

Dimethacrylate Networks with Tunable Properties: The High Effectiveness of β -Allyl Sulfone Chain Transfer Agents

Daniel Grunenberg¹, Christian Gorsche^{1,4}, Markus Griesser^{1,4}, Georg Gescheidt², Norbert Moszner^{3,4}, Robert Liska^{1,4}

email: daniel.grunenberg@tuwien.ac.at

- ¹ Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
- ² Institute of Physical and Theoretical Chemistry, TU Graz, 8010 Graz, Austria
- ³ Ivoclar Vivadent AG, Schaan, Liechtenstein
- ⁴ Christian Doppler Laboratory for 'Photopolymers in Digital and Restorative Dentistry'

Introduction & Background

Photocured dimethacrylate networks are widely employed in dental medicine, decorative coatings and 3D-lithography. Some of their biggest drawbacks are the limited material properties (toughness, shrinkage) and incomplete conversion. By adding a chain transfer agent (CTA), e.g. thiols^[1] or preferably allyl sulfones^[2], more homogeneous networks with tunable and improved properties are accessible. [3,4] We synthesized mono- and difunctional β -allyl sulfones and present their high potential in regulating methacrylate networks.

Free-Radical Polymerization

- good photoreactivity, fast curing
- convenient low energy processing
- good storage stability
- no control, incomplete conversion
- inhomogeneous and brittle networks

Thiol-ene chemistry^[1]

- low oxygen inhibition
- fast and complete reaction
- bad storage stability
- strong **odor**

Addition-Fragmentation Chain Transfer (AFCT)^[2]

- good photoreactivity
- excellent storage stability
- tunable and homogeneous networks
- hardly any studies on networks

 \implies similar reactivity of methacrylate and β -allyl sulfone

comparable modulus (difunctional AFCT)

Synthesis of β -Allyl Sulfones

Monomers & Formulations

Mechanistic Studies

a) kinetics of the transient absorptions after laser flash b) transient absorption spectra at different delays (0.3 mM photoinitiator and 25 mM MAS in acetonitrile) c) pseudo-firstorder decay rate constant (k_{obs}) of the phosphinoyl radical P• (acetonitrile at r.t.) d) evolution of the double bond conversion vs. irradiation time (¹H NMR; DEGEMA+25 DB MAS).*

AFCT Mechanism

DMTA

sharp and tunable glass transition

Results & Discussion

Curve	Formulation	Color code	DBC* /%	Swellability# / wt%	Gel fraction# / wt%
Α	2M	•••	74	3.6	98.6
В	2M/MAS (16.67 DB)		82	17.0	98.1
С	2M/MAS (20 DB)	=	84	18.7	97.0
D	2M/MAS (25 DB)		86	22.4	93.4
G	2M/DAS (25 DB)	_	86	11.4	97.5
J	2M/DEGEMA (25 DB)		-	9.8	98.5

* determined by photo-DSC; # swellability tests in EtOH at 60 °C (7 days); DB = % of total double bonds in the mixture

Photo-DSC & Swelling Experiments

higher swellability (maintaining high gel fraction)

Conclusion

benefits of β -allyl sulfone chain transfer agents:

- straightforward synthesis from methacrylates
- good storage stability of the formulations
- good coreactivity with methacrylates
- sufficient photoreactivity and higher conversion
- tunable and sharpened glass transition high gel fraction and tunable swelling

References & Acknowledgements

- [1] Hoyle, C. E.; Bowman, C. N. *Angew. Chem. Int. Ed.*, **2010**, *49*, 1540.
- [2] Moad, G.; Rizzardo, E.; Thang, S. H. *Polymer*, **2008**, *49*, 1079.
- [3] Gorsche, C.; Griesser, M.; Gescheidt, G.; Moszner, N.; Liska, R. Macromolecules, **2014**, 47, 7327.
- [4] Gorsche, C.; Koch, T.; Moszner, N.; Liska, R. Polym. Chem., 2015, 6, 2038.

higher conversion

We gratefully acknowledge financial support from the Christian Doppler Research Agency, Ivoclar Vivadent AG and the Austrian Research Agency (FFG) within the framefork of the project 'addmanu.at'.

unombbo