Outlier detection in complex survey data including semi-continuous components and missing values

Matthias Templ <sup>1</sup> Johannes Gussenbauer <sup>1</sup> Peter Filzmoser <sup>1</sup> Oliver Dupriez <sup>2</sup>

<sup>1</sup>Vienna University of Technology

<sup>2</sup>World Bank

This work was funded by the World Bank (project: "Improving the quality of sample household expenditure data and the reliability of poverty and inequality measures", selection no. 1157976.

# December 13, 2015

## We are happy doing this...



source: http://www.vias.org/science\_cartoons/outlier.html

## Outlier in household expenditure data

- household expenditure information is usually gathered through complex household surveys
  - data are subject to human error
  - participants don't want to share or know every information
- the Gini coefficient plays an important role in connection with household expenditure data
  - measures the inequality of the household spendings among the surveyed households

## Impact of outliers

- huge impact on non-robust estimators
- ranking between countries may completely change
- World Bank have used simple univariate outlier detection and replacement of outliers

 projekt with World Bank to improve outlier detection and replacement

## Provided data and data structure

- household expenditure data from Albania(2008), Mexico(2010), India(2009), Malawi(2010) and Tajikistan(2007)
- containing value of goods or services for each household over a period of time
- World Bank started to harmonize the resulting data
- household consumption categorized by
  - ICP basic headings / ICP class / ICP group / ICP category

## Data preparation & missing values

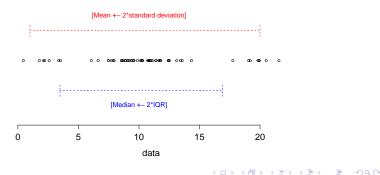
- household consumption of good or service only listed if greater than zero
- not possible to differentiate if those are real zeros or missing values
- number of zeros/missing values is very high when using the ICP classification (many categories)
- amalgamation of components is thus necessary
  - combine variables with comparably large household expenditures
  - combine variables to efficiently reduce zeros/missings

| Category                                                | Zeros/Missing entries |
|---------------------------------------------------------|-----------------------|
| Food and non-alcoholic beverages                        | 2                     |
| Alcoholic beverages, tobacco and narcotic               | 1476                  |
| Clothing and footwear                                   | 347                   |
| Furnishings, household equipment, household maintenance | 2                     |
| Health                                                  | 1264                  |
| Transport                                               | 1468                  |
| Communication                                           | 407                   |
| Recreation and culture                                  | 19                    |
| Education                                               | 3278                  |
| Restaurants and hotels                                  | 1814                  |
| Miscellaneous goods and services                        | 114                   |
| Net purchases abroad                                    | 3600                  |

Table: Number of missing entries per category for the Albanian household survey, which contains 3600 households

## Robust statistical methods

- we use robust statistical methods to detect potential outliers
- univariate and multivariate methods were tested



## Univariate methods

- data points which are "far enough" away from the main bulk of the data
- the following methods were used:
  - estimate location and scale in a robust way to determine interval for "good" observations

$$\bullet \quad [med \ - \ c \cdot S_{IQR} \ , \ med \ + \ c \cdot S_{IQR}]$$

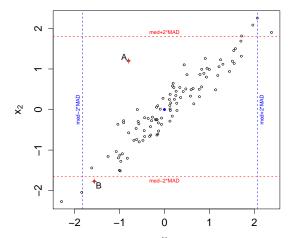
$$\blacktriangleright \quad [med \ - \ c \cdot S_{MAD} \ , \ med \ + \ c \cdot S_{MAD}]$$

- boxplot
- expenditure data usually skewed to the right
  - ► use Box-Cox transformation ⇒ estimate interval ⇒ transform back interval boundaries
  - use skewness-adjusted Boxplot
- Pareto tail modeling using robust methods that can deal with sampling weights (Alfons, Templ, Filzmoser, 2013)

# Replacement of univariate potential outliers

- potential outliers are winsorized to the lower/upper ends of the calculated intervals
- for Pareto tail modeling, values larger than a certain quantile of the fitted distribution
  - are replaced by values drawn from the fitted distribution
  - their sample weights are set to 1 and the rest of the data are re-calibrated

# Applying univariate methods to multivariate data



**X**1

## Mahalanobis distance

• use distance measure which takes into account the multidimensional structure of the data  $\Rightarrow$ squared Mahalanobis distance  $MD_i^2$ 

$$MD_i^2 = (\mathbf{x}_i - \overline{\mathbf{x}})^t S^{-1}(\mathbf{x}_i - \overline{\mathbf{x}}) ,$$

- estimate center and covariance in a robust way to gain squared robust distances, RD<sub>i</sub><sup>2</sup>
- if data follows a multivariate normal distribution  $\Rightarrow MD_i^2 \sim \chi_p^2$
- declare data points as potential outliers if they exceed \(\chi\_{p;0.975}^2\)

## Multivariate methods

- robust methods to estimate center and covariance
  - M-estimate
    - generalization of Maximum Likelihood estimate
  - S-estimate
  - MM-estimate
    - uses high breakdown preliminary S-estimate
  - MCD-& MVE-estimate
    - Minimum covariance determinant estimate
    - Minimum volume ellipsoid estimate
  - Stahel-Donoho estimate
  - OGK estimate

•  $Cov(X,Y) = \frac{1}{4}(Var(X+Y) - Var(X-Y))$ 

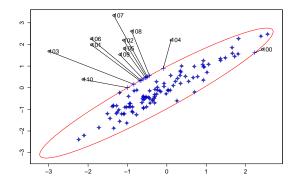
## Multivariate methods

## BACON-EEM

- combines the BACON algorithm and EEM algorithm
- uses EEM-algorithm to estimate center and covariance during BACON-procedure
- EEM-algorithm able to handle missing values in the data
- Epidemic Algorithm
  - simulate an epidemic, starting from the center of the data
  - data points with high infection times are declared potential outliers

## Replace potential outliers

 multivariate potential outliers are winsorised onto the boundaries of the 97.5% tolerance ellipse.



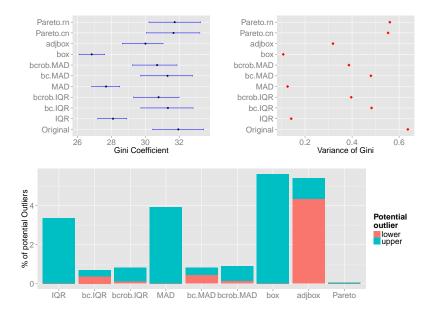
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = ののの

## Applying outlier detection methods

- univariate outlier detection methods were applied on the total annual household expenditures
  - exclude missing values/zeros from calculations
- multivariate outlier detection methods after
  - log transforming the data
  - imputation of zeros/missing values if necessary with kNN algorithm
    - BACON-EEM & EA have an internal imputation mechanism

 estimate weighted Gini coefficient of total annual expenditures

## Results for Albanian data set



▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

### Results for Albanian data set



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

## Simulation setup

- ► To know the number of "true" outliers.
  - split Albanian data into a "clean" and "contaminated" data set
    - ▶ data point never flagged  $\Rightarrow$  "clean" data
    - ► data point flagged by at least 5 univariate outlier detection methods OR at least 6 multivariate outlier detection methods ⇒ "contaminated" data

(日) (同) (三) (三) (三) (○) (○)

- estimate location and covariance for "clean" and "contaminated" data set in a classical manner  $\Rightarrow (\mu_{cl}, \Sigma_{cl}), (\mu_{co}, \Sigma_{co})$
- simulate data from  $MVN(\mu_{cl}, \mathbf{\Sigma}_{cl})$

## Simulation setup

- swap observations with contaminated values generated from  $MVN(\mu_{co}, \Sigma_{co})$ 
  - swap only a single cell for share of contaminated data
- simulated data set X follows the following distribution

$$\mathbf{X} ~\sim~ (1-\epsilon) \textit{MVN}(oldsymbol{\mu}_{cl}, oldsymbol{\Sigma}_{cl}) + \epsilon \textit{MVN}(oldsymbol{\mu}_{co}, oldsymbol{\Sigma}_{co})$$

with  $\epsilon \in (0, 1)$  determining the share of contaminated data points.

 include missing values and sample weights from the Albanian data set ,

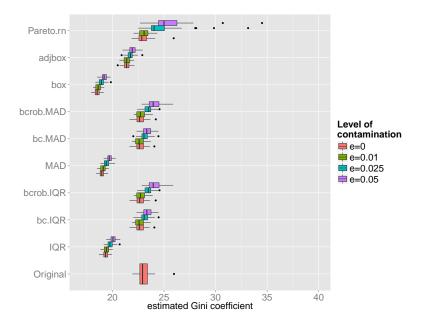
## Simulation parameters

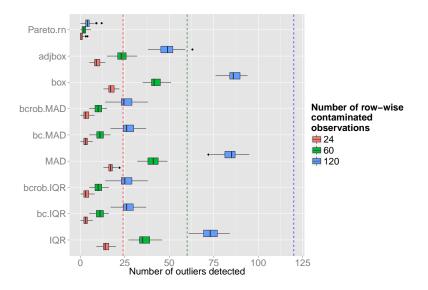
 simulation and application of univariate and multivariate outlier detection methods is repeated 50 times

- $\epsilon \in \{0; 0.01; 0.025; 0.05\}$
- ▶ 1/3 of the contamination is cell-wise

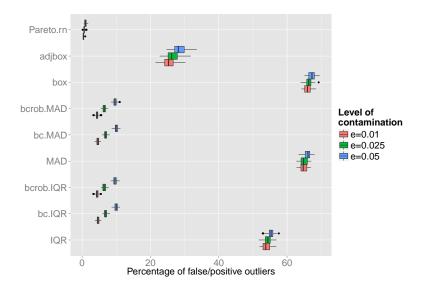
# Application of outlier detection methods methods

- simulate data
- apply outlier detection methods
  - ► apply univariate methods on each of the columns of the generated data ⇒ results more comparable to multivariate case
- detect and impute potential outliers
- count correctly identified outliers and false positive outliers
- estimate the Gini coefficient of the total sum of each observation

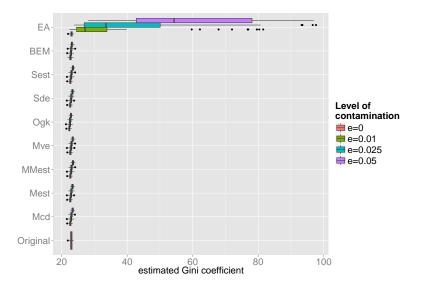




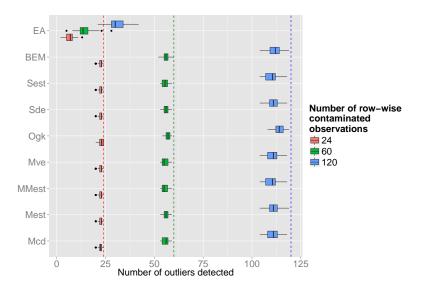
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)



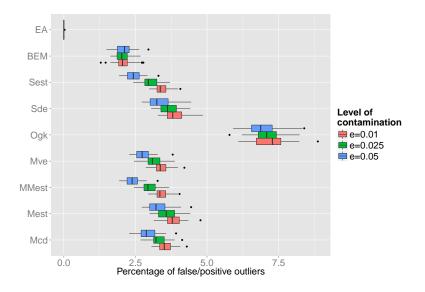
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 \_ のへぐ

# Estimates of Gini for the 5 different countries

| Country          | Number<br>of households |                | Original | IQR   | BACON<br>EEM |
|------------------|-------------------------|----------------|----------|-------|--------------|
| Albania(2008)    | 3600                    | Gini           | 31.95    | 28.10 | 30.44        |
|                  |                         | Number outlier | -        | 121   | 332          |
| India(2009)      | 100852                  | Gini           | 39.82    | 33.56 | 37.44        |
|                  |                         | Number outlier | -        | 9131  | 9404         |
| Mexico(2010)     | 27655                   | Gini           | 44.20    | 37.62 | 42.75        |
|                  |                         | Number outlier | -        | 1669  | 2429         |
| Malawi(2010)     | 12096                   | Gini           | 48.52    | 36.13 | 41.22        |
|                  |                         | Number outlier | -        | 1003  | 796          |
| Tajikistan(2007) | 4860                    | Gini           | 33.11    | 28.59 | 30.32        |
|                  |                         | Number outlier | _        | 244   | 505          |

## Summary

- Simulation study necessary to determine performance of outlier detection methods on household expenditure data
- The simulation study presented in this work favored the BACON-EEM to be the most suitable method, but
  - simulation study favored multivariate methods in contrast to univariate methods
  - did not take into account sociodemographic criteria or household specific information
  - ➤ → cell-wise outlier detection methods using regression on compositional parts are just tested. First results are promising.

## References



#### A. Alfons and M. Templ.

Estimation of social exclusion indicators from complex surveys: The R package laeken. Journal of Statistical Software, 54(15):1–25, 2013.

### A. Alfons, M. Templ, and P. Filzmoser.

Robust estimation of economic indicators from survey samples based on  $\ensuremath{\mathsf{Pareto}}$  tail modeling.

Journal of the Royal Statistical Society, Series C, 62(2):271â-286, 2013.



#### C. Béguin and B. Hulliger.

The BACON-EEM algorithm for multivariate outlier detection in incomplete survey data.

Survey Methodology, 34(1):91–103, 2008.



#### N. Billor, A. S. Hadi, and P. F. Vellemann.

BACON: Blocked adaptative computationally-efficient outlier nominators. Computational Statistics and Data Analysis, 34(3):279–298, 2000.



B. Hulliger, A. Alfons, P. Filzmoser, A. Meraner, T. Schoch, and M. Templ. Robust methodology for laeken indicators. Research Project Report WP4 – D4.2, FP7-SSH-2007-217322 AMELI, 2011.

### T. Todorov and P. Filzmoser.

An object oriented framework for robust multivariate analysis. Journal of Statistical Software, 32(3):1–47, 2009.