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Abstract—We present a method for 2D shape matching using
a combination of distance functions and discrete curvature. The
eccentricity transform computes the longest geodesic distance
across the object. This transform is invariant to translation
and rotation. The maximal eccentricity points yield diameters
across the image. We compute the Euclidean distances from the
boundary to the diameter to characterize the curvature of the
shape. Our shape descriptor is comprised of the best matches
retrieved from the normalized histogram of the eccentricities, the
Hausdorff distance between the set of distances to the diameter
and a measure of the number of points lying on either side of the
diameter along with the peak values. We evaluate this descriptor
on 2D image databases consisting of rigid and articulated shapes
by ranking the number of matches. In almost all cases, the shapes
are matched with at least one shape from the same class.

I. INTRODUCTION

Shape matching in 2D images plays a key role in object
recognition and tracking. Shapes are matched based on their
similarity, the similarity being defined by the unique signature
each shape provides. The key challenge in shape matching is,
hence, to derive such a signature from the image of an object.
This in turn helps categorize or differentiate between categories
of shapes. Thus the signature that defines the shape should be
invariant to scale, rotation and to a certain degree perturbations
caused by noise.

Shape matching for articulated objects is more complicated
than rigid objects. An articulated object is defined as a union
of rigid parts and joints. A transformation that is rigid with
respect to the parts, but non-rigid when the whole object is
taken into consideration is an articulation. An example of this
is the dataset shown in Figure 5. Shape matching in these
instances entails identifying articulations of an object to belong
to the same class. The same object may have different shapes
in different poses. Hence, the signature needs to be consistent
across these articulations.

There exists a vast amount of literature on shape matching
using feature selection. These methods range from applying
textural features on satellite imagery [3] to applying deep
learning to features for image classification[10]. Distance
functions provide an alternative method to this. One of the
first instance of a distance function on images is the distance
transform proposed in [9] that associates to each point the
length of the shortest path to the closest boundary point
in the shape. The weakness of this method arises from the
locality of the distance measurements and thus its susceptibility
to error in case of slight perturbations in the shape. The
eccentricity [7] measure, instead, looks at the longest geodesic

distance between two points on an object and these remain the
same irrespective of the transformation, unless there occurs
a morphological change. It is also invariant to translation
and rotation. This provides a very strong basis for a shape
descriptor.

The problem of articulated 2D shape matching in binary
images using the eccentricity transform was studied in [5].
The eccentricity transform of a shape assigns to each point
of the shape the distance to the point farthest away. The ec-
centricities are measured based on geodesic distances, making
it robust against articulation. Two measures were combined
here to match the shapes: the histogram of the eccentricity
values and a histogram of the connected components of the
discrete level-sets of the eccentricity transform. This method
proves successful, but faces drawbacks because of the low
dimensionality of the histograms. Also, another key factor that
is overlooked here is the curvature of the shapes.

To overcome the lower dimensionality problem, we fac-
tor in the curvature of the image. We apply the chords-to-
points distance accumulation measure on the shape. This was
introduced as a means of measuring planar curvature in [2].
Here, the distance from all the points on the image to multiple
chords are accumulated. However, instead of applying multiple
chords to measure the curvature, we identify the maximum
eccentricity values and plot diameters over the image. The
set of distances to these diameters are used as a measure to
compare shapes. In addition to this, we identify the following
key attributes namely: the number of points lying on each side
of the diameter and the distances to the peaks on each side.
This gives us a clear picture of how the shape is formed.
We combine these measures to successfully match images
belonging to the same class with each other.

In Section II, we explain in more detail the ideas we apply
in this paper. Following this in Section III, we explain how we
implement and combine these concepts to classify images. We
present our evaluation of our method in Section IV and our
conclusions follow in Section V.

II. RELATED CONCEPTS

In graph theory, for a connected graph, the eccentricity of a
vertex is the measure of the shortest length of the paths to any
other vertex in the graph. For a shape S, if ds is the geodesic
distance, then the eccentricity of a point p ∈ S is defined as

ECC(S,p) = max(ds(p,q))|q ∈ S (1)978-1-4799-7186-2/15/$31.00 c©2015 IEEE



The eccentricity of p is the length of the longest geodesic
that has p as one of its end points in the same connected
region.

The eccentricity transform was introduced in [7] as a
means of applying the eccentricity as a distance transform
over a graph or a 2D image. The application of the transform
associates with each point p in the shape its eccentricity. The
maximal eccentricity points form the diameter of the shape. It
is shown in [7] that the transform performs well in the presence
of salt and pepper noise.

The chord-to-point distance accumulation (CPDA) is a
discrete curvature measure. It applies the idea that the flatness
of a curve can be measured by comparing a segment of
the curve with a straight line. The measure accumulates the
distance from a point in the boundary to a chord that is
specified by moving points on the boundary. Consider the
boundary B = {p0, p1, ..., pN−1} of an object. A line li can
be defined from a point pi to pi+l. The perpendicular distance
from a point pk ∈ P to li defines the distance to Li. The
distance is positive or negative depending on where pk is
located with respect to li. The distance accumulation for pk
and a chord of length L is the sum hL of the distances as i
moves from k − L to k.

hL (k) =
k∑

i=k−L

Dik (2)

The scale-space image of the distance accumulation show
that the locations of the zero crossings are stable through a
range of values of L.

III. PROPOSED METHOD

We apply the concepts described above to derive a shape
descriptor.

A. Computing the eccentricity transform

As described in Section II, the eccentricity is the measure
of the longest of the shortest paths from one vertex to another.
A common approach to the computation of the shortest path
over a graph is the Dijkstra’s shortest path algorithm. From
a given point, the distances to all the unvisited adjacent
vertices is computed. If any of the distances is lesser than
previously known, then the vertex is updated to reflect this
new information. This process is continued until all vertices
are updated.

To apply the Dijkstra’s shortest path to a 2D image, every
point on the image is assumed to be connected to its four
adjacent neighbors. As shown in Figure 1, to move from point
A to point B, the shortest path is two-step. This is inconsistent
with the Euclidean distance between the two points. This
inconsistency can be resolved by applying the Fast Marching
methods for distance computation [6]. Fast marching resolves
the distance computation by simulating wavefront propagation.
The key difference between fast marching and Dijkstra’s
method lie in the ’update’ step. Instead of proceeding step-
by-step, fast marching looks at the closest Euclidean distance
points. The details of this method can be found in [1]. Here,

(a) Dikstra’s shortest path
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(b) Fast Marching
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Fig. 1: Fast Marching path traversal can be approximated using
an 8-connected graph

since we are dealing with 2D images, assuming uniform sam-
pling, we safely approximate fast marching distance computa-
tion by applying 8-connectivity and using Dijkstra’s shortest
path algorithm. This is illustrated in Figure1. As shown, we
can move from point A to B in a single step. The distance thus
computed is equivalent to the Euclidean distance between the
points.

The eccentricity transform ideally requires the computation
of the eccentricity at every point of the image. This is a
naive approach, and is computationally expensive. An iterative
approach is applied in [5]. The eccentricity is first computed at
any random point. From the furthest end point of the path, the
eccentricity is re-computed so that a diameter is established.
All the points in the shape are now assigned the longest of the
shortest paths to either of the end points of the diameter. The
centre points of the shape are estimated to be the points with
minimum eccentricity values. Eccentricity local maxima are
computed from each of these central points and the distances
to all the points in the image are calculated until no local
maxima remain. This method is further refined to grow clusters
to define eccentricity regions.

In comparison, here, we start with the assumption that the
eccentric points of the shape lie on the boundary. This follows
from the properties of eccentricity listed in [4]. For a simply
connected shape S, all the eccentric points are located on the
boundary. There can occur shapes where this is not the case.
For instance, in case of shapes with holes, if the shape has
more than one hole, eccentric points could exist inside the
shape. For the datasets we consider, we are able to obtain
good results despite this assumption.

Since, the shape is assumed to be 8-connected, the bound-
ary is identified as any point with less than 8 adjacent neigh-
bors. The image is assumed to be uniformly sampled, hence
each edge is given equal weights. The eccentricity for all points
is thus computed. The points with maximum eccentricity help
identify the diameters across the image.

B. Forming the shape descriptor

To match shapes, a unique shape descriptor is created.
The shape descriptor is formed of three components: the
eccentricity histogram h, a Hausdorff distance comparator c
and a set of attributes a.

The eccentricity histogram h for a shape S is defined as
follows [5],∀i = 1, ..., kh:



Fig. 2: Eccentricity histograms for an image of the category
’fish’ and ’airplanes’. The histograms are similar in structure,
hence making it difficult to separate the categories.

h(S, i) =
1

|S|
#

{
p ∈ S| i− 1

kh
6
ECC(S,p)−m

M −m
<

i

kh

}
(3)

where |S| is the number of pixels in S and m and M
are the smallest and largest of the eccentricity values over
S. This histogram gives an idea of how the eccentricities are
distributed over the image. The histogram gives a fair set
of matches for the images. We use the L2-norm to compare
the histograms. However, different images can have identical
eccentricity distributions, as shown in Figure 2. It is a linear
descriptor and fails to give an idea of the structure of the
image.

To compensate for this, we modify upon the chords-
to-points distance accumulation method to form a second
component c in our descriptor. The points with maximum
eccentricity are selected to form one or more diameters of
the image. The distance is calculated from all the boundary
points of the image to the each of the diameters. For an image
Ik, this forms a set of distance measures Dk(x, b) where x is
the number of diameters plotted across the image and b is the
number of boundary points. There exist multiple diameters due
to one of the following reasons. First, the object is symmetrical
across multiple axes. Second, there lie adjacent points near the
diameter extremities which are at the same distance from each
other. Third, there could be noise in the image. Hence, we take
into consideration all possible diameters.

To compute the best match, we calculate the minimum of
the Hausdorff distances among these sets of diameters. The
Hausdorff distance between two point sets A = a0, a1..., ap
and B = b0, b1...bq is defined as

H (A,B) = max (h (A,B) , h (B,A)) (4)

where

h (A,B) = max
a∈A

min
b∈B
‖ a− b ‖ (5)

Fig. 3: The first hand shape has two diameters, while the
second shape has only one. Using the minimum Hausdorff
distance, the diameter AB is found to match.

In this case, ‖ · ‖ represents the Euclidean distance.
h (A,B) identifies the point a ∈ A that is farthest away from
any point in B and measures the distance from to the nearest
point. Essentially, it identifies the most mismatched point in
A. h (B,A) identifies the most mismatched point in B. Thus,
H (A,B) measures the degree of mismatch between the two
finite point sets.

We use this measure to identify the diameters that divide
the images consistently. This is indicated in Figure 3. Here,
the minimum of the Hausdorff distances between the sets of
measured distances from the boundary to the diameters is given
by AB, that is consistent across the both the images of the
deformed hands.

The third component of the shape descriptor consists of a
set of attributes that gives us an idea of how the points are
distributed across the chosen diameter. The first and second
attributes are the number of points above and below the
diameter - indicated by the positive and negative distances
from the boundary. The third and fourth attributes indicate
the maximum and minimum distances from the diameter. This
is used to indicate the highest peak on both sides of the
diameter, thus giving an idea of the scale of the image in a
direction orthogonal to the diameter. We calculate the L2-norm
between the sets of attributes. These three components provide
complementary matches. Once we have these three values, we
use the measure that provides the highest number of matches
in a given class.

Our results on the Kimia 25 dataset are shown in Figure 4.
Here, the first column is the test image and is being matched
against the rest of the images in the dataset.

IV. EVALUATION

We conducted experiments on three datasets: Kimia 25
[12], Kimia 99 [11] and the Ling articulated dataset [8]. The
Kimia 25 dataset is comprised of five classes of four images
each and one class with five images. Hence q = 25 and
lmax = 6. The Kimia 99 dataset consists of nine classes of
eleven images each. The Ling dataset, Figure 5 consists of
a set of articulated objects. Each column indicates a different
articulation of 8 classes of objects.



(a) fish (b) greebles (c) hands

(d) airplanes (e) rabbits (f) tools

Fig. 4: We match the images in the first column against all the images in the dataset. The next three columns indicate the best
matches retrieved, omitting the test image itself.

Algorithm r=1 r=2 r=3

ECCobj2D, s only 18 19 17
ECCobj2D, h only 20 16 14
ECCobj2D 22 20 17

ECCCurv, h only 15 13 10
ECCCurv, c only 19 15 9
ECCCurv, a only 21 18 6
ECCCurv 22 20 15

TABLE I: Match results on the Kimia 25 dataset.

A shape database is composed of q shapes. Each shape
Si in the database has a label Li that indicates the class to
which the image belongs. The purpose of a shape matching
algorithm is to assign to each shape the best matches. The
efficiency of matching algorithms is measured by the number
of correct matches:

Matchr(φ) =

q∑
i=1

1L(φi(r))=L(i) 6 q (6)

Matchr(φ) gives the number of matches retrieved for
a given category. In the tables r = 1 shows the number
of instances where the first match retrieved is of the same
category, omitting the image itself, r = 2 gives the number of
instances where the first and second matches were of the same
category and so on.

Algorithm r=1 r=2 r=3 r=4 r=5 r=6

ECCobj2D, s only 84 68 65 67 56 57
ECCobj2D, h only 87 74 66 64 49 52
ECCobj2D 94 85 81 73 81 73

ECCCurv, h only 72 48 44 39 30 22
ECCCurv, c only 61 51 40 31 18 14
ECCCurv, a only 73 55 41 24 15 12
ECCCurv 93 84 76 68 49 38

TABLE II: Match results on the Kimia 99 dataset.

Algorithm r=1 r=2 r=3 r=4

ECCobj2D 40 33 29 22
ID-shape context + DP [8] 40 34 35 27
ECCCurv 40 29 15 5

TABLE III: Match results on the Ling dataset. We also show
the numbers from the original work done on the dataset.

V. CONCLUSIONS

In this paper, we have presented a method for 2D shape
matching for articulated shapes. We use the eccentricity trans-
form, which is based on the measurement of maximal geodesic
distances in a shape. The shape descriptor is composed of
three parts: a normalized histogram of the eccentricity values,
the Hausdorff distance between the sets of distances measured
from the boundary of the shape to the diameter and a measure



Fig. 5: Articulated Ling dataset [8]

of the number of points lying on either side of the diameter
along with the peak values. This combined measure gives us
information about the connectivity, compactness and structure
of the image.

We also showed that using 8-connectivity for establishing
the adjacency graph combined with Dijkstra’s shortest path
algorithm serves as a good approximation to the Fast Marching
method for 2D images, under the assumption of uniform sam-
pling. We provide experimental results to show that our method
provides results that are comparable to similar approaches on
well known image databases.

An extension of this method is to apply the method to
3D single and multiple object scenes. However then, Fast
Marching cannot be approximated in instances where the
triangular meshes are not uniform. We will also investigate
extending the chords-to-points distance accumulation to 3D.
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