNAL_ACTION(poCodeletHandler : clsCodeletHandler)

#refineMovementActions(poMovementActions : ArrayList<clsWordPresentationMesh>) : void

#processGoal() : void

#setPreConditions() : void

#setPostConditions() : void

#removeTriggerCondition() : void

#setDescription() : void

clsCC_END_OF_ACT

+clsCC_END_OF_ACT(poCodeletHandler : clsCodeletHandler)

#processGoal() : void

#setPreConditions() : void

#setPostConditions() : void

#removeTriggerCondition() : void

#setDescription() : void

Figure 4.18: Class diagram of the memory package

The implementation of the itfSearchSpaceAccess interface was closely connected to the pro-

cess of migrating the old data store into the new triple store, which was already described in chapter

4.3.1. Without this implementation the new database could not be used by SiMA. Therefore the orig-

inal implementation along with its helper class was copied and adapted to match the characteristics of

the new knowledge store. The main change that was necessary to the RDFSearchSpaceManager

(the new implementation of that interface) was a new link to its helper class, which implements the

searching. Both classes can be seen in Figure 4.18. This helper class is called clsDataStruc-

tureComparisonTools in the original implementation and DataStructureComparison-

Tools in the new implementation that was done in this work. The main difference between both

Data Structure Conversion and Migration

 72

implementations is that the original one also utilized that class to search through the whole search

space HashMap structure, which was described in 4.3.1. In the new implementation the

RDFSearchSpaceManager already fetches a pre-filtered list of data structures, which is then

passed to the DataStructureComparisonTools to do the rest of the filtering like it used to do

in the former implementation.

The pre-filtering moves some of the clsDataStructureComparisonTools processing into

queries so that only eligible data structures are considered for the matching algorithm. This querying

is a two-step process, as the database is first searched for a really close match and if none is found a

more general query is constructed. For the first query an exact match of moContentType, mo-

DataStructureType is required, whilst for the second one only the moDataStructureType

has to match. After fetching that list of data structures from the database the

RDFSearchSpaceManager passes it on to the DataStructureComparisonTools where

the internal compare methods of the data structures are called in order to acquire a match score. All

data structures with a match score beyond a given THRESHOLDMATCH are then returned to the

RDFSearchSpaceManager.

The last adjustment that was necessary for the search process to work was the resemblance of the

clsPair which was part of the original search space and described in chapter 4.3.1. The process

which was described until now fetched all data structures that met a certain match score regarding a

specific data structure that was passed to the search method. Those data structures resemble the

pair.a part of the search space HashMap that was formerly used. The pair.b part of the

clsPair is still missing at that time. As was already mentioned in chapter 4.3.1 a special triple with

the predicate hasInExternalList was introduced to keep the association mapping between the entity

and the associated data structures from the search space. After assembling all data structures with the

associations, they are returned to the decision unit as a search result.

 73

5. Memorization Process

The last step towards a proactively experience gaining agent is the memorization process. In chapter

2.3 several simulation environments and their memory management approaches were introduced. The

following chapter covers the approach that was chosen to be implemented into SiMA. The memoriza-

tion process itself consists of two steps. First perceived events have to be stored into a temporary

memory from which, after some time (which has to be defined in this work), relevant information is

moved to the long-term memory. As described in chapter 4.2 the two main data structures of this

process are the word-presentation-mesh (representing an image) and the act. In the following chapter

the concepts of collecting images and constructing an act are covered.

5.1 Concepts of the Memorization Process

In [Zei10, pp. 58–59] a distinction between perceived images and template images is discussed.

Perceived images represent the perceived environmental, bodily and homeostatic state and can be seen

as some sort of snapshot of the external and internal system state. Template images are mentally

created from perceived images and represent patterns for new images. Images are formed from thing-

presentation-meshes, thing-presentations and other template images that occur at the same time and

have therefore a temporal association between them (shown in Figure 5.1). If a perceived image partly

or fully matches a template images the template image is retrieved for further processing. In case that

two images match the image with the highest matching grade is selected. The matching process can

be seen in Figure 5.1, where Template Image 1 offers two matches and is therefore selected over

Template Image 2 which has only one match to offer.

Since the first definitions of template images and perceived images the concept of a general image has

been implemented in SiMA. Instead of implementing a special data structure in the primary process

the thing-presentation-mesh is used to represent simultaneousness between entities. Emotions can only

be attached to images in order to tell the agent how he felt in that specific situation. For the construction

of acts the word-presentation-mesh of the image is used and associated to acts by the usage of second-

ary process associations.

As images can only contain a snapshot of the actual situation and do not track any changes [Zei10, pp.

58–59], the concept of an act was defined, but never used in SiMA. In the original concept acts connect

Memorization Process

 74

single images to a sequence, by the use of word-presentations [Zei10, pp. 58–59]. The word-presen-

tation is necessary in order to map actions and sequences to a period of time. Figure 5.2 shows the

connection between acts, word-presentations and template images in the original concept.

TPM1

TPM2

TPM3

Perceptual

Image

TPM1

TPM2

TPM5

TPM1

TPM4

TPM5

match

match

match

retrieve

TPM1

TPM2

TPM3

temporal association

temporal association

temporal association

TPM...Thing-Presentation-Mesh

Template Image1

Template Image2

Figure 5.1: Image creation and retrieval based on [Zei10, pp. 57-59]

From Template Image 1 to Template Image 2 the TPM3 has been removed. The two word-presenta-

tions are linked by a temporal relation, enabling the realization of a reference time and an action

relation, defining how the situation in the latter image can be reached from the first one.

TPM1

TPM2

TPM5

Template Image 1

TPM1

TPM2

Template Image 2

WP1 WP2

Temporal Relation

Action Relation
Act

Sequence

Time

TPM...Thing-Presentation-Mesh

WP...Word-Presentation

Figure 5.2: Template Images forming an Act based on [Zei10, p. 61]

Memorization Process

 75

In the actual implementation acts are implemented only in the secondary process and consist of word-

presentation-meshes which are connected to the act and between each other. The word-presentation-

mesh in this case represents the secondary process structure of the image. The connection between the

word-presentation-meshes implies the temporal appearance of the images, while the connection to the

act states that the image is generally part of the sequence the act describes. In order to describe the

function of the associations so called predicates are attached to them. To the temporal association

between images a predicate with the value “hasNext” is attached. Between the act and the image a

predicate with the value “hasSuper” is used.

5.2 Memorizing Experiences

After implementing all the prerequisites, the following chapter finally deals with the memorization

process for episodic memories itself. In order to answer the research questions Research question 2:

“How shall the agent decide which memories are to be kept?” and Research question 3a: “When shall

the act generation be triggered?” a short evaluation of existing memory concepts with respect to the

applicability to the research questions is presented in the following.

In CHREST the memory content is generated at start up [SL07, p. 2]. To simulate different levels of

chess mastery time and brain capacity limits can be set to the acquisition of chunks, while scanning

through a large database of chess positions from master-level games. During this process often reoc-

curring patterns are transformed into templates, thereby forming the contents of the CHREST long-

term memory. Even though the general concepts of CHREST differ greatly from those used in SiMA,

the idea of “strengthening” memories by repeated perception is one that could be adopted in SiMA as

well.

The original BDI architecture has no learning mechanisms implemented, however, there are some

attempts to implement learning in BDI based systems like for example dMars, which was introduced

in chapter 2.3.5. This BDI implementation uses induction on logical decision trees in combination

with Lisp files. ACT-R uses production compilation to add new information to its memory [CTN09,

p. 109]. Production compilation basically tries to merge two production rules into one rule [ABB+04].

Both architectures use approaches that are so different to SiMA, that any comparison or application

of them is pointless.

ICARUS and SOAR both acquire new knowledge by experiencing impasses [CTN09, p. 111]. In IC-

ARUS a new skill is learned, if the selected action can be successfully executed. SOAR offers more

complex memory mechanisms, providing chunking, reinforcement learning, episodic memory and se-

mantic memory [CTN09, p. 107]. If an impasse was detected a goal or subgoal is terminated and

through chunking mechanisms new production rules are added to the memory. Failing and succeeding

leads to rewards or punishments in SOAR, thereby enabling the system to perform reinforcement

learning. The described approaches point to other interesting options for SiMA, even though learning

mechanisms are not in the current scope of this work. The usage of a goal based approach is probably

not only successful when used as a trigger for learning, but may also be used for triggering episodic

memorization or when it comes to evaluating the importance of memories at hand. The reward and

punishment approach in turn may be translated to the SiMA emotional system by declaring that a

Memorization Process

 76

positive emotion may be treated like a reward, whilst negative emotions correspond to a punishment.

These emotions and their strength may be used to consider the importance of memories or to indicate

that something happened that is worth remembering.

5.2.1 Memorization Trigger

As already discussed the agent perceives images which have to be stored until it can be decided if they

are of any interest for saving them to the long-term memory. Therefore, some sort of buffer for per-

ceived images has to be created. To that buffer all perceived images are saved until the system decides

that their importance for the future can be calculated. A crucial question when implementing a mem-

orization process is Research question 3a:“When can the agent evaluate which image is of importance

to him?”. To answer that question one has to evaluate several possible approaches with respect to their

applicability to the project at hand:

• Create an act all n minutes: Checking after a predefined amount of time, whether valuable

information was gathered has the advantage that the condition is very easy to check. However,

it seems to be a rather unfunded approach, as memorization in general happens on purpose by

learning or by some sort of trigger. For example in [DFZB09, pp. 84–85] the possible

importance of emotions for learning is discussed.

• Create an act if high emotions are experienced: Experiencing high emotions is a good

indicator that something memorable has happened. Emotions may be utilized as a signal

whether something is “good” or “bad” for the agent. Depending whether the emotion is

pleasant or unpleasant the agent could take the same actions again or try another solution in

the future. As SiMA utilizes the concept of emotions, this would be a promising approach,

which is similar to the reinforcement learning approach used in SOAR.

• Create an act if a goal was reached: As already discussed in the beginning of this chapter,

goals are often utilized to mark special events or experiences (like for example in SOAR or

ICARUS). Besides emotions agents keep track of their goals and needs. Therefore the most

reliable trigger for SiMA seems to recapitulate the experienced situations after a goal was

reached. This enables the agent to save only those images to an act that are really related to it.

For example, if the agent was hungry, but had to go to the toilet between finding some food

and realizing he is hungry, the toilet sequence would not be of interest for an act about finding

some food. (Note that going to the toilet could be another goal and form a new act.). For those

reasons the memorization process created in this work will build an act every time a goal was

reached.

5.2.2 Filtering the Memory

Even though memory for agent systems in general is a much researched topic (see chapter 2.3 for

examples), many systems neglect the topic of memory consolidation. According to [SWT12, p. 1008]

most systems are developed to store linearly ordered traces of experiences, thereby excluding memory

consolidation processes, which transfer and reorganize the contents of the memory, as well as forget-

ting mechanisms, which discard irrelevant information. It should also be mentioned that the process

of storing memories is very dependent on the concrete implementation and also the application area

Memorization Process

 77

of a system. For example, there is a huge difference between systems like CHREST (see chapter 2.3.1)

which is based on chunks and mainly used in the area of chess and a system like SiMA, which is

mainly focused on drives and emotional states. In the following some approaches for deciding the

importance of an individual image, in order to answer Research question 2: “How shall the agent

decide which memories are to be kept?”, are discussed.

• Discard images that are equal to their predecessor: If no change of situation was

experienced he agent can safely drop the perceived image, as no information can be lost.

• Discard images between two images if the information of the surrounding images is

sufficient: If three images in succession are perceived and the image in between holds no

information that cannot be gained through the other two images, the image can be discarded.

For example, if the agent is far away from an object in one image, nearer in the next and close

in the third image, the agent could as well reason from the information that he was far away

first and close later on, that he has moved towards the object.

• Discard images (or even whole acts) if the emotional importance is too low: Depending

on an agent's personality it could be possible to define certain thresholds for emotions or drives

that decide whether an image is important. For example, if the agent prefers to solve a rivalry

by evading it and he had to act in an opposite way, he may decide not to remember that event

if it made him feel unhappy. Another personality would maybe remember that event, just

because it made him unhappy in order to evade such a situation for the future. Again, this

approach is similar to reinforcement learning approaches like they are used in SOAR.

• Discard images (or even whole acts) if the general importance is too low: Inspired by the

approach which is used by CHREST, acts which have high similarities with other experiences

are probably of more “daily relevance“ than other situations which were experienced only

once. For this approach it is necessary to track the age of an experience in order to only delete

singular events that happened a long time ago. Otherwise new experiences would be deleted

before they could prove their relevance.

• Refactor acts that are similar to existing ones: If a similar act has already been recorded, it

should be considered to introduce a structure that models only the new information. Like for

example thinking about a cake and remembering “I ate one yesterday and the day before

yesterday.” and “I took it from the fridge.”. Whilst yesterday and the day before yesterday are

different information, the position of the cake was always the same.

5.2.3 Creating an act

After successfully deciding which image is of importance to the experienced situation an act can be

built from the images remaining from the filtering process. For now the only possible filtering mech-

anism is to sort out images containing no change to their predecessor. This is the most obvious, but

also the most important step for a successful memorization process. It helps to keep the memory con-

tents in a reasonable size and by that also reduces the time that is needed for searching through expe-

riences. Further optimizations need additional adoptions to the data structures which is out of scope

for this work. For example, it is possible to filter based on emotion intensity or to check whether a

similar experience with higher satisfaction values has already been stored. In that case it should be

Memorization Process

 78

possible to enrich the actually stored information by additional information instead of creating a totally

new one.

IMG 1

IMG 2

…

IMG n

PERCEIVED IMAGES

BUFFER

add to

list

IMG 1

IMG n

add to

list

ACT

„EAT CAKE“

add image to act

IMG 1 IMG 5 IMG 9 IMG n

hasSuper hasSuper hasSuper hasSuper

hasNext hasNexthasNext

retrieve

Figure 5.3: Creation of an act

Finally, after sorting out unnecessary images the act can be assembled. In Figure 5.3 the whole process

of act creation starting from perceiving the first image until the assembly of the images to form an act

is presented. The first step is the agent perceiving some situation and to form a new goal. In case of

Figure 5.3 he wants to eat the cake he just saw. He saves the perceived image to a buffer that serves

as a small short-term memory for perceived images. In the further progress many images are perceived

and stored in that buffer, until the agent realizes he just managed to reach its goal. Then an evaluation

of the last experiences takes place. Unneeded images are sorted out and are added to a newly created

empty act. First all images get a temporal association with the predicate hasNext assigned according

Memorization Process

 79

to their appearance in the buffer. After that all images get a hierarchical association with the predicate

hasSuper in order to link them to the act.

After the assembly of the images in an act the conversion process which was introduced in chapter 4.1

is put to work by converting the act and its images into a triple representation. This representation is

then stored in the newly integrated RDF triple store which was discussed in chapter 3. Chapter 5.3

will cover the implementation of the concepts which were presented in this chapter.

5.3 Implementation of the Episodic Memory

After successfully introducing a new RDF triple store into SiMA the last step towards memorizing

experiences was the implementation of the memorization process. In Figure 4.18 a class diagram of

the memory package is shown.

This package contains all functions which are conceptually close to the memory or search space. Even

though the conversion of the data structures itself was placed in a separate package the logic of the

data store migration was placed in this package into the class RDFSearchSpaceCreator. Running

this class will result in a new RDF database filled with all the data which was migrated from the

original Frames file, which was used to manage the mock-up memory until now. Furthermore this

package contains the implementation of the interface itfSearchSpaceAccess which is used by

SiMA to search through its knowledge base. As this knowledge base has been replaced by an RDF

triple store during the course of this work a new implementation of this interface was necessary. Fi-

nally the memorization process is located in this package. As can be seen in Figure 4.18 this class is

accessed by some goal related action codelets from the project ARSDecisionUnit. The relation

between the projects can also be seen from the package diagram in Figure 3.14. Further information

on the role of codelets for the memorization process is provided later in this chapter.

5.3.1 Memorizing Experiences

For memorizing experiences there is only one class in addition to the already introduced classes of the

conversion process. A class diagram representation of the class MemorizationProcess can be

seen in Figure 4.18. As was already mentioned this class has dependencies on two of the action

codelets in the decision unit. Codelets are independent pieces of code that are activated if a certain

condition is met. In SiMA they are used to react to situations like the end of a goal or the upcoming

feeling of panic. The memorization process makes use of those codelets to get the actually perceived

image and to start the act construction if the current goal was reached. The perceived image is sent to

the memorization process by the codelet clsAC_EXECUTE_EXTERNAL_ACTION and if the cur-

rent goal is reached the memorization process is informed by the clsCC_END_OF_ACT codelet.

For that purpose the static MemorizationProcess variables CURRENT_GOAL_REACHED and

CURRENT_GOAL are set by the codelet if it realizes its conditions are met. In Figure 5.4 and Figure

5.5 the algorithm for saving experiences is presented.

Memorization Process

 80

Every time a new image is perceived the clsAC_EXECUTE_EXTERNAL_ACTION codelet passes

it to the method savePerceivedImageToDatabase(I), the image is saved and its IRI is stored

to a buffer. After that it is checked whether the CURRENT_GOAL_REACHED variable was set to true

by the clsCC_END_OF_ACT codelet. If that is the case the act creation is started. First the new act

is labelled with an eAction that matches the sequence plot and a new DSID is generated for it.

Currently moContentType and moContent are both set to the eDataType “ACT”. De-

bugInfo and moDSInstance_ID are not needed by the simulation, but may be set optionally.

After that for all perceived images the necessary links of type clsAssociationSecondary are

created. For the association between clsAct and the clsWordPresentationMesh representing

the image the constant ePredicate.HASSUPER has to be used. For linking the images between

each other the ePredicate.HASNEXT is used. For both associations the mrWeight is currently

statically set to “1.0”. After adding the created associations to the images the act is linked to the

images as well. Finally the conversion of the act and all images to TemporaryContainerTri-

ples can be started and the triples are saved in the data store.

1:

2:

3:

4:

savePerceivedImage(I)

imageIRIBuffer.add(I.IRI)

if (CURRENT_GOAL_REACHED) {

 createAct()

end if

Figure 5.4: Algorithm - memorizePerceivedImage(I)

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

act := createNewBasicAct()

for i := 0 to imageIRIBuffer.size – 2 step 1 do

 i1 := getFromDatabase(imageIRIBuffer[i])

 i2 := getFromDatabase(imageIRIBuffer[i+1])

 link1 := createAssociationSecondary(i1, i2)

 link2 := createAssociationSecondary(i1, act)

 i1.addExternalAssociation(link1)

 i1.addExternalAssociation(link2)

 act.addAssociatedContent(i1)

end for

convertAndSaveTriples()

saveTriples()

Figure 5.5: Algorithm - createAct()

Memorization Process

 81

What might catch attention in this approach is that the filtering of images is already done before the

final goal is reached by the agent, which is in contrast to the original concept which was presented in

chapter 5.2. The main reason for this is, that at the moment the filtering process does not need infor-

mation about the act or following images in order to decide which images may be disposed. As was

covered in chapter 5.2 the only filtering that is possible for now is to check whether any change has

happened between two perceived images, which can be safely done before putting the perceived image

to the image buffer.

Another change that was necessary to the original concept is that not the perceived images are kept in

this buffer, but only an IRI is kept in a list. This is a workaround and should be changed in future

versions of the memorization process. The main reason for this workaround is the fact that the per-

ceived image passed by the codelets is always the same Java instance with changed values. Therefore,

putting the images in a list would result in a list containing the last perceived image several times. As

it is out of scope for this work to make any changes to the perception processes for now the perceived

images are saved right after they passed the filtering process. Only their IRI is stored in the buffer,

which is enough to construct the act later on. Even though this solution is for the moment actually

better than keeping all the images in the buffer and therefore use up more working memory, this is no

permanent solution. Reason for this is, that many improved filtering processes would need to use all

perceived images between forming a goal and reaching it to decide which images are of importance.

However, until a more sophisticated mechanism is implemented this solution works without any draw-

backs.

Resulting from this workaround another problem arises, namely the possibility that the simulation

process is interrupted before an act is actually created. Therefore images that are not connected to an

act are supplemented with the mark isBufferObject “true”. This enables the memory process to

remove such unwanted content. The time that was chosen to check for remainders is after saving an

act. If the current act was saved the perceived images that were linked to that act are stripped off the

isBufferObject triple. Then all images still having such a mark are completely removed from

the database.

It is possible to load the saved acts back into the simulation by using the same methods, which were

used by the conversion process (described in chapter 4.3). However a specific usage of the saved acts

was not implemented during this work as this would outreach the scope of one work.

 82

6. Simulation

During this work the first steps towards proactive experience gaining in SiMA were taken. The first

part of this work was to integrate an RDF database into the existing SiMA project and to migrate the

old knowledge base into it. This included the implementation of a conversion procedure for the old

search space structure which is defined by a Protégé Frames file. In order to prove the functionality of

the conversion process a test scenario will be introduced and run with both data stores. The conversion

may be considered to be successful, if the agent takes the same actions in both scenarios. The second

part of this work was the implementation of a rudimentary memorization process. As it is at the

moment not possible to test the impact of those experiences on the agent’s behaviour, the resulting act

will be loaded and analysed in a graph representation only.

6.1 Test Environment

In order to test the newly implemented functions it is necessary to run tests in some simulation envi-

ronment. For this purpose a basic use case with limited complexity is chosen to prove the correct

behaviour of the agent. During execution of the use case the following objectives have to be fulfilled:

1. The functionality of the new RDF database as a knowledge base has to be verified.

2. It has to be shown that the migration from the old file-based knowledge base to the new RDF

database was performed correctly.

3. Newly experienced episodic memories shall be saved to the RDF database.

4. In a new run the simulation environment shall be able to access the previously saved

memories.

To test all of the listed objectives two separate tests with the same use case are necessary. The sepa-

ration into two test runs shall ensure that the test results for the two main topics, namely correct im-

plementation of the declarative semantic memory and the first rudimentary episodic memory, are not

influenced by possible flaws of the other one. List points 1 and 2 can be assigned to testing the declar-

ative semantic memory and thereby form test case 1. The last two listings form test case 2 and cover

those parts of this work which are related to the episodic memory.

To execute the above mentioned use case the multi-agent toolkit MASON is utilized. MASON is a

simulation environment written in Java and was developed by the Georg MASON University [Lan10].

In Figure 6.1 an example of the used simulation environment and use case at start-up is presented. The

framework provides a 2D-environment, a 2D-physics engine and supports multi-agent systems. It is

Simulation

 83

possible to step through the simulation, which will be used to compare the agent´s state at specific

steps with the two knowledge bases. The implementation of the simulation environment and the sce-

nario set-up were not part of this work, an already existing scenario with the name “UC1 - Standard

scenario (Eat) minimalversion” is used.

Figure 6.1: MASON Simulation Environment at Start

The scenario setup at start can be seen in Figure 6.1. The environment is surrounded by walls that

mark the world boundaries, which the agent cannot pass. The green creature, called Adam, is the active

agent, driven by a decision unit, whose actions are of interest for the test outcome. The agent tries to

satisfy his homeostatic demands by roaming through the world, searching for energy sources while

staying away from dangerous situations. The red creature is referred to as Bodo and its purpose is to

bring in some contradictory drives to the agent´s basic bodily needs like for example consuming en-

ergy sources. In addition to the agents other entities may exist in a scenario. Example for entities are

energy sources or obstacles that have to be overcome in order to reach the agent´s goals. The agent

owns some sensors and actuators which enable him to interact with his world. He is able to perform a

number of actions of which the relevant ones for the test cases are described in Table 6-1. Each action

consumes a certain amount of the agent´s energy, thereby generating an ever increasing need of find-

ing new energy sources. The currently performed action of the agent is indicated by showing one of

the symbols from Table 6-1 next to the agent.

Simulation

 84

Both agents have a certain sensor range, which is marked by three blue half circles surrounding the

agent. They mark how far away the perceived objects are in relation to the agent and there is also a

distinction between right and left side of the agent.

 In this scenario Bodo is not supposed to move, he will only stand near the food source in order to

awake associations in Adams decision process. For example, it is possible for a hungry agent that

perceives a cake and Bodo to ignore the other agent and eat the cake alone, or share the cake with him.

In other cases which depend on the agents prior memories it is possible that it withdraws from the

cake totally, as he is too afraid to get too close to the red agent. In Figure 6.1 an energy source “CAKE”

which is located at the left side of the agent in a medium distance to it can be seen.

Symbol in Simulation Environment Description

Actions “MOVE_LEFT” and “MOVE_RIGHT”

Indicate that the agent is currently moving to his left or right side. Those actions are usually

performed to reach a certain entity or simply to roam through the environment in order to find

objects that will satisfy the current needs of the agent.

Actions “MOVE_FORWARD” and “MOVE_BACKWARD”

Indicate that the agent is currently moving forward or backward. As before, those actions are

performed to reach a certain entity or simply to roam through the environment in order to find

objects that will satisfy the current needs of the agent.

Action “EAT”

Indicates that the agent is currently nourishing some food source. This action is performed to

satisfy hunger and fill the agent´s energy sources.

Action “BEAT”

Indicates that the agent punches some other agent. If the agent feels some sort of aggression

against another agent, it is possible that the agent beats the other agent, provided that no

repression of the aggression takes place.

Table 6-1: Agent action symbols for use case UC1 - Standard scenario (Eat) minimalversion

When the scenario is started the agent first moves to the left and forward in order to reach the cake

which is at start in a medium distance on his left side and therefore already perceived at scenario start-

up. He then nourishes the cake and starts to roam around in the environment in search for energy

sources. His final move is to beat Bodo. It is noteworthy that the simulation itself will never terminate,

however, at the point of beating Bodo the agent stops moving.

6.2 Test Case 1 – Declarative Lexical Memory

To show that the migration of the file-based knowledge base is correctly performed, an execution of

the previously introduced use case with both the old and the new implementation is necessary. If the

Simulation

 85

agent performs the same actions in the same environmental situation, the conversion may be consid-

ered to be successful. In order to provide comparable test results, all tests have been run on the same

personal computer. The exact hardware setup can be found in Table 6-2.

System Setup

Operating System Windows 7 Professional

System type 64 Bit - Operating System

Processor Intel® Core™ i7-3930K CPU @ 3.20GHz 3.20 GHz

Random Access Memory (RAM) 16,0 GB

Table 6-2: Hardware setup for simulation runs

Every simulation run can be divided into three phases which have to be initiated by the tester. As the

performance of those phases is connected to the accessed data store for each test run in test case 1 the

time will be measured and presented. The phases of a simulation run are defined as follows:

1. Start simulation: To initiate this phase the tester has to start the Java application. This phase

ends when the scenario selection screen is shown to the tester.

2. Scenario initialization: In order to start this phase a certain scenario from the scenario selection

screen has to be selected and started. It ends when the selected use case has been loaded and

the scenario setup with both agents appears on the screen (see Figure 6.1 for an example).

3. Scenario run: After the scenario has been initialized by the scenario environment, the play

scenario button has to be hit. After this the real simulation is running. As already stated earlier

in this chapter there is no real end to this simulation phase. Therefore the end of this phase is

defined as the point at which Adam beats Bodo and stops moving forever.

6.2.1 Simulation run with original memory

The first step in test case 1 is to run the simulation of use case UC1 - Standard scenario (Eat) mini-

malversion in order to collect data for comparing the newly implemented features to the former im-

plementation. Table 6-3 shows the time each of the formerly defined phases needed to finish. As can

be seen the overall simulation run takes about 2 minutes and 5 seconds.

Phase Time

Start simulation 1s 43ms

Scenario initialization 20s

Scenario run 1m 44s

Table 6-3: Duration of simulation phases with original memory

In Table 6-1 the agent´s actions during the simulation run phase are listed. They will be used as a

reference to check whether the new implementation works correctly, meaning that the agents performs

the same actions at the same step. In the table the term “area” will be used in order to refer to the blue

Simulation

 86

sensor range area around the agent. During the simulation this area changes its angle to indicate the

direction to which the agent is currently looking or moving. To describe the actual action symbol

which is shown next to the agent the term symbol will be used. In Figure 6.2 the terminology for the

further simulation description is depicted. In Table 6-4 the movement of the area are tracked) as well

as a change of symbol is tracked.

Figure 6.2: Terminology for simulation run description

In Table 6-4 every change of action symbol or movement of the sensor range area is presented. For a

TURN_LEFT of the area the short abbreviation TLA will be used for the TURN_RIGHT of an area

TRA will be written.

TLA TLS TRA TRS MFS MFA EAT BEAT

10, 20, 30, 40, 50,
90, 100, 250, 260,
270, 280, 260, 270,
280, 320, 330, 370,
380, 420, 430, 470,
480, 520, 530, 570,
580, 620, 630, 670,
680

11-60,
91-109,
251-290,
321-340,
371-390,
431-440,
471-490,
521-540,
571-590,
620-640,
671-690

230, 240, 250, 290,
300, 310, 340, 350,
360, 390, 391, 400,
410, 440, 450, 460,
490, 491, 500, 510,
540, 550, 560, 590,
600, 610, 640, 650,
660, 690, 700, 710,
720, 730, 740, 750,
760, 770, 780, 790,
800, 810, 820, 830,
840, 850

231-250,
291-320,
341-370,
391-430,
441-470,
491-520,
541-570,
591-610,
641-670,
691-850,
881-890,
911-930

61-90,
110-120,
861-880,
891-910,
931-960

62-89 121-230 961

Table 6-4: Simulation run with original memory – sensor area movement and action symbol changes

Simulation

 87

To indicate a change of symbol to TURN_LEFT and TURN_RIGHT the abbreviations TLS and TRS

will be used. The action EAT will be written down as it is, whilst MOVE_FORWARD will be MFA

and MFS for the area respectively the symbol. The numbers in the table mark the respective step in

which a symbol is changed or an area movement takes place.

6.2.2 Simulation run with RDF database

After running the simulation with the original memory the simulation settings were changed to use the

new RDF database. In order to run the simulation the RDF database first has to be filled with data

from the original memory. Therefore the first step before running the simulation is to fill the RDF

database with information.

As mentioned in chapter 4.3 the class RDFSearchSpaceCreator is utilized in order to convert

the original data into a triple representation. The conversion of the knowledge base for UC1 - Standard

scenario (Eat) minimalversion itself takes 7 minutes and 53 seconds, saving the constructed triples to

the database takes another 37 seconds. Converting the original file-based memory into the Sesame

RDF triple store results in 3017298 triples. As was already mentioned in chapter 4.3 it was necessary

to fully transform the data provided by the original memory parsing method from SiMA. This ap-

proach results in a total of 229537 distinct data structures. Whereas 37566 of them are drive-meshes,

13295 thing-presentation-meshes, 168 word-presentation-meshes, 14277 thing-presentations, 156

word-presentation, 14 affects, 56 emotions, 4 feelings and 164001 are of the data structure type asso-

ciation. After the database is filled with the needed information, the simulation test can be started.

In Table 6-5 the amount of time that is needed to complete the three simulation phases for the use case

UC1 - Standard scenario (Eat) minimalversion with the new RDF database is presented. While the

simulation start phase is, due to its short duration, not particularly slower, the overall duration of the

simulation is about 13 times slower than the original memory implementation.

Phase Time

Start simulation 1s 51ms

Scenario initialization 5m 30s

Scenario run 21m 57s

Table 6-5: Duration of simulation phases with RDF memory

In order to track down the main cause of the performance problems the third party tool VisualVM

[VISUAL] was utilized. VisualVM was created for analysing Java applications for analysing applica-

tion performance, memory consumption, garbage collection and monitor application threads. In Figure

6.3 the profiling of a simulation run is shown. Noteworthy are the two methods java.net.Sock-

etInputStream.socketRead with 13.4% self-time and org.openrdf.query.par-

ser.sparql.ast.SyntaxTreeBuilderTokenManager.jjMoveNfa with 5.1% self-

time. A socket is a communication endpoint between two machines [SOCK] and is used by the RDF

Simulation

 88

framework to communicate with the database. The method call on the SyntaxTreeBuilderTo-

kenManager, which takes the sixth place in the CPU usage ranking and is part of the Sesame Java

framework, is another point of interest when tracking down the performance problems.

The analysis results from VisualVM indicate that either the amount of accesses to the database is too

much or the sesame database access methods are implemented in a rather inefficient way. Adding a

counter to the database access methods resulted in approximately 13000000 database accesses during

the simulation run. This would be nearly 600000 calls per minute and could be therefore easily reduced

by having some caching mechanisms implemented, as in such a short time no drastic changes to the

memory can happen. The large number of accesses can be explained by the fact that all existing data

structures of a searched type including their associations are loaded and rated during the search pro-

cess. This means that originating from its root node every further object that is linked to the root

element via its associations has to be traversed and loaded separately, again loading all of its associa-

tions.

Figure 6.3: CPU usage analysis in VisualVM

In order to find more detailed information about the cause of the performance decrease several possible

causes have to be tested in more depth. First of all it has to be tested how much performance can be

gained by finding a more efficient way to query the database. Not all queries are equally costly so

some research on the exact cost of the individual queries may lead to a great performance gain. Con-

sidering the huge amount of database accesses, even slight improvements could have a great impact

on the overall performance. Furthermore the implementation of partial loading in order to load only

the necessary parts of an object in the search process would greatly improve performance. Another

point for improvement could be to solve the problems causing current data overhead. As discussed in

chapter 4.3 the original data was converted without optimizations and the database therefore over-

loaded. It is possible that the database improves on performance if the amount of triples that have to

be searched through can be reduced. If that is the case it is maybe possible to split up into several

database files for the different memory types (see chapter 2.3). However, for real long time runs this

is probably still no satisfying solution. The last possibility is that the RDF framework itself is too slow

to be used in such an excessive way. In that case the only solution would be to reduce the amount of

database accesses by caching or other strategies.

Simulation

 89

6.2.3 Results

In this section the final results of comparing the new RDF database implementation to the original

approach, which used to parse a file into an in-memory HashMap are presented. Table 6-6 shows the

performance decrease between the two simulation runs. As can be seen from comparing the perfor-

mance of the original implementation in Table 6-3 to the performance of the new implementation

using an RDF database, the new implementation causes a noticeable slowdown of the simulation per-

formance.

Phase Performance Decrease [%] Performance Decrease [time] Times slower

Start simulation 0.7 % 10 ms 1.007

Scenario initialization 1550% 5 min 10 sec 16.5

Scenario run 1166% 20 min 13 sec 12.663

Table 6-6: Performance Decrease between the memory implementations

Due to the fact that the start simulation phase slowed down by some milliseconds only, it may be

considered to be negligible, as such a difference may result from minor measurement inaccuracies as

well. However the performance of the new system in the other two phases shows that many improve-

ments will be necessary until the new system can be seriously used. The scenario initialization phase

is now 4 minutes and 10 seconds slower than before, which means a decrease of performance by

1550%. For the scenario run phase it is a decrease of 1166% or 20 minutes and 13 seconds and the

overall simulation run is now around 13 times slower than it used to be.

Test Case 1 shows that the new approach is fulfilling objective 1 and 2 (see chapter 6.1). However the

outcome of the first test with an RDF database leaves space for improvement. As pointed out in the

previous sub-chapter accessing the RDF database seems to be very costly when it comes to CPU usage.

It also points out the need for further tests in order to give an informed statement about the usability

of RDF for SiMA. Some possible approaches were pointed out in chapter 6.2.2.

6.3 Test Case 2 – Episodic Memory

The following chapter presents the results of the memorization process which was developed during

this work. As discussed in chapter 5.3 only the experience saving and the functionality to load it was

implemented. Until now it is not possible for the agent to use the experiences he has gained. The

reason for this is that too many functionalities of the agent are affected by such a change and would

be by far out of scope for this work. In order to test and analyse the results a graph visualization was

implemented to the ARSDatabase project. For the act saving simulation again UC1 - Standard scenario

(Eat) minimalversion, which is described in chapter 6.1, will be used.

Simulation

 90

6.3.1 Simulation run with active memorization process

The first step in test case 2 is to run the simulation scenario with an active memorization process.

Every time the clsAC_EXECUTE_EXTERNAL_ACTION codelet sends a perceived image to the

memorization unit this image is saved to the database and marked with the triple s=<IRI>

p=http://ars.org/isBufferObject o="true". After saving the perceived image its IRI

is stored in a buffer. After storing the image to the database and the buffer, it is checked whether the

current goal was reached during the perception of this image. Information about the goal reached state

is provided by the codelet clsCC_END_OF_ACT. If this is the case, the act construction is started, by

constructing first the basic act and then filtering through all the perceived images. The remaining

images are then put in occurrence order by connecting them with associations. Finally, they are at-

tached to the act by further associations and then the act and the new associations are saved to the

database. In a final step the triples marking the images as buffer objects are removed from the database.

After the marker has been removed it is possible to check whether both objectives of test case 2 have

been fulfilled.

[s=http://ars.org/ACT_3433276;p=http://ars.org/isBasicObject;o="true"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasMoContentType;o="ACT"]

[s=http://ars.org/ACT_3433276;p=http://www.w3.org/1999/02/22-rdf-syntax-ns#type;o="ACT"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasDebugInfo;o="ACT"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasMoDS_ID;o="1055"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasMoDSInstance_ID;o="0"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasMoContent;o="ACT"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasStrAction;o="EAT"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasAssociatedContent;

 o=http://ars.org/ENVIRONMENTALIMAGE_1000_0_1]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasAssociatedContent;

 o=http://ars.org/ENVIRONMENTALIMAGE_1001_0_2]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasAssociatedContent;

 o=http://ars.org/ENVIRONMENTALIMAGE_1002_0_3]

Figure 6.4: Act representation in the RDF database

As it is currently not possible to prove that the memory can be used by SiMA, only the correct saving

can be validated. For this reason all the triples that are generated by the memorization process are

stored in a separate test database. By doing so it is guaranteed that all analysed data was produced by

the process only. After running the use case with an active memorization process this separate test

database contains one act consisting of 54 images. The whole act construct results in 13858 triples

when converting and saving it to the RDF database. Saving the act to the RDF database results in a

total of 1005 distinct new data structures, whereas 34 of them are drive-meshes, 30 thing-presentation-

meshes, 74 word-presentation-meshes, 47 thing-presentations, 59 word-presentations, 6 emotions, 755

are of the data structure type association and finally there is the one act that forms the root node for

all of those data structures.

Simulation

 91

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasAssociatedContent;

 o=http://ars.org/ENVIRONMENTALIMAGE_1000_0_1]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_1;

 p=http://ars.org/hasAssociation;o=http://ars.org/ASSOCIATIONSEC_3434189]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_1;

 p=http://ars.org/InternalAssociation;o=http://ars.org/ASSOCIATIONSEC_3434189]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_1;

 p=http://ars.org/hasAssociation;o=http://ars.org/ASSOCIATIONSEC_3434190]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_1;

 p=http://ars.org/InternalAssociation;o=http://ars.org/ASSOCIATIONSEC_3434190]

[s=http://ars.org/ASSOCIATIONSEC_3434189;p=http://ars.org/PREDICATE;o="HASNEXT"]

[s=http://ars.org/ASSOCIATIONSEC_3434190;p=http://ars.org/PREDICATE;o="HASSUPER"]

[s=http://ars.org/ACT_3433276;p=http://ars.org/hasAssociatedContent;

 o=http://ars.org/ENVIRONMENTALIMAGE_1000_0_2]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_2;

 p=http://ars.org/hasAssociation;o=http://ars.org/ASSOCIATIONSEC_3434191]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_2;

 p=http://ars.org/InternalAssociation;o=http://ars.org/ASSOCIATIONSEC_3434191]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_2;

 p=http://ars.org/hasAssociation;o=http://ars.org/ASSOCIATIONSEC_3434192]

[s=http://ars.org/ENVIRONMENTALIMAGE_1000_0_2;

 p=http://ars.org/InternalAssociation;o=http://ars.org/ASSOCIATIONSEC_3434192]

[s=http://ars.org/ASSOCIATIONSEC_3434191;p=http://ars.org/PREDICATE;o="HASNEXT"]

[s=http://ars.org/ASSOCIATIONSEC_3434192;p=http://ars.org/PREDICATE;o="HASSUPER"]

Figure 6.5: Image links to act in the RDF database

In this work a basic filtering process was considered and implemented (see chapter 5.3). As was ex-

plained in that chapter the current filter process only includes the removal of duplicate images. How-

ever the current implementation of SiMA does not need such a filtering process for the memory as it

already provides only those perceived images that are different to their predecessor. The current fil-

tering process is therefore unnecessary for the moment, but the existing method could still be extended

by one of the filtering approaches that were suggested in chapter 5.2.2.

In order to validate the correct linking between act and the images as well as the triples containing

information about the act, all contents of the test database are then parsed to a human readable file.

Figure 6.4 shows the triples that represent the act and its link to the images. As can be seen the act has

its attributes set conforming to the intended values which were discussed in chapter 5.2.3. Also the

links to its associated contents are defined correctly. Also the links to its associated contents (marked

by the predicate hasAssociatedContent) are defined correctly, which can be seen exemplary in the last

4 lines of Figure 6.4. All other data structures, like for example the word-presentation-meshes, which

are used to represent the images, have been used in test case 1. Thus, it has already been demonstrated

in chapter 6.2 that they can be stored and used as expected. In Figure 6.5 one can see by example that

all images have internal associations specifying their parent act and their successor image, as it was

Simulation

 92

defined in preliminary work on acts fore SiMA [Zei10, pp. 58–59]. Therefore, objective 3 from chapter

can be considered to be satisfied as far as it is possible to test this requirement in the current imple-

mentation.

isBasicObject

hasMoDSInstance_ID

IMG_9

IMG_4

...

...

...

...

...

...

...

...

...
......

...
...

...

...

...

...

...

...

...

...

IMG_1 IMG_3

IMG_2

WPM

WPM

IMG_5

WPM

...

WPM

WPM

IMG_6

WPM

IMG_8

WPM

IMG_7

WPM

IMG_10

WPM

WPM
IMG_11

IMG_12

WPM

IMG_13

WPM

IMG_14

WPM

IMG_15

WPM

WPM

IMG_17

IMG_16

IMG_18
WPM

IMG_19

WPM

WPM

IMG_20
IMG_21

WPM

IMG_n

WPM

WPM

true

EAT

null

ACT

1055
ACT

ACT

3434876

0

ACT

ACT_3434876

hasStrAction

hasFramesIdentifier

hasMoContentType

type

javahasMoContent

ACT

WPM

hasMoDS_ID

hasDebugInfo

Figure 6.6: InfoVis graph presenting the act and its images

As mentioned in the beginning of this chapter a graph visualization package was introduced into the

ArsDatabase project in order to be able to analyse the saved memory data. This package provides

functions to produce JSON (JavaScript Object Notation) files out of the SiMA data structures or al-

ternatively out of RDF query results. JSON is a data-interchange format which is easy to read for

humans and machines [JSON]. For displaying the JSON file as a graph the JavaScript InfoVis Toolkit

Simulation

 93

[VISU] was used. It is a JavaScript based graph visualization toolkit providing several different graph

visualizations. For the usage with the SiMA data the “ForceDirected” graph type was chosen. It sup-

ports edge directions, which are used to represent the association directions. Additionally, it is possible

to customize the node appearance to represent the different data structure types. Thus providing a

sufficient customizability and an easy producible input format, making the InfoVis library an obvious

choice for the purpose of presenting and validating the results of this work. Figure 6.6 shows the graph

resulting from the memorized act with a node expansion depth of 1. The node expansion depth can be

used to restrict the graph depth. In the implemented JSON generation it is possible to pass certain IRIs,

which will be drawn in the graph even though they exceed the provided graph depth. This is a useful

option if one is only interested in specific information. If due to the graph depth restriction not all

information is presented nodes with the label “…” are drawn to indicate that there exist more nodes

than actually shown.

In order to show that the memory contents can be accessed by the simulation, the newly implemented

database access methods are utilized to fetch contents from the memory. They are then passed to the

visualization toolkit in JSON format to make the results visible for this analysis. For the sake of read-

ability the image labels in the graph do not show their database IRI, the prefix “IMG” and their occur-

rence number is used instead. As can be seen in the graph the final act is linked to its 54 images and

each of them is of the data structure type word-presentation-mesh (WPM). It can also be seen that the

act´s attributes, like the strAction, the moContent and its type are loaded correctly from the

database into the Java application. Figure 6.7 shows IMG_01, which is the first perceived image dur-

ing the simulation run further expanded. Every image has two internal associations of type Associ-

ationSecondary attached, one of them representing the connection to the act, the other one linking

the image to its successor. As discussed in chapter 5 they are marked with the predicates HASSUPER

and HASNEXT, which can be seen in Figure 6.7 as well. This figure also depicts how the data structures

are linked to each other. ACT_3433276 is linked to IMG_1 by having it defined as its associated

content and the image itself is linked to the act by its AssociationSecondary declaring the act

to be its parent data structure. Again the methods which were already validated in test case 1 are

utilized to load the remaining data structures. Therefore, it is implied that the whole act structure can

be loaded correctly and objective 4 is fulfilled.

Simulation

 94

IMG_2
isBufferObject

hasMoDSInstance_ID

true

true

null

ENVIRONMENTALIMAGE

1000 null
WPM

68608

0

ENVIRONMENTALIMAGE

IMG_1

type
java

hasMoContent

ACT_34332769

...

ACT

ASSOCIATIONSEC_3434190

true

HASSUPER

null

1.0

1057

link to act
ASSOCIATIONSEC

3434190

0

ASSOCIATIONSECONDARY

PREDICATE

hasFramesIdentifier

hasMoContentType

hasAssociationWeight

type
hasDebugInfo

hasMoDS_ID

hasMoDSInstance_ID

java

isBasicObject

ASSOCIATIONSEC_3434189

true

HASNEXT

null

1.0
1056

time link
ASSOCIATIONSEC

3434189

0

ASSOCIATIONSECONDARY

type
hasDebugInfo

hasMoDSInstance_ID

java

hasFramesIdentifier

...

WPM

moAssociationElementB

hasMoContentType

hasDebugInfo

hasMoDS_ID

RootElement

LeafElement

RootElement

LeafElement

WPM

moAssociationElementA

moAssociationElementA

moAssociationElementB

hasMoContentType

isBasicObject

isPerceivedObject

hasFramesIdentifier
PREDICATE

hasAssociationWeight

hasMoDS_ID

Figure 6.7: InfoVis graph presenting the image and its act related associations

6.3.2 Results

This section gives a short summary of the results of the simulation runs with the first memorization

process that was ever implemented to SiMA. Focus of this chapter are the fulfilment of the objectives

3 and 4 which were defined in chapter 6.1.

The third objective was to save an episode consisting of several images to the database. This objective

could be tested by querying the database contents after a finished simulation run, showing that the act

and all images with the according links were written to the database (see chapter 6.2.2 for more details)

Simulation

 95

Finally, the fourth objective was to show that it is possible for SiMA to access and load the saved data

again. To show this the act was loaded by the newly implemented database access methods and then

parsed into a JSON file in order to prove that the data can be accessed by the provided methods.

Concluding it can be said that all requirements for test case 2 have been fulfilled. However, it is nec-

essary to integrate the episodic memory to the SiMA decision process to make further statements about

the practicability of the current implementation.

 96

7. Conclusion and Future Work

In this work the first steps towards a proactively experience gaining autonomous agent have been

taken. The file-based knowledge storage has been replaced by an RDF triple store, which enables the

SiMA system and consequently any agent to permanently store information. As a further step the old

knowledge store was migrated in order to preserve the already existing information and thereby the

agents ability to react to its environment and thereby gain new experiences. Based on this, the first

process for memorizing experiences has been implemented into SiMA. In the following the results of

this work will be discussed, followed by an outlook about future tasks.

7.1 Conclusion

In chapter 1.3 the main research question for this work was formulated as: “Which features need to

be implemented, in order to enable SiMA to collect experiences?” and in the course of this work first

answers to this question and the resulting sub-question were found. In the following the findings of

this work shall be discussed and supplemented with first suggestions on how to further improve the

implemented solutions.

The first task that came up with the implementation of a long-term memory in SiMA was the replace-

ment of the old data store solution with a new one, which is able to permanently store newly collected

information. Replacing one knowledge store by another, usually brings up many questions. For exam-

ple the necessity of a change, which was in this special case out of question as the previous solution

simply lacked the functionality of a permanent store. A more complex question was the substitute

itself, which was formulated within research question 4: “Which of the existing database paradigms

are most suited for SiMA?”. In chapter 2.2 the range of options for this decision were presented and

discussed and in chapter 3 an RDF triple store solution was selected. The final decision was based on

preliminary work and some additional research work. After the first implementation of such an ap-

proach a first summary about the chosen solution is possible.

The decision for an RDF triple store introduced many interesting options to SiMA, but also some

intermediate disadvantages and new challenges. One of the reasons to choose an RDF database was

the option to possibly migrate the data easily with an automatic convert and maybe some minor ad-

justments. As pointed out in chapter 4.1 the data resulting from the automatic conversion was not

exactly fit to be used in SiMA and was therefore dropped, meaning that research question 5 (“How

shall the current knowledge base be migrated?”) was still to be answered. The final solution in this

Conclusion and Future Work

 97

work was to make use of the conversion methods, that had to be implemented for the memorization

process and combine them with the parsing process that was used by SiMA at program start. However

the resulting conversion is not flawless, which is partly due to the general complexity of the structure

and partly due to the unmaintained state of the file and also the SiMA code in general. The recursions

in combination with the cloning problem (see chapter 4.3.1) made it rather complicated to make out,

which data structures have to be put into the long-term memory and which are only to be used inside

the execution run. For the future, it would be recommendable to refactor the knowledge base as well

as the code using it. At this point, however the new permanent store brings a possible improvement to

the system, as for the future cloning will not be necessary anymore. The data structures fetched by the

search procedures already represent new instances (in Java terms) and therefore changing them will

not alter the memory contents. In case that the data structure has to be saved to the memory as a new

instance only the IRI has to be changed.

As expected (see chapter 1) the current integration of an RDF database into SiMA brought no imme-

diate improvement for the project. Except for the ability to permanently store data and an option to

finally solve the cloning problem, which consumes a lot of processing time in the current implemen-

tation, in its current utilization the chosen solution even seems to be a downgrade for the system. As

discussed in chapter 6.1 the simulation runs takes 1166% longer than in the previous set-up with an

in-memory search space implemented through a HashMap structure.

As already mentioned in chapter 1.2 some of the reasons for the change, were to prepare the system

to gather much more data than it is actually the case, therefore tests with long runs and data gathering

have to be started in order to make an informed decision whether to use RDF in the future. Another

fact that has to be kept in mind is that actually the data structures and their utilization in SiMA are not

optimal for the chosen solution. First of all, the fetched data should be reduced to what is actually

needed, (for example only the basic thing-presentation-mesh instead of all its associations, including

their associated elements and all information that is attached to them. Secondly, it should be also

considered whether the data structures as they are currently set-up should be used. Maybe it would be

possible to have the data structures only mapped in an RDF graph and not to use the Java implemen-

tation of those data structures at all.

If no changes to the data structure management in the Java implementation seem to be considerable,

it is maybe better to change to a more general approach like a relational database. The data structure

as it is currently defined is not requiring any functionality regarding unstructured data. However, this

would have been the main argument for the usage of a NoSQL solution. As discussed in chapter 2.2,

a relational database system will be much likely faster and easier to query. Therefore, if only prede-

fined data structures are in use, the RDF triple store solution should be changed to a relational solution.

As the current memorization process is only a first proof of concept, many improvements are still

possible. First of all the filtering process is far from optimal, as only the most basic considerations are

taken into account. Therefore a fully comprehensive answer to research question 2: “How shall the

agent decide which memories are to be kept?” could not be found within this work. Due to a lack of

complicated use cases even the basic filtering (see chapter 5.3) turned out to be unnecessary as no two

images are equal in the current use cases. In order to stay true to the concepts used in SiMA, it would

Conclusion and Future Work

 98

be a necessary step to first work out a technically feasible concept of psychoanalytical theories for the

memorization process and realize the results in SiMA.

After applying the basic filtering process, the perceived data is collected until the agent reaches its

goal. This is the moment that was chosen to construct an act and at the same time answer to research

question 3a: “When shall the act generation be triggered?”. During the simulation runs and also in

retrospection this seems to be a suitable solution for SiMA, as it works perfectly together with the

technical concepts like codelets, as well as with the general concepts like goals and emotional moti-

vation. The construction of an act is mainly based on the usage of secondary associations and was

thoroughly explained in chapter 5.3. For now it seems to be a reasonable approach to answer research

question 3b: “How shall the act construction be implemented?”, but it is highly possible that adjust-

ments to the concepts of an act and also its construction will be necessary when their usage is finally

implemented in SiMA.

In summary, this work was an important first step towards an agent able to memorize and recall expe-

riences. The newly implemented RDF triple store opens up many new options for the future of SiMA.

The flexibility of the database system allows future developers to store and retrieve the model or

structure they need without the necessity to apply any changes to the database itself. The implemented

experience gathering is a first proof of concept for the implemented models and data store, however

the usage of experiences and also more effective experience filtering are still to be implemented. This

work has pointed out several optimization requirements, beginning with the data structure usage in

general to more sophisticated act generation and also the missing act usage. The next chapter will

therefore discuss some options for future development that may offer solutions to the appealed prob-

lems. Additionally, some general optimizations and further steps are discussed.

7.2 Future Work

The discussion in chapter 7.1 showed that the concluding results of this work not only gave some

much needed answers to fundamental questions, but they also brought up many new questions and

tasks. The concluding chapter of this work will therefore cover the newly arisen challenges and give

an outlook on the work that is still to be done.

Caching

In the previous chapter the necessity to rethink the data loading approach, in order to improve the

performance of the overall system was discussed. As mentioned in chapter 2.2, database solutions

have different specializations, and provide advantages and disadvantages depending on the data that

has to be stored. From that follows that the replacement of one database technology by another, leads

to a loss of the previously enjoyed advantages. However, for the situation in SiMA it is not necessarily

an absolute truth. In order to speed up the new search space solution, a possible approach could be to

complement the system with a cache for long-term memory elements. This would reuse the idea of an

in-memory store and all its advantages, by using both a permanent and nearly infinite storage, as well

as an additional store that makes certain data available on a speed aspect.

Conclusion and Future Work

 99

As of 2015 caching is a state of the art technique to reduce traffic and ultimately increase speed and

performance in various systems with a small sacrifice of data accuracy, depending on the settings of

the cache [TG01, pp. 95-97]. Caches are commonly used in web environments by web browsers to

avoid loading the same images and texts over and over and therefore reduce internet bandwidth. They

are also used on the server side, the webservers, to be able to serve websites faster, without the need

of generating a web resource from scratch for every single http call, which would take, more central

processing unit (CPU) processing time. Here an analogy between a CPU and the SiMA memory can

be found. The CPU that can in many ways be seen as the „brain“ of a computer, is also confronted

with the problem of permanently loading data from a storage system that responds in a way slower

fashion and would be significantly slowed down by it if it would load every single instruction set, or

„word“. To avoid such problems modern CPUs use highly sophisticated methods to decide whether

data is worthy to be loaded or kept to the, in comparison relatively small CPU cache. One that should

be mentioned is the „locality principle“, which says that data stored in neighbouring locations in the

main memory is very likely related to the currently needed data and might be needed for execution in

the near future [TG01, p. 96, p. 320]. CPUs even utilize different layers of caches to handle various

levels of data forms and importance, which creates a hierarchy that could be drawn as a pyramid, with

the fastest and smallest cache that is closest to the CPU at the very top (e.g. CPU registers) and the

slowest but largest form of data storage (e.g. hard drives) at the bottom [TG01, p. 99].

While there is certainly a lot more depth to caching at the CPU level, this was just a very short excur-

sion to emphasize the analogy between the SiMA system and the CPU, both functioning as the brain

in their environment with high speed demands in a data heavy environment. Thus it might be possible

to take some of the in modern CPU implemented solutions as a proof of concept that makes it worth-

while to take a look in whether and how caching would benefit the current triple based memory of

SiMA. If, like previously suggested, it is possible to reduce the memory loading to get only needed

parts of the data structure, the implementation of an “intelligent” cache would reduce the resulting

increase of memory accesses, thereby contributing to even better performance. Intelligence in this

context means that it has to fulfill various requirements depending on the data at hand. First of all, just

keeping everything in the cache would be obviously counterintuitive, because it would slowly migrate

the system back to its old state, where it only had an in-memory database, with all the downsides that

have been pointed out in chapter 1.

To avoid a cache blow-up, it needs to know which data is of importance and might be needed in the

near future and which has not been used for an amount of time and is therefore probably not needed

any longer. Taking this even further an implementation of the mentioned locality principle, could be

even more beneficial for such a system. Even though the functioning of SiMA certainly differs from

the principle that a CPU uses, where it is assumed that neighbouring memory addresses are probably

related, while SiMA does not work on the memory address level, which is already managed for it by

the CPU, the key aspect of the mentioned approach lies in „neighbouring“. The used RDF triple store

is essentially nothing else than a web formed by associations with neighbouring entities. This similar-

ity makes it highly likely that while computing an act, neighbouring images will be needed at a very

high likelihood in the near future. So when a call is set to the SiMA memory to load a specific image

of an act, we can only load that specific image and while it is processed, the cache now might decide

to make calls in parallel to retrieve images that follow the currently processed one and store them to

Conclusion and Future Work

 100

its memory for eventual following search calls. Thus, when the agent decides it needs one of these

images, it has already been loaded and can immediately be served. Later on the cache might decide

that it is time to drop those images from its memory again to make room for other entities. To make

informed decisions about which information is to be dropped, the system could use timestamps and

simply remove data after some time, or maybe an activation counter should be implemented. Every

time a data structure has been used, the counter is increased, thereby marking that the data structure is

possibly more important than a more recent one that was only needed once. These are just examples

of how such a caching system might benefit the SiMA system in the long run and what would make

the implemented migration from a full in-memory store to a triple store a valuable and much needed

approach.

Threading

In order to make the caching approach work as a performance improvement, another concept which

is also very important in modern computer science will be needed. Currently the SiMA memory only

runs as a single process on the CPU, and all its tasks are worked up in a sequential manner, meaning

that only after one task has finished its calculations the next task can be started. As the system´s

memory is further developed, its behavior is getting more sophisticated but also more specialized. This

results in many different tasks, which are not all connected by sequential dependencies and could

therefore be processed in parallel. Task splitting makes use of so called threads that are defined on the

programming level. A thread is a small process within another bigger process, which performs a spe-

cific self-contained task. A basic computer program starts at its entry point and is executed line by line

till its end. If threads are used, it is possible to outsource some of the main programs work into threads.

Depending on the execution system these threads can be worked off quasi parallel or really parallel,

if multiple cores are available on a system. The term “quasi parallel” means that all processes are

striped into parts and execution time is divided between the processes, each one getting short instances

of processing time before they get swapped out and replaced by another process and vice versa. While

at a first glance this seems like no change to just executing processes in sequential order, in reality

processes often have to wait for external resources such as memory contents or user input, and during

such times it is ideal to remove them from the processing queue and make room for more urgent

calculations, that are currently not blocked by external resources [TG01, pp. 489-490]. Splitting tasks

to work in parallel would be not only a necessity for the implementation of a sophisticated caching

solution as described above, it could also benefit the memorization process. During the discussion

about caches and the benefits they could bring to SiMA the use of a thread was already implicitly

talked of. In fact, without threads it would not be possible for a cache to fetch data in advance while

other data is processed. In the case of a cache the threading procedure, as it was already described, is

rather clear: Every time a data structure is fetched and processed, the cache starts a parallel thread that

searches for data structures which are connected to the one that is currently processed. For the usage

of threading in the memorization process some further considerations are necessary. In principle, one

can assume that the system should not have to wait for the memorization process to store its experi-

ences, in order to resume with taking actions. However, if the search as well as the memorization

process have to access the memory at the same time, some sort of conflict management will be needed,

in order to prevent so called race conditions. The term race condition describes if the success of an

Conclusion and Future Work

 101

operation is dependent on which thread finished its task first. The fact that threads usually take a

variable amount of time to complete makes it nearly impossible to determine if the state of the system

will be correct at all times, and inconsistencies might occur [TG01, pp. 494-495]. For example, if the

data retrieval task in SiMA starts to collect a mesh data structure from its memory while the memori-

zation task starts to change the associations of this mesh while they are still loading, an inconsistency

occurs. In order to prevent inconsistencies Java (and also other programming languages) offers several

tools, like the usages of semaphores. Semaphores are basically non negative integer values that are

used by different threads to take and release program resources or variables for exclusive use only. If

a thread is in need of an already taken resource, which is marked by such a semaphore, it simply waits

until the resource is free again. [TG01, p. 495]. Java offers this kind of synchronisation for Java func-

tions via the synchronized keyword that will handle exclusive access on static methods.

Memorization Algorithms

Chapter 5.2 covered several possible options for the implementation of memorization algorithms in

SiMA. However, only a basic memorization trigger and filtering process were implemented. At the

moment memories are only stored if the agent reaches its goal and the filtering is only able to recognize

duplicate images occurring after each other. Future implementations should therefore consider the

possible effects of emotions on memorizing experiences. The first possible application of emotions to

the memory is to use experienced high positive or negative emotions as a memorization trigger as was

described in chapter 5.2.1. Also the filtering process should be further improved in order to avoid that

the memory is going to exceed the calculating limits of the simulation environment and hardware.

This leads to the second application of emotions as they could be used as a relevance indicator for

perceived images and less relevant images could be filtered out during the filtering process (see chap-

ter 5.2.2). By doing so the quality of the memorized episodes will very likely improve.

In addition to the topics which were covered in chapter 5.2 cleanup be considered to implement a

memory clean-up, in order to avoid that the memory is going to exceed the calculating limits of the

simulation environment and hardware. Spoken in a less technical view, it is probably necessary to

emulate the human's ability to reprocess his memory during sleep [GB04, p. 679]. On this topic much

research has been done, but as for the psychoanalytical theories that form the base for SiMA´s decision

process, it is not the task of a software engineer alone to design a technically feasible, but psychoana-

lytically correct model of this process. As SiMA is based on psychoanalytical theories it would be

again advisable to cooperate with psychoanalysts, in order to find a psychoanalytically based model

for the memorization process.

Learning

As was already appealed in chapter 1 learning is absolutely obligatory for agents that shall be able to

autonomously react in changing environments. The first requirement, the ability to store outcomes of

actions and situations, for such a learning agent has been satisfied within this work. For the future, it

is therefore to consider the implementation of a learning procedure in SiMA. Beginning with the first

procedural languages, like LISP or PROLOG machine learning became an important research topic in

computer science [Lor14, p. 433]. One approach that became very popular for agent systems is the so

called reinforcement learning. It is based on the idea of learning things by being rewarded or punished

Conclusion and Future Work

 102

for doing them. This approach is well suited for agent systems as they usually include some sort of

evaluation whether the current actions brought a positive or negative result, which can be utilized to

initiate a learning process. In [DFZB09, p. 84] reinforcement learning was already considered to be a

valid approach for an emotional driven agent like it is the case in SiMA, as emotions can be easily

used as an evaluation factor for the success of a situation. Emotion-related learning is even considered

to be more flexible than common stimulus-response models as emotional learning is a two-step learn-

ing process and also emotions can trigger several processes at the same time [DFZB09, p. 84]. The

first step of emotional learning is to react to a stimulus in a certain way. In a second step the agent

may learn to behave in a certain manner in order to strengthen or evade the produced emotion. The

emotional abilities of SiMA agents were already discussed in chapter 5.2.1 and even though it was

decided not to use them for a memorization trigger, they seem to be a good foundation for a learning

agent. It may be important to notice that the fact that they are not used as a memorization trigger does

not influence the usage of emotions for learning. It is for example possible to check for the emotions

attached to an image in an act independent of the cause it was created. As motivation and emotion

have always been an important part of SiMA [SDW+13, pp. 1-6], reinforcement learning based on

emotional states seems to be a promising approach for future implementations.

Memory Limitation

Further improvements that are possibly necessary in the future is a memory handler that keeps the

memory “clean”. In [SWT12, p.1007] the importance of limiting the memory of agents acting in real-

time environments is stressed. Agents that have to react in a reasonable time, in a complex environ-

ment usually lack the time to consider all of the perfectly stored information. The implementation of

a forgetting mechanism or at least some sort of activation level as it is used in SOAR (see chapter

2.3.4) will be therefore a necessary next step in SiMA. Otherwise the existent knowledge might over-

whelm the agent’s decision process, as it is highly possible that too many equally important or match-

ing experiences can be found after collecting experiences for some time. Possible solutions for limiting

the memory are to implement some time stamp or usage factor, that tells the agent how often the

memory was already accessed or how far in the past the experienced situation took place, would prob-

ably improve the decision process with respect to long-term memory usage. Forgetting is also an im-

portant part of the human’s brain functions [SWT12, p. 1007], here again the cooperation with other

scientific disciplines should produce some further concepts that can be introduced to the SiMA system.

For example, it should be considered to split the memory up into declarative, semantic and episodic

memory and implement a consolidation process that is assumed to transfer information from the epi-

sodic memory to general facts in the semantic memory, from where the information can be accessed

faster [SWT12, p.1007. This process is also assumed to shape the memorized experiences in order to

improve recall performance.

Memory Editor

For the future use of the new long-term memory it would be an important step to implement a graphical

memory editor. Such an editor is absolutely necessary in order to set-up new use cases and was part

of the former file-based approach within the Protégé Frames Framework, which is of course lost for

the new RDF triple store solution. A memory editor for SiMA should be able to represent the RDF

Conclusion and Future Work

 103

memory graph and allow to edit nodes inside the graph, as well as in an attribute window. It should

also be possible to modify the triples in the database. For an effective usage, it should be possible to

filter all of the mentioned views by data structure type, IRI and SPARQL statements. Due to the huge

amount of data that is contained in such a memory, it is absolutely obligatory to provide a good user

interface with options to show and hide elements freely. For that task tree views with collapsing op-

tions (for example based on subject IRI in the triple editor) or additional filter options like block lists,

containing IRIs or data structure types that shall not be shown are highly recommendable. The usage

of data structure depth has already proven itself valuable while implementing the visualization pack-

age (see chapter 6.3). In an even further step it would be interesting to implement OWL reasoning for

the data. Another important feature would be the ability to construct memory parts and assign them to

different “memories”, in order to avoid a relapse to the problems with unmaintained data, which were

mentioned in chapter 4.3. It would also be an important step for the multi-agent system if separate

memories could be created and assigned to different agents. This leads to another future task, namely

the implementation of real multi-agent memories. At the moment all agents access the same memory,

which is not realistic and also not practicable if the caching and threading approach is going to be

implemented. Then in a further step agents should be able to learn from each other, like it was already

implemented in the BDI implementation dMars (see chapter 2.3.5)

This work extended SiMA by an RDF database system, thereby providing the option to permanently

store experiences during runtime. Furthermore the existing declarative semantic memory was con-

verted to the new permanent store. In a final step the first proof of concept for saving episodic mem-

ories was implemented into SiMA. However, it is still a long way to go until the final goal – an agent

that can proactively gain and effectively use its episodic memory - is reached.

 104

Literature

[ABB+04] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Christian Le-
biere, and Yulin Qin. An integrated theory of the mind. Psychological review,
111(4):1036–60, October 2004.

[AH08] Dean Allemang and James Hendler. Semantic Web for the Working Ontologist: Ef-

fective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, second edition, 2008.

[Bar10] Daniel Bartholomew. SQL vs. NoSQL. Linux Journal, 2010(195):4, 2010.
[BHS03] V. Bonstrom, A. Hinze, and H. Schweppe. Storing RDF as a graph. Proceedings of

the IEEE/LEOS 3rd International Conference on Numerical Simulation of Semicon-

ductor Optoelectronic Devices (IEEE Cat. No.03EX726), 2003.
[BLS+11] Laurent Bonnet, Anne Laurent, Michel Sala, Benedicte Laurent, and Nicolas Sicard.

Reduce, You Say: What NoSQL Can Do for Data Aggregation and BI in Large Re-
positories. 2011 22nd International Workshop on Database and Expert Systems Ap-

plications, pages 483–488, August 2011.
[Bro02] Frank Broekstra, Jeen and Kampman, Arjohn and van Harmelen. Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema. In The Semantic Web

– ISWC 2002: First International Semantic Web Conference Sardinia, Italy, pages
54–68. 2002.

[CTN09] Hui-Qing Chong, Ah-Hwee Tan, and Gee-Wah Ng. Integrated cognitive architec-
tures: a survey. Artificial Intelligence Review, 28(2):103–130, February 2009.

[DALL12] Nate Derbinsky, Ann Arbor, Justin Li, and John E Laird. Algorithms for Scaling in a
General Episodic Memory (Extended Abstract). 2012.

[Deu11] Tobias Deutsch. Human Bionically Inspired Autonomous Agents. PhD thesis, Vi-
enna University of Technology, 2011.

[DFZB09] Dietmar Dietrich, Georg Fodor, Gerhard Zucker, and Dietmar Bruckner. Simulating

the Mind - A Technical Meuropsychoanalytical Approach. 2009.
[DGLV08] T Deutsch, A Gruber, R Lang, and R Velik. Episodic Memory for Autonomous

Agents. pages 2–7, 2008.
[DLG+04] Mark D’Inverno, Michael Luck, Michael Georgeff, David Kinny, and Michael

Wooldridge. The dMARS Architecture: A Specification of the Distributed Multi-
Agent Reasoning System. Autonomous Agents and Multi-Agent Systems, 9(1/2):5–
53, July 2004.

[DSBD13] Dietmar Dietrich, Samer Schaat, Dietmar Bruckner, and Klaus Doblhammer. The
Current State of Psychoanalytically-Inspired AI - A Holistic and Unitary Model of
Human Psychic Processes. Industrial Electronics Society, IECON 2013 - 39th An-

nual Conference of the IEEE, pages 6666–6671, 2013.
[GB04] Steffen Gais, Jan Born. Declarative memory consolidation: Mechanisms acting dur-

ing human sleep. Learning & Memory, pages 679-685, 2004.
[GHES05] Alejandro Guerra-Hernández, Amal El Fallah-Seghrouchni, and Henry Soldano.

Learning in BDI multi-agent systems. Lecture Notes in Computer Science, 2005.

Internet References

 105

[GL10] Fernand Gobet and Peter Lane. The CHREST Architecture of Cognition: The Role
of Perception in General Intelligence. Proceedings of the 3d Conference on Artificial

General Intelligence (AGI-10), pages 1–6, 2010.
[GLC+01] Fernand Gobet, Peter C R Lane, Steve Croker, Peter C-h Cheng, Gary Jones, Iain

Oliver, and Julian M Pine. Chunking mechanisms in human learning. 5(6):236–243,
2001.

[HFsP+04] Alejandro Guerra Hern, Amal El Fallah-seghrouchni, Informatique De Paris, U M R
Cnrs, and Capitaine Scott. Distributed Learning in Intentional BDI Multi-Agent Sys-
tems. 2004.

[KDA11] Atanas Kiryakov, Mariana Damova, and Ontotext Ad. Handbook of Semantic Web

Technologies. 2011.
[Lai08] JE Laird. Extending the Soar Cognitive Architecture. In Proceedings of the 2008

Conference on Artificial General Intelligence 2008: Proceedings of the First AGI

Conference, pages 224—-235. IOS Press, 2008.
[Lai14] John E Laird. The Soar 9 Tutorial. 0, 2014.
[Lan10] Roland Lang. A Decision Unit for Autonomous Agents Based on the Theory of Psy-

choanalysis. Phd thesis, 2010.
[Law14] Ramon Lawrence. Integration and Virtualization of Relational SQL and NoSQL

Systems Including MySQL and MongoDB. 2014 International Conference on Com-

putational Science and Computational Intelligence, pages 285–290, March 2014.
[LC14] John E Laird and Clare Bates Congdon. The Soar User â€™ s Manual version 9.4.0.

Technical report, Computer Science and Engineering Department University of
Michigan, 2014.

[LCT11] Pat Langley, Dongkyu Choi, and Nishant Trivedi. ICARUS User’s Manual. Tech-
nical report, Institute for the Study of Learning and Expertise 2164 Staunton Court,
Palo Alto, CA 94305 USA, 2011.

[Lea10] Neal Leavitt. Will NoSQL Databases Live Up to Their Promise?, 2010.
[LGS09] Peter C R Lane, Fernand Gobet, and Richard Ll Smith. Attention Mechanisms in the

CHREST Cognitive Architecture. pages 183–196, 2009.
[Lor14] Iris Lorscheid. Learning Agents for Human Complex Systems. 2014.
[NLA07] Andrew M Nuxoll, John E Laird, and Ann Arbor. Extending Cognitive Architecture

with Episodic Memory. pages 1560–1565, 2007.
[PDH+07] Gerhard Pratl, Dietmar Dietrich, Gerhard P Hancke, Walter T Penzhorn, Senior

Member, Justin Li, John E Laird, Ann Arbor, Ben Goertzel, Cassio Pennachin, Nil
Geisweiller, Richard L. Smith, Peter C.R. Lane, Fernand Gobet, Vergleich Pm, Zer-
tifizierung Pmi, Kognitive Leistungen, Shiwali Mohan, James Kirk, J I L L F A I
N L Ehman, J O H N L Aird, P A U L R Osenbloom, Editorial Board, and Phoebe
Chen. A New Model for Autonomous, Networked Control Systems. 2008 Second

UKSIM European Symposium on Computer Modeling and Simulation, 3(1):21–32,
September 2007.

[Rus03] Gerhard Russ. Situation-dependent Behavior in Building Automation. PhD thesis,
Vienna University of Technology, 2003.

[SDW+13] Samer Schaat, Klaus Doblhammer, Alexander Wendt, Friedrich Gelbard, Lukas
Herret, and Dietmar Bruckner. A psychoanalytically-inspired motivational and emo-
tional system for autonomous agents. IECON Proceedings (Industrial Electronics

Conference), pages 6648–6653, 2013.
[SGL09] Richard L. Smith, Fernand Gobet, and Peter C.R. Lane. Checking chess checks with

chunks: A model of simple check detection. 2009.
[SL07] Richard Ll Smith and Peter C R Lane. An Investigation into the Effect of Ageing on

Expert Memory with CHREST. 2007.

Literature

 106

[Sto10] Michael Stonebraker. SQL databases v. NoSQL databases. Communications of the

ACM, 53(4):10, April 2010.
[SWT12] Budhitama Subagdja, Wenwen Wang, and Ah Tan. Memory formation, consolida-

tion, and forgetting in learning agents. on Autonomous Agents, (June):4–8, 2012.
[TCM03] Douglas G Turnbull, C M Chewar, and D Scott Mccrickard. Are Cognitive Archi-

tectures Mature Enough to Evaluate Notification Systems? International Conference

on Software Engineering Research and Practice (SERP 2003),, (June), 2003.
[TG01] Andrew S Tanenbaum and James R Goodman. Computerarchitektur - Strukturen,

Konzepte, Grundlagen (4. Aufl.). Pearson Studium, 2001.
[VBPG09] Rosemarie Velik, Dietmar Bruckner, Peter Palensky, and Envidatec Gmbh. A Bionic

Approach for High-Efficiency Sensor Data Processing in Building Automation.
pages 1949–1954, 2009.

[Vel08] Rosemarie Velik. A Bionic Model for Human-like Machine Perception. 2008.
[VMS07] David Vernon, Giorgio Metta, and Giulio Sandini. A Survey of Artificial Cognitive

Systems : Implications for the Autonomous Development of Mental Capabilities in
Computational Agents. 11(2):151–180, 2007.

[WDM+12] Alexander Wendt, Benjamin Dönz, Stephan Mantler, Dietmar Bruckner, and Ale-
xander Mikula. Evaluation of Database Technologies for Usage in Dynamic Data
Models. In Joaquim Filipe and Ana Fred, editors, ICAART 1, pages 212–224. SciTe-
Press, 2012.

[WTN+] Hai H Wang, Samson Tu, Natasha Noy, Alan Rector, Mark Musen, Timothy Red-
mond, Daniel Rubin, Tania Tudorache, Matthew Horridge, and Julian Seidenberg.
Frames and OWL Side by Side. pages 1–4.

[ZDI+08] H Zeilinger, T Deutsch, Member Ieee, B Müller, and R Lang Member. Bionic In-
spired Decision Making Unit Model for Autonomous Agents. pages 259–264, 2008.

[Zei10] Heimo Zeilinger. Bionically Inspired Information Representation for Embodied

Software Agents. PhD thesis, Vienna University of Technology, 2010.
[ZLM09] H Zeilinger, R Lang, and B Müller. Bionic Inspired Information Representation for

Autonomous Agents. pages 383–389, 2009.

 107

Internet references

[ACTR] “ACT-R 6.1 Software”, available http://act-r.psy.cmu.edu/software/, accessed 2015-05-13

[ALIST] “Class ArrayList<E>Java SE Documentation – API”, available http://docs.oracle.com/ja-
vase/7/docs/api/java/util/ArrayList.html, accessed 2014-11-30

[ALLEGRO] “AllegroGraph”, Franz Inc., available http://franz.com/agraph/allegrograph/, accessed 2014-
11-30

[FUKU11] “AKW Fukushima: Die „Tapferen 50“ an der Strahlenfront”, SPIEGELONLINE,
http://www.spiegel.de/panorama/gesellschaft/akw-fukushima-die-tapferen-50-an-der-strah-
lenfront-a-751070.html, accessed 2015-01-21

[FUKU14] “Erster Reaktor in Fukushima ist gesäubert”, derStandard, http://derstan-
dard.at/2000009664839/Meilenstein-in-Fukushima-Erster-Reaktor-ist-gesaeubert, accessed
2015-01-21

[HASHMAP] “Class HashMap<K.V>”, Java SE Documentation - API, available https://docs.oracle.com/ja-
vase/7/docs/api/java/util/HashMap.html, accessed 2014-11-30

[IRI] “Internationalized Resource Identifier”, WIKIPEDIA, http://de.wikipedia.org/wiki/Interna-
tionalized_Resource_Identifier, accessed 2015-02-24

[JAVA] “What is Java?”, Oracle, https://www.java.com/en/download/whatis_java.jsp, accessed 2015-
02-24

[JENA] “RDF”, W3C, http://www.w3.org/RDF/, accessed 2015-02-24

[JSON] “JSON”, JSON, http://json.org/, accessed 2015-06-08

[MEMORY] “How Human Memory Works”, Mohs, Richard C., http://science.howstuffworks.com/life/in-
side-the-mind/human-brain/human-memory.htm, accessed 2015-03-05

[NARY] “Defining N-ary Relations on the Semantic Web”, W3C, http://www.w3.org/TR/swbp-n-ar-
yRelations/, accessed 2015-03-11

[NEO4J] “Neo4j”, Neo Technology, Inc. available http://neo4j.com/, accessed 2014-11-30

[OWL] “OWL 2 Web Ontology Language”, W3C, http://www.w3.org/TR/owl2-overview/, accessed
2015-02-21

[RDFQUERY] “RDF query language”, WIKIPEDIA, http://en.wikipedia.org/wiki/RDF_query_language, ac-
cessed 2015-02-24

[REIFICATE] “RDF Reification”, W3C, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#reifica-
tion, accessed 2015-03-11

[ROBO11] “Überforderte Roboter im Atom-Einsatz”, ZEITmagazin, http://www.zeit.de/wissen/2011-
04/roboter-katastrophen, accessed 2015-01-21

[SIMA15] “Simulation of the Mental Apparatus & Applications”, Project website,
http://sima.ict.tuwien.ac.at/, accessed 2015-05-16

 108

[SMAKI14] “SmartKitchen”, Project website, http://smartkitchen.ict.tuwien.ac.at/, accessed 2015-01-09

[SOCK] “Class Socket”, Oracle, http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html, ac-
cessed 2015-05-22

[SPARQL] “SPARQL 1.1 Query Language”, W3C, http://www.w3.org/TR/2013/REC-sparql11-query-
20130321, accessed 2015-02-24

[VISU] “JavaScript InfoVis Toolkit”, JavaScript InfoVis Toolkit, http://philogb.github.io/jit/, ac-
cessed 2015-06-07

[VISUAL] “VisualVM”, VisualVM, https://visualvm.java.net/, accessed 2015-05-22

[W3CRDF] “RDF”, W3C, http://www.w3.org/RDF/, accessed 2015-02-24

[W3SCHOOL] “RDF”, W3Schools, http://www.w3schools.com/webservices/ws_rdf_reference.asp, accessed
2015-02-24

[WIRED] “THE THREE BREAKTHROUGHS THAT HAVE FINALLY UNLEASHED AI ON THE
WORLD”, Wired, http://www.wired.com/2014/10/future-of-artificial-intelligence/, accessed
2015-02-21

