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We are happy doing this...

source: http://www.vias.org/science cartoons/outlier.html



Outlier in household expenditure data

I household expenditure information is usually
gathered through complex household surveys

I data are subject to human error
I participants don’t want to share or know every

information

I the Gini coefficient plays an important role in
connection with household expenditure data

I measures the inequality of the household spendings
among the surveyed households



Impact of outliers

I huge impact on non-robust estimators

I ranking between countries may completely
change

I World Bank have used simple univariate outlier
detection and replacement of outliers

I projekt with World Bank to improve outlier
detection and replacement



Provided data and data structure

I household expenditure data from
Albania(2008), Mexico(2010), India(2009),
Malawi(2010) and Tajikistan(2007)

I containing value of goods or services for each
household over a period of time

I World Bank started to harmonize the resulting
data

I household consumption categorized by
I ICP basic headings / ICP class / ICP group / ICP

category



Data preparation & missing values

I household consumption of good or service only
listed if greater than zero

I not possible to differentiate if those are real
zeros or missing values

I number of zeros/missing values is very high
when using the ICP classification (many
categories)

I amalgamation of components is thus necessary
I combine variables with comparably large household

expenditures
I combine variables to efficiently reduce

zeros/missings



Category Zeros/Missing entries

Food and non-alcoholic beverages 2
Alcoholic beverages, tobacco and narcotic 1476
Clothing and footwear 347
Furnishings, household equipment, household maintenance 2
Health 1264
Transport 1468
Communication 407
Recreation and culture 19
Education 3278
Restaurants and hotels 1814
Miscellaneous goods and services 114
Net purchases abroad 3600

Table: Number of missing entries per category for the Albanian
household survey, which contains 3600 households



Robust statistical methods
I we use robust statistical methods to detect

potential outliers
I univariate and multivariate methods were

tested
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Univariate methods

I data points which are ”far enough” away from
the main bulk of the data

I the following methods were used:
I estimate location and scale in a robust way to

determine interval for ”good” observations
I [med − c · SIQR , med + c · SIQR ]
I [med − c · SMAD , med + c · SMAD ]
I boxplot

I expenditure data usually skewed to the right
I use Box-Cox transformation ⇒ estimate interval ⇒

transform back interval boundaries
I use skewness-adjusted Boxplot

I Pareto tail modeling using robust methods that
can deal with sampling weights (Alfons, Templ,
Filzmoser, 2013)



Replacement of univariate potential
outliers

I potential outliers are winsorized to the
lower/upper ends of the calculated intervals

I for Pareto tail modeling, values larger than a
certain quantile of the fitted distribution

I are replaced by values drawn from the fitted
distribution

I their sample weights are set to 1 and the rest of
the data are re-calibrated



Applying univariate methods to
multivariate data
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Figure: simulated data from multivariate standard normal
distribution including one outlier (point A)



Mahalanobis distance

I use distance measure which takes into account
the multidimensional structure of the data ⇒
squared Mahalanobis distance MD2

i

MD2
i = (xi − x)tS−1(xi − x) ,

I estimate center and covariance in a robust way
to gain squared robust distances, RD2

i

I if data follows a multivariate normal
distribution ⇒ MD2

i ∼ χ2
p

I declare data points as potential outliers if they
exceed χ2

p;0.975



Multivariate methods

I robust methods to estimate center and
covariance

I M-estimate
I generalization of Maximum Likelihood estimate

I S-estimate
I MM-estimate

I uses high breakdown preliminary S-estimate
I MCD-& MVE-estimate

I Minimum covariance determinant estimate
I Minimum volume ellipsoid estimate

I Stahel-Donoho estimate
I OGK estimate

I Cov(X ,Y ) = 1
4 (Var(X + Y )− Var(X − Y ))



Multivariate methods

I BACON-EEM
I combines the BACON algorithm and EEM

algorithm
I uses EEM-algorithm to estimate center and

covariance during BACON-procedure
I EEM-algorithm able to handle missing values in

the data

I Epidemic Algorithm
I simulate an epidemic, starting from the center of

the data
I data points with high infection times are declared

potential outliers



Replace potential outliers
I multivariate potential outliers are winsorised

onto the boundaries of the 97.5% tolerance
ellipse.
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Applying outlier detection methods

I univariate outlier detection methods were
applied on the total annual household
expenditures

I exclude missing values/zeros from calculations

I multivariate outlier detection methods after
I log transforming the data
I imputation of zeros/missing values if necessary

with kNN algorithm
I BACON-EEM & EA have an internal imputation

mechanism

I estimate weighted Gini coefficient of total
annual expenditures



Results for Albanian data set
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Results for Albanian data set
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Simulation setup

I To know the number of “true” outliers.
I split Albanian data into a ”clean” and

”contaminated” data set
I data point never flagged ⇒ ”clean” data
I data point flagged by at least 5 univariate outlier

detection methods OR at least 6 multivariate outlier
detection methods ⇒ ”contaminated” data

I estimate location and covariance for ”clean”
and ”contaminated” data set in a classical
manner ⇒ (µcl ,Σcl),(µco,Σco)

I simulate data from MVN(µcl ,Σcl)



Simulation setup

I swap observations with contaminated values
generated from MVN(µco,Σco)

I swap only a single cell for share of contaminated
data

I simulated data set X follows the following
distribution

X ∼ (1− ε)MVN(µcl ,Σcl) + εMVN(µco,Σco) ,

with ε ∈ (0, 1) determining the share of
contaminated data points.

I include missing values and sample weights from
the Albanian data set



Simulation parameters

I simulation and application of univariate and
multivariate outlier detection methods is
repeated 50 times

I ε ∈ {0; 0.01; 0.025; 0.05}

I 1/3 of the contamination is cell-wise



Application of outlier detection methods
methods

I simulate data
I apply outlier detection methods

I apply univariate methods on each of the columns
of the generated data ⇒ results more comparable
to multivariate case

I detect and impute potential outliers

I count correctly identified outliers and false
positive outliers

I estimate the Gini coefficient of the total sum of
each observation
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Estimates of Gini for the 5 different
countries

Country Number
of households Original IQR BACON

EEM

Albania(2008) 3600 Gini 31.95 28.10 30.44

Number outlier – 121 332

India(2009) 100852 Gini 39.82 33.56 37.44

Number outlier – 9131 9404

Mexico(2010) 27655 Gini 44.20 37.62 42.75

Number outlier – 1669 2429

Malawi(2010) 12096 Gini 48.52 36.13 41.22

Number outlier – 1003 796

Tajikistan(2007) 4860 Gini 33.11 28.59 30.32

Number outlier – 244 505



Summary

I Simulation study necessary to determine
performance of outlier detection methods on
household expenditure data

I The simulation study presented in this work
favored the BACON-EEM to be the most
suitable method, but

I simulation study favored multivariate methods in
contrast to univariate methods

I did not take into account sociodemographic
criteria or household specific information

I → cell-wise outlier detection methods using
regression on compositional parts are just tested.
First results are promising.
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