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Abstract—The unbalance of a magnetically levitated rotor
causes synchronous oscillations in the current and position
signals. This oscillations can lead to saturation of the magnetic
actuator. To deal with that problem a selfsensing unbalance
controller is developed to reduce the unbalance oscillations in
the current signals. The selfsensing unbalance controller consists
of two parts. The first part is the unbalance observer which
has the task to detect the angular velocity and the angle of
the synchronous unbalance information. The second part is the
unbalance controller which uses the information of the unbalance
observer to reject the unbalance oscillations in the current signal.
For the unbalance controller a two modulation step Notch filter
is used. The unbalance controller is not the only device which
needs the angular velocity. With the angular velocity information
also a parameter variant control path can be developed which
has the task to reduce the gyroscopic effect. The last part of this
paper deals with experimental results of the proposed control
system which is implemented on an industrial magnetic bearing
system.
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I. INTRODUCTION

Vibrations caused by mass unbalance are a common prob-
lem in magnetic bearing applications. Unbalance occurs if the
principal axis of inertia of the rotor is not coincident with its
axis of geometry [4]. In most cases it is almost impossible
to balance the rotor, because the unbalance distribution is
changed during operation. In the case of ball bearings, reaction
forces occurs due to the unbalance [8]. This reaction forces
where transmitted to the machine housing, which leads to
unwanted vibrations. Compared to this conventional bearing
types with active magnetic bearings it is able to provide an
unbalance compensation. This additional component of the
control structure allows the rotor to spin around its inertial axis.
This unbalance compensation can have the following tasks:

• Rejection of synchronous bearing forces: The syn-
chronous bearing current is approximately a quadratic
function of the rotational speed. Therefore the ampli-
fier will saturate for high speeds and the system will
get unstable. The aim of this compensation is to reject
the synchronous bearing current.

• Rejection of the unbalance vibration: The aim is to
reject the vibration due to the reaction forces of the
unbalance and the housing. To get a suitable rejection

the system needs high damping forces which can also
caused a saturation of the amplifiers.

• Rejection of the displacement orbits when the rota-
tional speed crosses the rigid body modes

The focus of this paper is the rejection of the synchronous
bearing forces and the reduction of the gyroscopic effect using
the unbalance information to estimate the angular velocity.
The simplest method is the insertion of a Notch filter in the
feedback path. The drawback of this method is that an open
loop designed filter can introduce instability for the closed
loop system [9]. This reason of instability is eliminated by
an observer based design [10]. The drawback of this design
method is that a very accurate plant model is needed and the
computing time is very large compared to the other methods.
A converse approach is the adaptive feedforward method [11],
which has the advantage that they cannot introduce instability,
if the adaption process itself is stable. Most often, complex
nonlinear adaption processes were used and convergence could
not be proved in all cases. In this paper a multi variable Notch
filter which is designed for the closed loop system like it was
demonstrated in [7] is used. The unbalance information to
calculate the coefficients is estimated using a special unbalance
observer. This observer is able to estimate the angle and the
rotational speed of the unbalance of the rotor. The reduction
of the synchronous current is not the only application where
this unbalance information can be used. Also the gyroscopic
effect is able to be reduced significantly with this selfsensing
unbalance method. In [3], [5] and [6] the gyroscopic effect is
reduced by using a special parameter variant structure.

II. UNBALANCE CONTROL USING A TWO MODULATION
STEP APPROACH

For the rejection of the synchronous bearing forces the
two modulation step approach of [7] is used. The structure of
this method is shown in Fig. 1. The closed loop system with
C(s) and G(s) is assumed to be stable. The sensor signal y(t)
contains a sinusoidal of the frequency Ω which correspondents
with the unbalance of the signal. The idea of this compensation
is to generate a compensation signal c(t), which has the same
phase, frequency and amplitude like the sensor signal y(t)
and subtract it. To generate the compensation signal the sensor
signal is multiplied by sinΩt and cosΩt to shift the frequency Ω
down to zero. Then this signal is integrated and is shifted back
to the frequency Ω by multiply it with sinΩt and cosΩt. With



Fig. 1. Two modulation step Notch filter

the integration action the DC value of the signal is calculated
which corresponds with the amplitude of the unbalance signal.
The convergence speed can be changed with the value ε. It is
possible to replace the multiplications with the trigonometric
functions by a transformation in a rotating frame. But this
transformation cannot handle oval rotor orbits.

The compensation signal c(t) is:

c(t) = [sin(Ωt)I cos(Ωt)I]
[
Tr −Tj

Tj Tr

]
·
∫ [

sin(Ωt)
cos(Ωt)

]
dt (1)

The bold symbols denotes multivariable matrices and I is a
Idenity matrix. Transform equation (1) in the s-domain leads
to the input output equivalent:

Nol =
1

s2 + Ω2
(sTR − ΩTJ) (2)

After closing the feedback loop of the two modulation Notch
filter the transfer function has the following form:

Ncl =
e

y
=
(
s2 + Ω2

) (
s2I + sA1 + A0

)−1
(3)

with
A1 = εTR, A0 = Ω2I− εΩTJ (4)

From equation (3) the notch characteristic can be seen where
ε defines the bandwidth of the system. The above description
shows that the two modulation notch filter has the same
input output description like the common LTI Notch filter.
Nevertheless the two modulation steps has some advantages
compared to the common LTI implementation.

• The two modulation Notch filter can be used as an
ideal feedforward compensation if ε is kept to zero.
This operation is impossible for the LTI implementa-
tion.

• With the integrator outputs the amplitude of the un-
balance of the rotor can be calculated

Fig. 2. Control structure

• In the narrow band case the two modulation notch
filter shows no numerical errors compared to the
classical LTI implementation

Stability analysis of this two modulation notch filter was done
in [7]. In this paper a decentralized Notch filter design is used.

III. REDUCTION OF THE GYROSCOPIC EFFECT

The gyroscopic effect decreases the performance of the
regarded system in two ways.

• The fast decentralized Notch filter can only be used
for system with low cross couplings. If the gyroscopic
effect is too high the easy decentralized implementa-
tion has to be replaced by a more complex method
which needs much more computing time.

• The gyroscopic effect splits up the rigid body modes.
For such a parameter variant system either the perfor-
mance decreases or a complex controller is needed.

To overcome this problem a parameter variant feedback struc-
ture is developed. The system description of the magnetic
bearing system with a rigid rotor in the linearized form is
[4]:

Mẍ + G(Ω)ẋ + BKSB
Tx=BKii

y=Cx (5)

with the mass matrix M, the gyroscopic matrix G(Ω), the
matrix of the negative stiffness KS , the matrix of the force to
current factors Ki, the input matrix B, the output matrix C, the
center of gravity (COG) coordinates x, the sensor coordinates
y and the current vector i. Equation (5) shows that the only
parameter variant term is the matrix of the gyroscopic effect
G(Ω). To use the linear time invariant (LTI) control theory
G(Ω) has to be cancelled or even rejected. Fig. 2 shows the
overall control structure schematically. To affect the tilting and
translation rigid body modes independent from each other an
input Tin and output transformation Tout is used to transform
the system in the COG coordinates. If

Tin = inv (C) (6)



and
Tout = inv (BKi) (7)

is used, the system equation is

Mẍ + G(Ω)ẋ + BKSB
Tx = i (8)

The invertibility of the matrix C and BKi is given in the most
cases, because the matrices for such a system are a quadratic
ones and the determinant is only zero for singular points. After
the transformation the tilting and translation rigid body modes
are nearly decoupled. The only coupling term which is left of
both modes is BKSB

T . But this term is normally quite low
and can be neglected.

In the COG coordinate system the gyroscopic effect can be
reduced with a parameter variant controller of the following
form:

ikomp = CrG(Ω)ẋ (9)

After this compensation the system is nearly parameter in-
variant and the LTI control theory and the decentralized
Notch filter can be used. In [3] is suggested that a complete
elimination of the gyroscopic effect is not very robust against
dead times, and therefore a factor Cr is introduced. The system
equation with the parameter variant feedback term equation (9)
is:

Mẍ + (1 − Cr)G(Ω)ẋ + BKSB
Tx = i (10)

Because nearly the whole parameter variant term is compen-
sated, the whole feedback term could be treated as a linear
time invariant system for stability analysis.

Equation (9) needs the velocities of the COG system.
Because usually position sensors are used for the feedback
path to stabilize the magnetic bearing system, the velocities are
not measuring variables. In the last years also a few sensorless
control strategies were developed, like the INFORM method
which is described in [1] and [2]. To get the velocities the
position signals can be differentiate. But differentiation usually
increases the measuring noise significantly. To overcome this
problem a Kalman observer is developed, which estimates the
states of the AMB system. For the reduction of the gyroscopic
effect only the tilting velocities of the AMB system are needed.
This fact can be used to improve the Kalman observer. If
the Kalman observer is developed in the COG coordinate
system the observer can split up into an observer for the
tilting movement and one for the translation movement. If this
knowledge is used the computing time of the Kalman observer
is reduced by a factor of four. The angular velocity information
for the reduction of the gyroscopic effect is estimated with a
unbalance observer. The initial guess of the Kalman observer
is chosen to be zero. How such a Kalman observer can be
developed is shown in [6].

IV. UNBALANCE OBSERVER

To reduce the gyroscopic effect and the unbalance of the
rotor the angular velocity has to be known. For the system
which is presented in this paper the angular velocity and the
angle of the synchronous unbalance is estimated using a special
observer. The unbalance equation for a forward rotating system
has the following form:

x = Acos(ϕ)

y = Asin(ϕ) (11)

Fig. 3. Substitute variables

To estimate the unbalance information the following linear
observer model is used[

ϕ̇

Ω̇

]
=

[
0 1
0 0

] [
ϕ
Ω

]
+

[
k1ϕ k2ϕ

k1Ω k2Ω

] [
x− x̂
y − ŷ

]
(12)

where ϕ is the angle of the maximum of the elongation caused
by the unbalance and Ω is the angular velocity. When the
measuring equations (11) are inserted into the observer model
equation (12) the failure dynamic[

ėϕ
ėΩ

]
=

[
0 1
0 0

] [
eϕ
eΩ

]
+

[
k1ϕ k2ϕ

k1Ω k2Ω

]

·

 A
(
cos(ϕ) − cos(ϕ̂)

)
A
(
sin(ϕ) − sin(ϕ̂)

)  (13)

is nonlinear. For a nonlinear failure dynamic, stability cannot
be proven in all cases. To solve this problem the feedback
variables kϕ and kΩ can be chosen as a function of the states
and the input [12]. With this nonlinear feedback variables it is
possible to get a linear failure dynamic. The first step to get a
linear failure dynamic is to formulates the feedback term

x− x̂ = A
(
cos(ϕ) − cos(ϕ̂)

)
(14)

in a different way. To do this substitute variables are introduced
according to Fig. 3.

ϕM = ϕ̂+ ε

ε =
ϕ− ϕ̂

2
(15)

With this variables the failure can formulate as:

x− x̂ = A (cos(ϕM + ε) − cos(ϕM − ε))

= −2Asin(ϕM )sin(ε) (16)

When it is assumed that ε is very small, then ϕM ≈ ϕ and the
taylor expansion can be used for sin(ε) and the failure can be
formulate as:

x− x̂ = −Asin(ϕ)(ϕ− ϕ̂) (17)

For the y direction the derivation is the same and the result is:

y − ŷ = Acos(ϕ)(ϕ− ϕ̂) (18)



Fig. 4. Simulated performance of the unbalance observer

To get a linear fault dynamic it is possible to compensate the
nonlinearities. An idea for compensation could be to dived
by the sine or cosine. But this approach causes numerical
problems at the zero crossing of the sine and cosine. Therefore
an other method of compensation is:

k1ϕ =
k̃ϕ
A
sin(ϕ) k2ϕ =

k̃ϕ
A
cos(ϕ)

k1Ω =
k̃Ω

A
sin(ϕ) k2Ω =

k̃Ω

A
cos(ϕ) (19)

With this feedback variables the failure dynamic after some
algebraic steps is[

ėϕ
ėΩ

]
=

[
0 1
0 0

] [
eϕ
eΩ

]
+

[
k̃ϕ k̃ϕ
k̃Ω k̃Ω

]
·
[
eϕ
eϕ

]
. (20)

This failure dynamic is now a linear time invariant system.
For such a system stability can be proved with the calculation
of the eigenvalues. Compared to other nonlinear observers
this observer do not need a high computing time. With the
presented method it is possible to estimates the angle and
angular velocity of the synchronous unbalance from the sensor
signal. This unbalance observer in combination with a unbal-
ance controller do not need informations from external devices
(like the motor controller) to get the angular velocity. Thus this
combination is a selfsensing unbalance rejection method.

V. SIMULATION RESULTS

For the simulations a rigid body model is used and anal-
yses are performed on MATLAB/SIMULINK. The controller
and observer was implemented with a Matlab-function block,
where the digitization is considered. To simulate the measuring
noise a white noise with an amplitude of 10µm is applied on
the sensor signals. Fig. 4 shows the estimated sine wave of the
unbalance observer in blue and the sine wave of the output in
red. It can be seen that the observer provides also a good
solution when the output has a quite high measuring noise.

The next simulation should proof the functionality of the
compensation of the gyroscopic effect. If the gyroscopic effect

Fig. 5. Simulated Campbell Diagram

is compensated completely, the natural frequencies should not
be dependent on the angular velocity. To show this context
the Campbell diagram is used according to Fig. 5. The natural
frequencies are speed independent. This is a big advantage
compared to the original structure, because speed dependent
poles decreases the performance of the system and could
lead to instability. The compensated system is linear and time
invariant. This means that an optimal LTI controller is optimal
for all angular velocities. Because the damping ratio is positive
in the whole speed range stability is proven.

VI. EXPERIMENTAL RESULTS

Fig. 6 shows the performance of the unbalance observer.
Where Ch1 is the estimated angle CH2 is the position signal
of the unbalance and Ch3 is the sine wave which is calculated
from the observer plus a 90 phase shift. As it can be seen the
observer estimates a nearly linear angle. With this angle and
the estimated amplitude the sine is now able to get reproduced.
The estimated sine correlates well with the measured one.

The next experiment is the testing of the performance of
the two modulation Notch filter. Fig. 7 shows the performance
of the Notch Filter when it is switched on at 10000rpm. Where
CH1 and CH2 are position signals of the position sensors and
Ch3 and Ch4 are current signals which are calculated from the
position controller. It can be seen that the unbalance excites
a low frequency oscillation. When the unbalance controller
is switched on the unbalance part from the current signal is
significantly reduced and no low frequency oscillation occurs
at the position signals. With this experiment the functionality
of the unbalance controller is proven.

To verify, if the compensation of the gyroscopic effect
works in the real system, in the next experiment the dynamic
behaviour at standstill and operating speed, were compared.
For comparison the compliance transfer functions of the tilting
and translation movement were used. Due to the symmetry
of the dynamic behaviour in the x and y direction, only one
tilting and one translation transfer function is necessary. Fig. 8



Fig. 6. Measured performance of the unbalance observer

Fig. 7. Performance of the unbalance controller

shows a comparison of the tilting compliance functions. To get
a higher robustness Cr was chosen with 0.6. The gain of both
transfer function differs slightly. The reason is a not modelled
effect, caused by the AMB application. The phase shows that
the rigid body modes of the tilting movements are nearly the
same for both operating speeds and the natural frequencies
are at about 60Hz. The natural frequency of the first bending
mode at standstill is at about 860Hz and splits up for operating
speed into one bending mode with a backward whirl at about
780Hz and one with a forward whirl which cannot be seen in
this transfer function. In this paper only the gyroscopic effect
of the rigid body modes is compensated, because all the other
effects do not show stability problems. In contrast to this the
rigid body modes without this compensation will have stability
problems, due to the split up caused by the gyroscopic effect.

Fig. 9 shows the comparison of the translation compliance
functions. Both transfer functions are nearly equal. This fact
proves the functionality of the transformation in the COG

Fig. 8. Measured compliance function of the tilting movement

Fig. 9. Measured compliance function of the translation movement

coordinate system. From the phase plot can be seen that the
natural frequency of the translation rigid body modes are at
about 60Hz. The phase plot do not show a phase step due to the
first bending mode. The reason is that the first bending mode
is not well observable for translation movements with this
rotor. In summary, can be stated that the designed decoupled
controller fullfills the requirements for a stable and robust
system.

VII. CONCLUSION

This paper presents a selfsensing unbalance rejection for
a high gyroscopic rotor. This selfsensing unbalance rejection
consists of a unbalance observer which have the task to
estimate the angle and the angular velocity of the unbalance
from the unbalance information of the position signals and an
unbalance controller which has the task to reject the unbalance
part of the current signals. For the unbalance controller a
two modulation step Notch filter was used. A decentralized



structure of the unbalance controller could only be used,
if the cross couplings like the gyroscopic effect is low. To
use such an decentralized structure also for high gyroscopic
rotors a parameter variant rejection of the gyroscopic effect
was designed. This rejection of the gyroscopic effect needs
also the information of the angular velocity Ω and of the
velocities of the system equation ẋ. Ω can be used from the
unbalance observer and for the estimation of ẋ a Kalman
observer was designed. The unbalance observer is designed
in a nonlinear way, that the resulting failure dynamic is linear.
The performance of the complete control system was proved
by simulations and experiments. In summary can be stated,
that the presented selfsensing control structure has a good
performance and offers a redundancy to the angular velocity
information of the motor controller. This means, if the motor
controller has an error it is possible to run the system only
with the unbalance observer.
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