

Barbara Szabó1, M. Templ, P. Filzmoser, A. Lehoczky, R. Pongrácz, G. Kalvane, E. Baksiene, A. Briede, H. Gregow, S. Hodzic, K. Jatczak, E. Kubin, P. Nejedlik, T. Niedźwiedźz, V. Palm, T. Popovic, D. Romanovskaja, Z. Snopkova, S. Stevkova, J. Terhivuo†, V. Vucetic, A. Zust
${ }^{1}$ Eötvös Loránd University and Centre for Ecological Research, Hungary

- climate change is evident across Europe causing a wide range of impacts on the environment (EEA, 2012)
- from the Northern (Schwartz et al. 2006) to the Southern Hemisphere (Chambers et al. 2013) shifts in timing of particular stages of plant development observed
- these responses are speciesand phenophase- specific, geographical differences in their main drivers

Introduction

- Biogeographical regions "are useful geographical reference units for describing habitat types and species which live under similar conditions in different countries" (Roekaerts, 2002).

Ohserved and projected cimate change and impacts for biogeographical regions of Europe [EEA, 2012]

- to compare various biogeographical regions, and test whether the areas experienced advancement in timing of flowering
- to evaluate the possible factors that influence phenological shifts
- to discover phenological patterns along various latitudes and periods

Motivation

Szabo et al. 2015, GCB in prep.

Materials and Methods: Phenological datasets

- 6 wild plant species

(Convallaria majalis, Sambucus nigra, Syringa vulgaris, Taraxacum officinale, Tilia cordata, Robinia pseudoacacia)
- flowering phenological observations from north-south transect in Central-Eastern Europe
- 12 country (Finland, Estonia, Latvia, Lithuania, Poland, Slovakia, Hungary, Slovenia, Croatia, Bosnia and Herzegovina, Montenegro, Macedonia)
- metadata: latitude, longitude, altitude
- 5 biogeographical region (Boreal, Continental, Alpine, Pannonian, Mediterranean) - data from the European Environment Agency (EEA)
- 40 year: 1970-2010

[^0]Biogeographical regions

Materials and Methods: Climatological datasets

- daily data of air temperature (mean, minimum, maximum), precipitation and monthly indices of the North Atlantic Oscillation (NAO)
- data source: E-OBS regular gridded (0.25 degree) datasets developed by the ENSEMBLES EU-FP6 project and Climate Research Unit (CRU) of the University of East Anglia
- Further data: quartiles at $0.25,0.5$ (median), 0.75 level; skewness of climate data series were also determined
- 40 year: 1970-2010

Materials and Methods: Statistics

- Two-way linear mixed models - pheno package (pheno R package - Schaber\&Badeck, 2002)
- all analyses were carried out on 30 homogenized phenological time series for the 6 species over the 5 biogeographical regions
- outliers -> robust methods (robustbase R package Rousseeuw\&Croux, 2015)
- Robust linear regressions
- Heatmap for the visualization of the regression coefficients \& hierarchical clustering based on them

Results: Annual variation and trends of mean temperature [1970-2010]

Results: Inter-annual variation of the timing of flowering onset (1970-2010]

Results: Flowering onset dates along latitudes over decades [1970-2010]

Flowering onset trends [days/year] in 1970-2010 across hiogeographical regions of Europe

	Convallaria	Robinia	Sambucus	Syringa	Taraxacum	Tilia
Alpine	$\mathbf{- 0 . 2 6}$	$\mathbf{- 0 . 3 2}$	$\mathbf{- 0 . 3 3}$	$\mathbf{- 0 . 2 3}$	0.01	$\mathbf{- 0 . 2 4}$
Boreal	-0.07	$\mathbf{- 0 . 5 2}$	-	-	-0.17	$\mathbf{- 0 . 1 9}$
Continental	-	$\mathbf{- 0 . 5 3}$	$\mathbf{- 0 . 2 8}$	$\mathbf{- 0 . 3 1}$	$\mathbf{- 0 . 4 0}$	$\mathbf{- 0 . 3 5}$
Mediterranean	-	-0.12	-0.08	$\mathbf{- 0 . 1 4}$	-0.35	$\mathbf{- 0 . 1 7}$
Pannonian	0.06	-0.12	-0.11	-0.03	-0.05	-0.03

Empty cells: non-studied cases; negative bold values: significant advancing trends

- significant advancement of mean flowering onsets in the Alpine and Continental region
- strongest advancement were given by Robinia p., Tilia c.
- species, living in northern or higher latitudes were characterised by later dates of flowering onset
- the flowering started earlier at recent decades (1991-2010)
- significant negative effect of NAO, while positive influence from mean temperature previous to flowering
- the effect of precipitation sum are sporadic

Conclusion

Thanks for your attention!

[^0]: Latitude range: 40.9 - 67.9 degree

