Robust Censoring Using Metropolis-Hastings Sampling

Georg Kail, Member, IEEE, Sundeep Prabhakar Chepuri, Student Member, IEEE, and Geert Leus, Fellow, IEEE

Abstract—The tasks of online data reduction and outlier rejection are both of high interest when large amounts of data are to be processed for inference. Rather than performing these tasks separately, we propose a joint approach, i.e., robust censoring. We formulate the problem as a non-convex optimization problem based on the data model for outlier-free data, without requiring prior model assumptions about the outlier perturbations. Moreover, our approach is general in that it is not restricted to any specific data model and does not rely on linearity, uncorrelated measurements, or additive Gaussian noise. For a given desired compression rate, the choice of the reduced dataset is optimal in the sense that it jointly maximizes the likelihood together with the inferred model parameters. An extension of the problem formulation allows for taking the average estimation performance into account in a hybrid optimality criterion. To solve the problem of robust censoring, we propose a Metropolis-Hastings sampler method that operates on small subsets of the data, thus limiting the computational complexity. As a practical example, the problem is specialized to the application of robust censoring for target localization. Simulation results confirm the superiority of the proposed method compared to other approaches.

Index Terms—Robustness, censoring, outlier rejection, sparse sensing, big data, Metropolis-Hastings sampler, Markov chain Monte Carlo method.

I. INTRODUCTION

In this era of data deluge, performing analytics on the massive volumes of data generated by ubiquitous sensors, internet, power and social networks, is increasingly challenging. Such prohibitively large volumes of datasets very often include entries from faulty systems, malicious agents, or entries that are irrelevant and redundant. The data generated from faulty systems, for example, may contain outliers that do not obey the postulated or learnt model [2]–[4]. These outlying entries significantly degrade the performance of the underlying inference tasks like prediction, estimation, tracking, clustering, and classification, to list a few. Therefore, the task of mining the most informative data samples and rejecting possible outliers is of paramount importance in data analytics.

Data analytics with large-scale data is infeasible without dimensionality reduction due to the limited computational capacity. Dimensionality reduction can be achieved bysmartly designing efficient data gathering or sketching techniques keeping in mind the inference task to be performed, for example, through sensor selection or censoring. Sensor selection is an offline design approach [5]–[8], where the sensing operation is designed based only on the data model (even before gathering the data) such that a desired ensemble inference performance is achieved; hence, we refer to such methods as model-driven sensing schemes. On the other hand, in contrast to these offline design schemes, dimensionality reduction can be done on already acquired data by throwing away, i.e., censoring, less informative samples; we refer to such censoring schemes as data-driven sensing schemes. Censoring in its classical flavor is typically applied in a distributed setup, where the uninformative sensors do not transmit their observations to the fusion center [9], [10], thereby reducing the communications as well as the processing costs. Here, we do not assume a distributed setup and focus on the processing costs of subsequent inference tasks.

Evidently, the model-driven schemes that are agnostic to data are not robust to outliers. Even though the data-driven schemes like censoring use the data, existing state-of-the-art censoring schemes are not designed to be robust to outliers. On the other hand, existing robust estimators are not devised specifically for dimensionality reduction. Some well-known robust estimators are: (i) M-estimators [2], which are maximum likelihood-type of estimators that replace the likelihood function with a smooth function introducing robustness, (ii) least-trimmed-squares (LTS) estimators [11], which remove outliers from the least-squares fit based on a predetermined breakdown point that determines the number of outliers, (iii) random sample consensus (RANSAC) [12], an iterative algorithm that classifies at each iteration a random subset of data as inliers or outliers, or (iv) sparsity-controlling outlier rejection (SCOR) [3], [13], [14], which models outliers as additive perturbations and estimates a sparse vector containing these perturbations. The above approaches reduce the dimensionality of the data only in so far as they discard outliers. They do not provide a meaningful tool for further dimensionality reduction. Moreover, they are mostly designed for linear Gaussian problems, without a straightforward generalization to more complicated non-linear or non-Gaussian estimation problems.

In this paper, we propose a joint approach for robust learning and data censoring, i.e., robust censoring. We focus on non-linear regression problems. The dimensionality reduction
This paper is organized as follows. Section II contains the problem formulation for robust censoring and relates it to existing schemes. In Section III, we present the proposed method for solving the problem using MH sampling. The general formulation of the method is subsequently specialized to the problem of robust censoring for target localization in Section IV, including numerical experiments to assess the performance of the proposed method. In Section V, we present a modification of the proposed robust censoring scheme that allows us to incorporate the average estimation performance into a hybrid optimality criterion. Our conclusions are summarized in Section VI.

Notation. The notation used in this paper can be described as follows. Upper (lower) bold face letters are used for matrices (column vectors). $(\cdot)^T$ denotes transposition. $\text{diag}(\cdot)$ refers to a diagonal matrix with its argument on the main diagonal. $\text{diag}_c(\cdot)$ represents a diagonal matrix with the argument on its diagonal but with the all-zero rows removed. I is an identity matrix. $E\{\cdot\}$ denotes the expectation operation. The ℓ_0-(quasi) norm of a vector w refers to the number of nonzero elements in w, i.e., $\|w\|_0 := |\{m : w_m \neq 0\}|$. The ℓ_1-norm of an $N \times 1$ vector w is denoted by $\|w\|_1 = \sum_{n=1}^{N} |w_n|$.

II. PROBLEM MODELING

Consider a general non-linear regression problem, where an unknown vector $\theta \in \mathbb{R}^N$ is to be estimated from the output data $\{x_m\}_{m=1}^{D}$. The output data are collected in the vector $x = [x_1, x_2, \ldots, x_D]^T \in \mathbb{R}^D$. We assume that the length-D data vector x is possibly contaminated with up to o outliers and/or it contains uninformative elements, where we interpret uninformative data as data that have a large likelihood.

Let the uncontaminated data vector, denoted by $\bar{x} = [\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_D]^T \in \mathbb{R}^D$, be related to the unknown parameters $\theta = [\theta_1, \theta_2, \ldots, \theta_N]^T \in \mathbb{R}^N$ through a non-linear model that is represented by the resulting probability distribution of \bar{x}:

$$\bar{x} \sim p(\bar{x}; \theta).$$

We assume that this distribution is known for any θ. However, due to the presence of outliers, the observed data x do not always obey the above model. For estimating the unknown parameter θ, we have access only to the (partly) contaminated data x. The statistical dependence of x on \bar{x} or θ is not assumed to be known. In other words, we do not assume a specific model for the outliers. We only use the implicit characteristic of outlier-contaminated measurements that they strongly deviate from the known model, i.e., they have a very small (or even zero) probability, given the true θ.

The dimensionality reduction of the observed data x is represented by the sparse Boolean vector $w \in \{0, 1\}^D$, where $w_m = 0$ indicates that x_m is considered outlying or is censored, and $w = [w_1, w_2, \ldots, w_D]^T$. Recall that D is also the length of x. Out of the D elements of w, only $d \ll D$ are nonzero. Using w, we construct the censoring matrix $\Phi(w) \in \{0, 1\}^{D \times D}$ as

$$\Phi(w) = \text{diag}_c(w),$$

where $\text{diag}_c(\cdot)$ denotes a diagonal matrix with the argument on its diagonal, but with the all-zero rows removed. The resulting matrix $\Phi(w)$ is a fat sparse binary matrix with one nonzero

Fig. 1: Data censoring via sparse sensing, with x, $\Phi(w)$, and x_w denoting, respectively, the uncompressed data, the compression matrix, and the compressed data. A white, black, and colored square represent, respectively, a one, a zero, and an arbitrary value.
element in each row and at most one nonzero element in each column. In Fig. 1, for example, \(\Phi(x) \) equals \(\text{diag}_x(w) \) with \(w = [0,1,0,1,0,0,1,0,0]^T \). By applying the linear compression operator \(\Phi(x) \) to the observed data vector \(x \), we obtain the compressed data vector
\[
x_w = \Phi(x) x = \text{diag}_x(w) x,
\]
which is of length \(d \ll D \). The reduced dimension data vector \(x_w \) is subsequently used to solve the inverse or learning problem. The corresponding unobserved uncontaminated \(\bar{x}_w = \Phi(x) \bar{x} \) follows a known pdf
\[
\bar{x}_w \sim p(\bar{x}_w; \theta, w), \tag{2}
\]
which we will use for robust estimation of \(\theta \) from \(x_w \).

In this paper, we pose the problem of designing a Boolean censoring vector \(w \) (and hence, a censoring matrix \(\Phi \)) to jointly reject the outliers and compress the data in order to reduce the costs involved in solving the inverse problem. Formally, the robust censoring problem is stated as follows.

Problem (Robust Censoring). Given the data vector \(x \in \mathbb{R}^D \) which is related to the unknown \(\theta \in \mathbb{R}^N \) through a known non-linear data model but possibly contaminated with up to \(o \) outliers: (a) design the Boolean censoring vector \(w \in \{0,1\}^D \) that chooses \(d \leq D - o \) data samples discarding possible outliers as well as censoring less informative samples (samples with smaller likelihood) and (b) use this reduced dimension data to compute an estimate of \(\theta \).

The difference of this formulation from classical censoring is, evidently, that the presence of outliers is explicitly accounted for. The difference from classical outlier rejection, on the other hand, is that \(d \) may be chosen much smaller than the number of apparently outlier-free data samples. Choosing a smaller \(d \) and working only with \(d \)-dimensional subvectors of \(x \) often leads to significant reductions of the computational cost. Moreover, since \(d \) in robust censoring is no longer determined by the number of outliers, the approach requires only very weak assumptions about the actual number of outliers. For large \(D \) and small \(d \), the postulated \(o \leq D - d \) indeed allows for a large range of \(o \). No further assumptions about the outliers are made.

Mathematically, the robust censoring problem can be formulated as the following optimization problem
\[
(\hat{\theta}, \hat{w}) = \arg \max_{(\theta, w) \in \mathbb{R}^N \times \mathbb{W}} p(x_w; \theta, w), \tag{3}
\]
where
\[
\mathbb{W} = \{ w \in \{0,1\}^D \mid \|w\|_0 = d \},
\]
and the pdf \(p(x_w; \theta, w) \) is in fact the likelihood function of \(x_w \) as in (2), but with \(x_w \) inserted in place of the unobserved \(\bar{x}_w \). This means that for a fixed \(d \), we are choosing \(\theta \) and \(w \) that fit the uncontaminated data model best in the maximum likelihood sense. In particular, fitting \(w \) optimally to the known data model of the uncontaminated data is an effective means to ensure robustness with respect to outliers, since measurements containing outliers typically deviate from this model the most. We underline that the formulation in (3) is general in the sense that it is not restricted to a specific data model and does not rely on assumptions such as linearity, uncorrelated noise, or additive Gaussian noise.

In many applications, the data vector \(x \) has some specific structure; it may, for example, consist of subvectors that correspond to measurements from different sensors. Depending on the particular setting, it may make sense to make a joint decision about selecting or rejecting an entire subvector, rather than processing each element individually. This can easily be achieved by adapting the definition of \(\mathbb{W} \) such that it contains only vectors with a suitable structure. The corresponding modifications of robust censoring algorithms are straightforward. For ease of exposition, the rest of this paper considers only the case where \(x \) is unstructured.

Relation of (3) to Sparsity-Controlling Outlier Rejection.
Sparsity-controlling outlier rejection (SCOR) [3] is a state-of-the-art method for outlier rejection in linear Gaussian problems. In [13], it was shown to outperform random sample consensus (RANSAC) [12]. Here, we show that for additive linear Gaussian models our approach to robust censoring according to (3) in fact amounts to SCOR, up to some modifications, and to least-trimmed-squares (LTS) [11]. The proposed approach can thus be interpreted as a generalization of these state-of-the-art methods.

In the linear Gaussian data model, the relation between the outlier-free data vector \(\bar{x} \) and the unknown parameter vector \(\theta \) is
\[
\bar{x} = A \theta + n, \tag{4}
\]
with a known matrix \(A = [a_1, a_2, \ldots, a_D]^T \in \mathbb{R}^{D \times N} \) and a noise vector \(n \) from the distribution \(N(n; 0, \sigma^2 I) \), i.e., from a multivariate Gaussian distribution with mean \(0 \) and covariance matrix \(\sigma^2 I \), where \(\sigma^2 \) is known. In this case, the likelihood function \(p(\bar{x}; \theta) \) is given as
\[
p(\bar{x}; \theta) = N(\bar{x}; A \theta, \sigma^2 I),
\]
and the likelihood function of the reduced dimension data \(\bar{x}_w \) is
\[
p(\bar{x}_w; \theta, w) = N(\bar{x}_w; A_w \theta, \sigma^2 I), \tag{5}
\]
with \(A_w = \text{diag}_w(w) A \). We assume that \(d \geq N \) and \(A_w \) has full column rank for all \(w \in \mathbb{W} \). The proposed approach to robust censoring (cf. (3)) for this problem is
\[
(\hat{\theta}, \hat{w}) = \arg \max_{(\theta, w) \in \mathbb{R}^N \times \mathbb{W}} N(\bar{x}_w; A_w \theta, \sigma^2 I) \approx \arg \min_{(\theta, w) \in \mathbb{R}^N \times \mathbb{W}} \|\bar{x}_w - A_w \theta\|^2, \tag{6}
\]
which for \(d = D - o \) is equivalent to the LTS approach. More specifically, if we use the residuals \(r_m(\theta) = x_m - a_m^T \theta \) and let \(r_m^2(\theta) \) denote the squared residuals in ascending order (for some \(\theta \)), we can express \(\theta \) from (6) as
\[
\theta = \arg \min_{\theta \in \mathbb{R}^N} \min_{w \in \mathbb{W}} \sum_{m=1}^D w_m r_m^2(\theta).
\]
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2015.2506142, IEEE Journal of Selected Topics in Signal Processing

on Bayesian sampling, more specifically Metropolis-Hastings (MH) sampling [18]–[22], which allows for a general formulation that requires only weak additional assumptions. To provide a practical example, the general formulation of the method in this section is subsequently specialized to the problem of robust censoring for target localization in Section IV and compared to other approaches through numerical experiments.

Straightforward Approach. Before we discuss the proposed method itself, we briefly sketch a straightforward deterministic approach to solving (3) approximately, namely by employing the alternating descent (AD) technique. This will later serve as a counter-example, motivating the use of the more complex but much more powerful MH methodology as proposed subsequently. The AD approach to solving (3) amounts to an iterative approximation by alternately fixing either θ or w and maximizing $p(x_w; \theta, w)$ with regard to the respective other parameter. More specifically, in iteration i, we calculate

$$\hat{\theta} = \arg \max_{\theta \in \mathbb{R}^N} p(x_w; \theta, w[i-1])$$

$$w[i] = \arg \max_{w \in W} p(x_w; \theta[i], w) .$$

A simple choice for the initialization is to use a $w[0]$ that is randomly drawn from a uniform distribution over W. As soon as maximization with respect to θ or w does not change the respective parameter, a local maximum of $p(x_w; \theta, w)$ has been reached. The algorithm is thus terminated after iteration i if $\theta[i] = \theta[i-1]$ or $w[i] = w[i-1]$, returning $\hat{\theta}_{AD} = \theta[i]$ and $\hat{w}_{AD} = w[i]$.

Evidently, it depends on the shape of $p(x_w; \theta, w)$ whether the maxima in (11) and (12) can be calculated (possibly using some approximations). In general, (12) may again incur combinatorial complexity, no different from the original joint maximization in (3). However, in many problems fixing θ or w simplifies the maximization of $p(x_w; \theta, w)$ with respect to the other parameter significantly. In particular, this is usually the case for the maximization with respect to w when the outlier-free observations x_m are statistically independent of each other (given θ), i.e., when $p(x; \theta)$ factorizes as $\prod_m p(x_m; \theta)$. The main weakness of AD is that it converges only to a local maximum of $p(x_w; \theta, w)$ and is thus strongly influenced by the initialization. Simulations presented in Subsection IV-C confirm that AD is severely limited in the estimation performance it can achieve, compared to the proposed MH method, which will be presented next.

Target Distribution. Markov chain Monte Carlo (MCMC) methods [21], [22] such as MH sampling are iterative methods that are often employed to calculate statistics of some probability distribution, the so-called target distribution*, which may often be known only up to a normalization constant. Although

*

Contrary to the typical use of MCMC methods for Bayesian estimation, where the target distribution is a posterior probability distribution, we will not assign such a notion to the target distribution here. Nevertheless, our optimization problem according to (3) could in fact also be interpreted from a Bayesian perspective, namely as a maximum a posteriori (MAP) estimation with noninformative uniform priors on θ and w. The MH sampler that will be proposed in this section solves (3) and would thus perform MAP estimation, even though the target distribution will not be the corresponding posterior but merely have the same maximum as the posterior.

This page contains the abstract, introduction, and sections I–III of the paper. The full text is available in the journal issue.
the likelihood function \(p(x_w; \theta, w) \) in (3) is not a probability distribution of \(\theta \) and \(w \), it is non-negative and can thus be interpreted as a non-normalized probability distribution of \(\theta \) and \(w \). We could therefore directly use \(p(x_w; \theta, w) \) as the non-normalized target distribution and employ an MCMC method to maximize it with respect to \(\theta \) and \(w \). Here, however, we propose a slightly different approach. Using

\[
\theta_{\text{max}}(w) = \arg\max_{\theta \in \mathbb{R}^N} p(x_w; \theta, w),
\]

which is either calculated in closed form or obtained through some approximation, we can rewrite (3) as

\[
\tilde{w} = \arg\max_{w \in \mathcal{W}} p(x_w; \theta_{\text{max}}(w), w) \tag{14}
\]

\[
\tilde{\theta} = \theta_{\text{max}}(\tilde{w}). \tag{15}
\]

While \(\tilde{w} \) and \(\tilde{\theta} \) according to (14) and (15) are still the same as in (3), the advantage over (3) is that the formulation in (14)–(15) allows us to use the target distribution

\[
p_{\text{h}}(w) \propto p(x_w; \theta_{\text{max}}(w), w), \tag{16}
\]

which only needs to be maximized with respect to \(w \) rather than \(\theta, w \). MCMC maximization over \(\mathcal{W} \) is often simpler and faster than MCMC maximization over \(\mathbb{R}^N \times \mathcal{W} \). After obtaining \(\tilde{w} \) according to (14) by means of an MCMC method, we can calculate \(\tilde{\theta} \) using (15).

Maximizing the target distribution \(p_{\text{h}}(w) \) according to the MCMC concept amounts to generating and processing a large population of realizations \(w^{(j)} \) from \(p_{\text{h}}(w) \). In the following, we will discuss how \(\tilde{w} \) is estimated from the population and how the realizations are generated (since we cannot directly draw samples from \(p_{\text{h}}(w) \)).

Sample-Based Estimation. Let \(J \) be the total number of realizations \(w^{(j)} \) used for maximizing \(p_{\text{h}}(w) \), and let \(p_{S}(w) \) denote the number of realizations \(w^{(j)} \) that are equal to the respective value of \(w \), normalized by \(J \). Then, as \(J \) increases, \(p_{S}(w) \) tends to approximate \(p_{\text{h}}(w) \) more and more closely, as can easily be shown. The sample-based approximation of (14) is thus given by \(\tilde{w}_S = \arg\max_{w \in \mathcal{W}} p_{S}(w) \). However, as discussed in [32], [33] in more detail, for moderate sample sizes this approximation may be exceedingly coarse, which often makes the following widely-used alternative approach (see, e.g., [34]) preferable:

\[
\tilde{w}_{\text{eval}} = w^{(j_{\text{max}})} \quad \text{with} \quad j_{\text{max}} = \arg\max_j p_{\text{h}}(w^{(j)}). \tag{17}
\]

This approximation of \(\tilde{w} \) is obtained by calculating \(p_{\text{h}}(w^{(j)}) \) for all \(j \) and picking the maximum. This approach is particularly well matched to the iterative nature of MCMC methods, where each iteration generates a new realization \(w^{(j)} \). By contrast to \(w_S \), finding \(\tilde{w}_{\text{eval}} \) does not require storing the entire population; instead, we can simply compare each new realization \(w^{(j)} \) to the realization that previously maximized the target distribution. Thus, throughout the entire algorithm only one realization needs to be stored. Moreover, in MH methods such as the one proposed here, \(p_{\text{h}}(w^{(j)}) \) is typically already calculated in the process of generating \(w^{(j)} \), which means that no further computations are needed for the comparison with the previous maximum.

In principle, (17) would not require that the realizations are generated from \(p_{\text{h}}(w) \). Any distribution could be used for generating the realizations, as long as its domain includes the maximizer of \(p_{\text{h}}(w) \) within \(\mathcal{W} \) (which is \(\tilde{w} \) according to (14)). Since we do not assume any prior information on which elements of \(\mathcal{W} \) may be more likely or less likely to maximize \(p_{\text{h}}(w) \), another intuitive choice would be to generate the realizations simply from a uniform distribution over \(\mathcal{W} \). However, generating the realizations from \(p_{\text{h}}(w) \) ensures that a realization \(w^{(j)} \) is more likely to be equal to \(\tilde{w} \) than to any other \(w \in \mathcal{W} \). Assuming the ideal case that the realizations are independent from each other, it can easily be shown that this increases the probability that even a moderate-sized set of realizations contains \(\tilde{w} \), compared to the choice of a uniform distribution.

MH Sampling. As mentioned above, each MCMC iteration generates—if we ignore the transient influence of the initialization—one new random realization \(w^{(j)} \) from the target distribution \(p_{\text{h}}(w) \). This randomness is a fundamental difference between MCMC methods and other widely used estimation methods such as the expectation-maximization [35] or belief propagation [36] algorithms. The MCMC method that we propose to use here is MH sampling, which amounts to the following procedure. At iteration \(j \), we first generate a proposal \(\bar{w} \) from some proposal distribution \(q(\bar{w}|w^{(j-1)}) \), whose shape depends on the realization from the previous iteration, i.e., \(w^{(j-1)} \). Then, the new realization \(w^{(j)} \) is obtained as

\[
\tilde{w}^{(j)} = \begin{cases}
\bar{w} & \text{with probability } \alpha_j \\
\tilde{w}^{(j-1)} & \text{with probability } 1 - \alpha_j
\end{cases}, \tag{18}
\]

where

\[
\alpha_j = \min \left\{ \frac{p_{\text{h}}(\bar{w}) q(\bar{w}|w^{(j-1)})}{p_{\text{h}}(\tilde{w}^{(j-1)}) q(\tilde{w}^{(j-1)}|w^{(j-1)})}, 1 \right\}. \tag{19}
\]

Note that iterations where \(\bar{w}^{(j)} = \tilde{w}^{(j-1)} \) do not influence the estimate \(\tilde{w}_{\text{eval}} \) and thus constitute a futile computational overhead. It is therefore advantageous if \(q(\cdot|\cdot) \) can be designed such that \(\alpha_j \) is typically large, thus reducing the number of such futile iterations.

Since there is no simple relation between the number of iterations \(J \) and the estimation performance, we propose to predetermine the number of iterations \(J \) based on training. Other approaches for choosing \(J \) include, e.g., assessing when the distribution of the realizations has converged to a stationary distribution [37]. Evidently, a smaller \(J \) is sufficient if we are mostly interested in outlier rejection and less in optimality, whereas a larger \(J \) is needed to find the exact maximum likelihood solution of (3). With a smaller \(J \), the algorithm is less likely to use all observations; instead, it typically uses only a smaller part of them. This may be a desired effect of complexity reduction when optimality is less important.

Compared to the widely used method of Gibbs sampling [21], [38], [39], MH sampling is more general, since the proposal distribution \(q(\cdot|\cdot) \) is not specified by the MH concept.
A "small-step" proposal \tilde{w} is obtained from $w^{(j-1)}$ by changing the $m_{(\text{add})}$-th element from 0 to 1 and the $m_{(\text{rem})}$-th element from 1 to 0, where $m_{(\text{add})}$ and $m_{(\text{rem})}$ are randomly picked. We can thus write

$$q_{\text{small}}(\tilde{w} | w^{(j-1)}) = p_{\text{add}}(m_{(\text{add})} | w^{(j-1)}) \times p_{\text{rem}}(m_{(\text{rem})} | w^{(j-1)}),$$

(21)

for all $\tilde{w} \in W$ that differ from $w^{(j-1)}$ in two elements, and 0 for all other \tilde{w}. As a straight-forward choice, we propose to draw $m_{(\text{add})}$ from a uniform distribution over all the zero elements of $w^{(j-1)}$:

$$p_{\text{add}}(m | w^{(j-1)}) = \frac{1}{D-d},$$

(22)

for any of the $D-d$ indices $m \in \{1, 2, \ldots, D\}$ such that $w^{(j-1)}_m = 0$. The analogous distribution for $m_{(\text{rem})}$ would be

$$p_{\text{rem}}(m | w^{(j-1)}) = \frac{1}{d},$$

for any of the d indices $m \in \{1, 2, \ldots, D\}$ such that $w^{(j-1)}_m = 1$. However, we can reduce the number of iterations needed by the algorithm if we instead design $p_{\text{rem}}(m | w^{(j-1)})$ such that the probability of obtaining a \tilde{w} with higher $p_{\tilde{w}}$ is increased. The design of such a more advantageous distribution $p_{\text{rem}}(m | w^{(j-1)})$ depends on the specific shape of $p_{\tilde{w}}(w)$ in a given problem. If, for example, some simplifying approximations allow us to factorize

$$p_{\tilde{w}}(w) \approx \prod_{m=1}^{D} p_m(w_m),$$

such that each factor $p_m(w_m)$ depends only on one element w_m, then we can simply choose

$$p_{\text{rem}}(m | w^{(j-1)}) = g\left(\frac{p_m(1)}{p_m(0)}\right),$$

(23)

for any of the d indices $m \in \{1, 2, \ldots, D\}$ such that $w^{(j-1)}_m = 1$. Here, $g(\cdot)$ is some normalized decreasing function. Indeed, it is easily verified that choosing $m_{(\text{rem})}$ among the indices with smaller $p_m(1)/p_m(0)$ leads to a larger (approximate) $p_{\tilde{w}}(w)$. Two examples for this approach will be given in Subsections IV-C and V-B. Note that, following the same rationale, we can also choose $p_{\text{add}}(m | w^{(j-1)})$ as an increasing function of $p_m(1)/p_m(0)$. However, in view of the much larger domain of $p_{\text{add}}(m | w^{(j-1)})$ (comprising $D-d$ elements rather than d) we prefer the simpler uniform distribution (22) here.

"Large-step" proposals \tilde{w} are chosen from a uniform distribution over W, independently of $w^{(j-1)}$ or x:

$$q_{\text{large}}(\tilde{w} | w^{(j-1)}) = q_{\text{large}}(\tilde{w}) = \frac{1}{D-d}.$$

(24)

Inserting (20)–(22) and (24) into (19) and using

$$c = \frac{\beta(D-d)}{(1-\beta)(D-d)},$$

we obtain

$$\alpha_j = \min \left\{ \frac{p_{\tilde{w}}(\tilde{w})}{p_{\tilde{w}}(w^{(j-1)})} \left(1 + \frac{p_{\text{rem}}(m_{(\text{add})} | \tilde{w})}{p_{\text{rem}}(m_{(\text{rem})} | w^{(j-1)})} \right), \frac{p_{\tilde{w}}(w^{(j-1)})}{p_{\tilde{w}}(\tilde{w})} \left(1 + \frac{p_{\text{add}}(m_{(\text{add})} | w^{(j-1)})}{p_{\text{add}}(m_{(\text{rem})} | \tilde{w})} \right) \right\},$$

(25)
Algorithm 1: MH sampler for robust censoring

1: Initialize with any \(w^{(0)} \) from \(\mathcal{W} \), \(\tilde{w}_{\text{eval}} \leftarrow w^{(0)} \).
2: Iterate for \(j = 1, 2, \ldots, J \):
3: With probability \(\beta \) (e.g., \(\beta = 0.005 \)):
4: Generate \(\tilde{w} \) from (24) (“large-step”)
5: In the converse case:
6: Generate \(m^{(\text{add})} \) from (22) and \(m^{(\text{rem})} \) from (23) and calculate \(\tilde{w} \) (“small-step”)
7: Calculate \(\alpha_j \) according to (25)-(26)
8: With probability \(\alpha_j \): \(w^{(j)} \leftarrow \tilde{w} \)
9: In the converse case: \(w^{(j)} \leftarrow w^{(j-1)} \)
10: If \(p(w^{(j)}) > p(\tilde{w}_{\text{eval}}) \):
11: \(\tilde{w}_{\text{eval}} \leftarrow w^{(j)} \)

if \(\tilde{w} \in \mathcal{W} \) differs from \(w^{(j-1)} \) in two elements—where we denote the index of the new nonzero element by \(m^{(\text{add})} \) and the index of the new zero element by \(m^{(\text{rem})} \)—and

\[
\alpha_j = \min \left\{ \frac{p(\tilde{w})}{p(w^{(j-1)})}, 1 \right\}, \tag{26}
\]

for all other \(\tilde{w} \in \mathcal{W} \).

The MH sampler for robust censoring is summarized as Algorithm 1.

IV. EXAMPLE: ROBUST CENSORING FOR TARGET LOCALIZATION

In this section, we apply the proposed method to the problem of target localization as a practical example for nonlinear inverse problems where robust censoring can be useful. Subsections IV-A and IV-B contain the signal model and the formulation of the proposed MH method for this problem, respectively. Subsection IV-C presents numerical results that assess the performance of the method.

A. Signal Model

We assume a setting where a large number of sensors at known positions attempt to localize several targets using noisy distance measurements [43]-[45]. The distance measurements are potentially contaminated with outliers. In the absence of perturbations such as noise and outliers, a very small arbitrary subset of the distance measurements would be enough for locating a target. Outlier contamination but also model-consistent noise typically lead to a large variation in the quality of the different distance measurements. It therefore makes sense to search for a relatively small subset of measurements that potentially lead to optimal localization. Furthermore, besides leading to a reliable estimate, robust censoring reduces the signal processing cost associated with the number of measurements that are used and/or stored.

We assume that localization is performed independently for each target. For the sake of simplicity, we thus consider only one target in the remainder of this section while the total number of available sensors \(D \) is still assumed to be large. In the present problem, \(\theta \) is the unknown position of the target in \(N \) dimensions, i.e., typically, \(N = 2 \) or \(N = 3 \). We denote the known positions of the \(D \) sensors as \(z_1, z_2, \ldots, z_D \). The noisy (outlier-free) distance measurement from the \(m \)-th sensor is

\[
\bar{x}_m = || \theta - z_m || + n_m, \tag{27}
\]

where the additive noise \(n_m \) is zero-mean Gaussian with variance \(\sigma^2_m \). Since the level of uncertainty of distance measurements is often higher for larger distances, we assume that \(\sigma^2_m \) increases with \(|| \theta - z_m || \) as

\[
\sigma^2_m = \sigma^2_0 (|| \theta - z_m || + \zeta)^\gamma, \tag{28}
\]

with some known non-negative constants \(\sigma^2_0, \zeta, \) and \(\gamma \) that depend on how the distance measurements \(x_m \) were obtained. Moreover, we assume that the noise at different sensors may in general be correlated (e.g., due to some sources of interference that affect several sensors):

\[
E\{n_kn_l\} = \rho_{kl} \sigma_k \sigma_l, \tag{29}
\]

where the coefficients \(\rho_{kl} \) are known and \(\rho_{kk} = 1 \) for \(k = 1, 2, \ldots, D \). Thus, the noise covariance matrix \(\Sigma(\theta) = E\{n^2\} \) with \(n = [n_1, n_2, \ldots, n_D]^T \) depends on \(\theta \) through (28) and (29). Using \(h_m(\theta) = || \theta - z_m || \) and \(h(\theta) = [h_1(\theta), h_2(\theta), \ldots, h_D(\theta)]^T \), we can write the likelihood function of the problem as

\[
p(\bar{x}; \theta) = N(\bar{x}; h(\theta), \Sigma(\theta)).
\]

The likelihood function of the reduced dimension data \(\bar{x}_w \) is thus

\[
p(\bar{x}_w; \theta, w) = N(\bar{x}_w; h_w(\theta, w), \Sigma_w(\theta, w)), \tag{30}
\]

with

\[
\begin{align*}
 h_w(\theta, w) &= \text{diag}_w(\theta) h(\theta) \\
 \Sigma_w(\theta, w) &= \text{diag}_w(\theta) \Sigma(\theta) (\text{diag}_w(\theta))^T.
\end{align*}
\]

Consequently, the proposed approach to robust censoring (cf. (3)) for this problem is

\[
(\hat{\theta}, \hat{w}) = \arg \max_{(\theta, w) \in \mathbb{R}^N \times \mathcal{W}} N(\bar{x}_w; h_w(\theta, w), \Sigma_w(\theta, w))
\]

\[
= \arg \min_{(\theta, w) \in \mathbb{R}^N \times \mathcal{W}} \left[\left(\Sigma_w(\theta, w) \right)^{-1/2} (\bar{x}_w - h_w(\theta, w)) \right]^2 + \log |\Sigma_w(\theta, w)|, \tag{31}
\]

where |\(C \) denotes the determinant of the matrix \(C \) and \(C^{-1/2} \) can be obtained from \(C^{-1} \) by Cholesky factorization. Analogously, inserting (30) into (13) yields

\[
\theta_{\max}(w) = \arg \min_{\theta \in \mathbb{R}^N} \left[\left(\Sigma_w(\theta, w) \right)^{-1/2} (\bar{x}_w - h_w(\theta, w)) \right]^2 + \log |\Sigma_w(\theta, w)|. \tag{32}
\]

Since there is no closed-form solution for (32), we resort to the following iterative approximation. Starting from some random initial \(\theta[0] \), we calculate updates \(\theta[i] \) for \(i = 1, 2, \ldots, I \) by evaluating the right hand side of (32) with \(\Sigma_w(\theta, w) \) consistently replaced by \(\Sigma_w(\theta[i-1], w) \). Each update amounts to solving a non-linear least-squares problem, which we do approximately using the Gauss-Newton algorithm [46]. In our experiments, \(I = 20 \) updates were enough to make the
influence of the initialization negligible. The resulting $\theta[l]$ serves as an approximation to (32) and will be denoted as $\tilde{\theta}_{\text{max}}(w)$ in the rest of this section.

B. Proposed Method: MH Sampling

For the proposed MH sampler, we obtain the target distribution (cf. (16), (30))

$$p_h(w) \propto \frac{1}{\sqrt{\Sigma_w}} \exp \left(-\frac{1}{2} \left(x_w - \tilde{h}_w \right)^T \tilde{\Sigma}_w^{-1} \left(x_w - \tilde{h}_w \right) \right),$$

with

$$\tilde{h}_w = h_w(\tilde{\theta}_{\text{max}}(w), w)$$
$$\tilde{\Sigma}_w = \Sigma_w(\tilde{\theta}_{\text{max}}(w), w).$$

Let k and l denote, respectively, the indices of the k-th and the l-th 1 in w. Then the k-th element of \tilde{h}_w is obtained as $\|\tilde{\theta}_{\text{max}}(w) - z_k\|$, and the (k, l)-th element of $\tilde{\Sigma}_w$ is obtained as $\rho_{kl} \sigma_k \sigma_l$, with

$$\tilde{\sigma}_m^2 = \sigma_0^2 (\|\tilde{\theta}_{\text{max}}(w) - z_m\| + \zeta)^2.$$ (35)

For finding a simple and effective proposal distribution $p_{\text{rem}}(m \mid w^{(j-1)})$ (cf. the discussion above (23)), we first simplify (33) by neglecting all the off-diagonal elements of $\tilde{\Sigma}_u$, which leads to

$$p_{\text{diag}}(w) \propto \prod_{m=1}^{D} \frac{1}{\sigma_m^{w_m}} \exp \left(-\frac{1}{2} \sum_{m=1}^{D} \frac{w_m (x_m - \tilde{h}_m)^2}{\sigma_m^2} \right) \cdot p_{\text{rem}}(w_m).$$

Note that $p_m(0) = 1$ for all m. Following (23), we design the probabilities $p_{\text{rem}}(m \mid w^{(j-1)})$ of the indices m based on $1/p_m(1)$:

$$p_{\text{rem}}(m \mid w^{(j-1)}) \propto \log \left(\frac{1}{p_m(1)} \right) - p_{\text{min}}$$
$$\propto \frac{1}{2} \left(\frac{(x_m - \tilde{h}_m)^2}{\sigma_m^2} + \log(\tilde{\sigma}_m^2) \right) - p_{\text{min}},$$ (37)

for all $m \in \{1, 2, \ldots, D\}$ such that $w_m^{(j-1)} = 1$. The logarithm in (36) is used in order to make the distribution flatter, thus allowing more variation and improving the results, according to our simulations. To ensure that all probabilities are non-negative, we subtract a constant p_{min} in (36) such that the smallest value of $p_{\text{rem}}(m \mid w^{(j-1)})$ equals zero. In (37), \tilde{h}_m and $\tilde{\sigma}_m$ are obtained by inserting $w^{(j-1)}$ for w in (34) and (35), respectively. The distribution $p_{\text{rem}}(m \mid w^{(j-1)})$ is normalized such that its sum over the indices m where $w_m^{(j-1)} = 1$ equals 1.

The proposed MH algorithm for robust censoring in target localization follows Algorithm 1, using (37) for generating $m^{(\text{rem})}$ and inserting (33) and (37) into (25) and (26) for calculating α_j.

C. Numerical Results

Reference Method: AD. We compare the performance of our method to that of the straightforward AD approach presented at the beginning of Section III. Due to (30), calculating (12) for target localization specializes to

$$w[i] = \arg\max_{w \in W} \mathcal{N}(x_w; h_w(\theta[i-1], w), \Sigma_w(\theta[i-1], w)).$$ (38)

In order to calculate this approximately, we use the same simplification as described above (37), i.e., we neglect the off-diagonal elements of $\Sigma_w(\theta[i-1], w)$. Denoting the m-th diagonal element of $\Sigma(\theta[i-1])$ by

$$\sigma_m^2[i-1] = \sigma_0^2 (\|\theta[i-1] - z_m\| + \zeta)^2,$$

we obtain

$$w[i] = \arg\max_{w \in W} \prod_{m=1}^{D} \mathcal{N}(x_m; h_m(\theta[i-1]), \sigma_m^2[i-1])$$
$$= \arg\min_{w \in W} \sum_{m=1}^{D} \frac{w_m}{2} \left(\frac{(x_m - h_m(\theta[i-1]))^2}{\sigma_m^2[i-1]} + \log(\sigma_m^2[i-1]) \right).$$ (39)

As is easily verified, (39) amounts to finding the d smallest values among $\xi_1, \xi_2, \ldots, \xi_D$ and setting the corresponding elements of $w[i]$ to 1 and the remaining elements of $w[i]$ to 0. For solving (11) for target localization, we use the same steps as for solving (32). In our implementation, the AD method is significantly less computationally complex than the proposed MH method.

Reference Method: SCOR. As a second reference method besides AD, we extended SCOR to the non-linear problem of target localization. To this end, we replace (31) for this method with

$$(\hat{\theta}, \hat{o}) = \arg\min_{(\theta, o) \in \mathbb{R}^N \times \mathbb{R}^D} \left\| \left(\Sigma(\theta)\right)^{-1/2} (x - h(\theta) - o) \right\|^2 + \log(\Sigma(\theta)) + \lambda \|o\|_1.$$(40)

Direct application of SCOR to (40) is not possible because $\Sigma(\theta)$ depends on θ and because $h(\theta)$ is a non-linear function of θ. Instead, we resort to an approach analogous to (11)–(12); we alternately minimize the multivariate cost function in (40) with respect to either θ or o while the respective other parameter is fixed, thus converging to a local minimum of the cost function. More specifically, in iteration i, we calculate

$$o[i] = \arg\min_{o \in \mathbb{R}^D} \left\| \left(\Sigma(\theta[i-1])\right)^{-1/2} (x - h(\theta[i-1]) - o) \right\|^2 + \lambda \|o\|_1$$
$$\theta[i] = \arg\min_{\theta \in \mathbb{R}^N} \left\| \left(\Sigma(\theta)\right)^{-1/2} (x - h(\theta) - o[i]) \right\|^2 + \log(\Sigma(\theta))$$ (41)

Here, $o[i]$ can be calculated using LASSO [47] like in the original SCOR for linear problems. In each iteration, we choose a
suitable value of λ. Guidelines for a robust way of choosing λ are given in [13]. However, since this SCOR method was already significantly more complex than the proposed MH method, we do not follow [13] here but instead choose λ heuristically. In each iteration, we set λ equal to the largest absolute value of the vector $0.6 \text{diag}(\sigma_n)(x - h(\theta[i-1]))$, where σ_n contains the diagonal elements of $(\Sigma(\theta[i-1]))^{-1/2}$.

As is easily verified by comparing (42) and (32), $\theta[i]$ is obtained by calculating $\theta_{\text{max}}(1)$ with x replaced by $x - o[i]$. The algorithm is initialized with $\theta[0] = \theta_{\text{max}}(w_{\text{init}})$, where w_{init} is randomly drawn from a uniform distribution over W. The algorithm terminates after iteration i if $w[i] = w[i-1]$, where $w[i]$ is calculated from $o[i]$ by finding the d largest absolute values among the elements of $o[i]$ and setting the corresponding elements of $w[i]$ to 1 and the remaining elements of $w[i]$ to 0. After its final iteration i, the algorithm returns $\theta_{\text{SCOR}} = \hat{\theta}[i]$ and $w_{\text{SCOR}} = w[i]$. As mentioned above, in our implementations, the computational complexity of this method is significantly higher than that of the proposed MH method. The reason is that the calculations in the MH method are based on vectors of length D or matrices of size $D \times D$, e.g., x, h_θ, or Σ_θ, whereas the calculations in the SCOR method are based on vectors of length D or matrices of size $D \times D$, e.g., x, h_θ, or $\Sigma(\theta)$.

Simulation Setup. To assess and compare the performance of the methods described above, we generated several hundred measurement vectors according to (27), using $D = 1000$ and $N = 2$. In the following, all lengths are normalized with respect to a unit length of 1m. For each measurement vector, the true locations θ and the sensor locations z_1, \ldots, z_D were individually generated from a uniform distribution on $[0, 100]^2$. Each noise vector n was generated using $\xi = 5$ and $\gamma = 1$. The correlation coefficients ρ_{kl} were generated individually for each noise vector. To this end, we first generated a matrix R from a uniform distribution on $[0, \sqrt{4p/D}]^{D \times D}$, where \tilde{p} was varied in different experiments. Then, the coefficient ρ_{kl} for $k \neq l$ was obtained as the (k,l)-th element of R^TR. The resulting coefficients ρ_{kl} for $k \neq l$ were distributed closely around their mean \tilde{p}, while we set $\rho_{kk} = 1$ for $k = 1, 2, \ldots, D$. In each data vector, o out of the $D = 1000$ measurements were contaminated with outliers, by adding zero-mean Gaussian noise with variance σ_n^2. In different experiments, d, o, σ_n^2 and \tilde{p} were varied to study the behavior of the methods in different settings.

For each data vector, θ and w were calculated according to the proposed method, i.e., Algorithm 1, with $J = 200$ iterations and $\beta = 0.005$. The corresponding curves are labeled as MH. We compare the proposed method with the two reference methods described above, labeled as SCOR and AD, respectively. The performance measures we assess are the empirical root-mean-square error (RMSE) of θ obtained by averaging over 200 experiments, and the average number $\bar{\sigma}_w$ of outlier measurements among the selected measurements x_w according to w, i.e., outliers that were not successfully rejected. Normalizing $\bar{\sigma}_w$ with d yields the average residual rate of outlier contamination among the selected measurements, which can be compared to the unprocessed rate of outlier contamination o/D.

Simulation Results. Fig. 2 shows the average residual outlier contamination rate $\bar{\sigma}_w/d$ as well as the RMSE of θ for different values of o, i.e., different degrees of outlier contamination o/D between 1% and 80%. Here, we used $d = 50$, $\sigma_n^2 = 10$, $\sigma_o^2 = 10^{-5}$, and $\tilde{p} = 0.2$. We can see that, in terms of $\bar{\sigma}_w/d$, all methods perform similarly well at lower contamination o/D, successfully eliminating the outliers almost completely. As the degree of outlier contamination increases, the proposed method is clearly the most robust, showing the smallest increase in $\bar{\sigma}_w/d$, up to very high outlier rates above 70%. In terms of θ, the proposed method outperforms the other methods significantly for most degrees of outlier contamination o/D. The performance gap only becomes smaller around $o/D = 70\%$ and above. Interestingly, the error of θ does not appear to depend on o/D in the proposed method (up to about $o/D = 60\%$) and SCOR (within the range studied here). In this sense both methods are robust to higher outlier contamination, but at very different error levels.

Fig. 3 shows results from 200 experiments where o/D is fixed at 10% and d is varied between 10 and 150, leading to different compression rates d/D. As in Fig. 2, the proposed method clearly outperforms the other methods in terms of both $\bar{\sigma}_w/d$ (at least for smaller d) and θ (for the entire range of d). In the proposed method and in SCOR, the performance shows very weak or no visible dependence on d, while the
yields a larger estimation error in terms of $\sigma/D = 10\%$ of d selected. For performance of AD degrades when fewer measurements are selected. For d larger than about 100, AD performs similarly to the proposed method in terms of \hat{o}_w/d, but it still clearly yields a larger estimation error in terms of $\hat{\theta}$.

In Fig. 4, we show the dependence of the RMSE of $\hat{\theta}$ and of the average residual outlier contamination rate \hat{o}_w/d on the outlier strength σ_{out}^2, using $d = 50$, $o/D = 10\%$, $\sigma_{out}^2 = 10^{-5}$, and $\bar{\rho} = 0.2$. We can see that AD yields a roughly constant \hat{o}_w/d for different σ_{out}^2, while its estimate $\hat{\theta}$ becomes worse for larger σ_{out}^2. Both SCOR and the proposed method, on the other hand, improve in terms of \hat{o}_w/d as σ_{out}^2 increases, while their estimation errors of $\hat{\theta}$ appear fairly independent of σ_{out}^2. This result seems intuitive, since smaller outliers can more easily be missed on the one hand, but they do not cause as much degradation in the observation on the other hand. In both performance measures, the proposed method performs consistently much better than SCOR, and consistently better than AD.

Fig. 5 shows the average residual outlier contamination rate \bar{o}_w/d as well as the RMSE of $\hat{\theta}$ for different values of σ_0^2, i.e., different noise levels. Here, we used $d = 50$, $o/D = 10\%$, $\sigma_{out}^2 = 10^4$, and $\bar{\rho} = 0.2$. We can see that, in terms of \bar{o}_w/d, all methods produce rather flat curves at lower noise levels and significant increases at higher noise levels. The increase is most drastic in the SCOR method, where it reaches $\bar{o}_w/d = 100\%$, i.e., all selected observations are outlier-contaminated. Interestingly, this drastic failure at outlier rejection does not correspond to a significant increase of the RMSE of $\hat{\theta}$ compared to lower noise levels. The proposed MH method consistently performs best in both performance measures. In terms of $\hat{\theta}$, the performance gap is largest at low noise levels and steadily decreases with increasing noise.
Fig. 6: Performance for different values of average measurement correlation $\bar{\rho}$: (a) Average rate of outliers \bar{o}_w/d among the selected measurements x_w, corresponding to \hat{w}, (b) Empirical RMSE of θ for the MH method, vertical bars mark an interval as wide as the empirical standard deviation on each side of the respective average.

Fig. 6 studies the effect of the correlations among different measurements. We vary $\bar{\rho}$ between 0 and 0.6, using $d = 50$, $o/D = 10\%$, $\sigma^2_{\text{out}} = 10$, and $\sigma_2^2 = 10^{-5}$. We can see that the proposed method handles correlations best, achieving smaller errors and stronger outlier rejection than the reference methods at all levels of correlation. While the average residual outlier contamination rate \bar{o}_w/d of the proposed method appears fairly invariant to $\bar{\rho}$ (by contrast to the reference methods), the error of θ increases slightly at higher correlation levels.

Finally, in Fig. 7 we study the behavior of the proposed MH method over the number of iterations J. The results are averaged from 10000 experiments using $d = 50$, $o/D = 10\%$, $\sigma^2_{\text{out}} = 10$, $\sigma^2_0 = 10^{-5}$, and $\bar{\rho} = 0.2$. Fig. 7(a) shows how many of the $D = 1000$ observations are used within the first J iterations. Fig. 7(b) shows the dependence of the RMSE of θ and of the average residual outlier contamination rate \bar{o}_w/d on J. We can see that the number of observations converges towards $D = 1000$ steadily but rather slowly. By contrast, the error decreases very quickly in the first ~ 50 iterations and then improves only marginally in further iterations. We can conclude from the slow decrease of the errors at later iterations that a prohibitively large number of iterations may be required to guarantee a high probability of obtaining the unique optimal \hat{w} among the $D \approx 10^{85}$ elements of W. On the other hand, the outlier rate is reduced from $o/D = 10\%$ to $\bar{o}_w/d = 0.1\%$ within only 122 iterations, using only 188.8 of the 1000 observations.

The average computation times for an unoptimized MATLAB R2014b 64-bit implementation on a 2.5-GHz Intel Core i5 processor were 0.41s for the proposed MH method (with $J = 200$), 0.03s for AM, and 30.22s for SCOR.

Fig. 7: Behavior of the proposed MH method over the number of iterations J: (a) Number of observations x_w that are used within the first J iterations, (b) Empirical RMSE of θ and average rate of outliers \bar{o}_w/d among the selected measurements x_w after J iterations.

V. HYBRID MODEL-DATA-DRIVEN SCHEME

The problem formulation for robust censoring presented in (3) links the applications of outlier rejection and data-driven dimensionality reduction, yielding a solution that is optimal in the maximum likelihood sense. Similarly as in other methods for outlier rejection or for data-driven dimensionality reduction, the decision criterion in (3) does not take into account the resulting inference performance in terms of the mean squared error (MSE). On the other hand, dimensionality reduction schemes that are optimal in terms of the MSE, i.e., model-driven schemes, are not robust to outliers. In this section, we propose to extend the decision criterion in (3) such that it reduces the resulting MSE. We present the corresponding modifications of the proposed MH method for robust censoring, and we give an example where the extended hybrid model-data-driven sensing scheme indeed leads to improved performance.

For ease of exposition, we consider a linear inverse problem. Recall that this model was already introduced in (4)–(6). As stated there, the robust censoring problem formulated in (3) simplifies for the linear inverse problem (4) to

$$
(\hat{\theta}, \hat{w}) = \arg\min_{(\theta, w) \in \mathbb{R}^N \times \mathbb{W}} \left\| x_w - A_w \theta \right\|^2.
$$

In analogy to (14)–(15), we can write this as

$$
\hat{w} = \arg\min_{w \in \mathbb{W}} \min_{\theta \in \mathbb{R}^N} \left\| x_w - A_w \theta \right\|^2
= \arg\min_{w \in \mathbb{W}} \left\| x_w - A_w \theta_{\max}(w) \right\|^2,
$$

$$
\hat{\theta} = \theta_{\max}(\hat{w}),
$$

with (cf. (13))
\[
\theta_{\text{max}}(w) = \arg\min_{\theta \in \mathbb{R}^N} \| x_w - A_w \theta \|^2 \\
= (A_w^T A_w)^{-1} A_w^T x_w. \tag{45}
\]
Inserting (45) into (43) yields
\[
\hat{w} = \arg\min_{w \in \mathcal{W}} \hat{r}(w), \tag{46}
\]
with
\[
\hat{r}(w) = x_w^T (I - A_w (A_w^T A_w)^{-1} A_w^T) x_w. \tag{47}
\]
We will now modify (47) such that it also takes into account the MSE of \(\theta \), while (44) and (45) remain unchanged. Due to (44), we can express the MSE of \(\theta \) as a function of \(\hat{w} \):
\[
\text{MSE}\{\theta; \hat{w}\} = \mathbb{E}\left\{ \| \hat{\theta}_{\text{max}}(\hat{w}) - \theta \|^2 \right\}.
\]
Using (45) and (4), this can be shown to yield
\[
\text{MSE}\{\theta; \hat{w}\} = \sigma^2 \text{tr}\left\{ (A_w^T A_w)^{-1} \right\}
= \sigma^2 \text{tr}\left\{ \left(\sum_{m=1}^D \hat{w}_m a_m a_m^T \right)^{-1} \right\}. \tag{48}
\]
By adding
\[
f(w) = \frac{\text{MSE}\{\hat{\theta}; w\}}{\sigma^2} = \text{tr}\left\{ \left(\sum_{m=1}^D w_m a_m a_m^T \right)^{-1} \right\}
\]
as a penalty term in the cost function in (47), we obtain a hybrid model-data-driven sensing scheme which jointly minimizes the negative likelihood function and the MSE of \(\theta \):
\[
\hat{w} = \arg\min_{w \in \mathcal{W}} \hat{r}(w) + \lambda f(w). \tag{49}
\]
Here, \(\lambda \) is a tuning parameter. In particular, \(\lambda \rightarrow 0(\infty) \) results in the related data (model)-driven scheme. The above optimization problem is non-convex in \(w \). A generalization of the hybrid model-data-driven sensing scheme is discussed in the following remark.

Remark (Non-linear model). *The proposed hybrid model-data-driven scheme can be generalized to more complicated observation models, e.g., non-Gaussian and/or non-additive noise models. In a more general hybrid scheme, we will replace \(\hat{r}(w) \) in (49) with a negative log-likelihood function and \(f(w) \) with the Cramér-Rao bound as in [6], and the minimization will be over both \(\theta \) and \(w \in \mathcal{W} \).*

Before we present the proposed MH method for solving (49), we discuss an alternative method based on convex relaxation, which will serve as a performance benchmark.

A. Convex Relaxation

The optimization problem (49) can be equivalently written in the epigraph form as
\[
\begin{align*}
\arg\min_{w \in \mathcal{W}, t_1, t_2} & \quad t_1 + \lambda t_2, \\
\text{subject to} & \quad \hat{r}(w) \leq t_1, \\
& \quad f(w) \leq t_2, \\
\end{align*}
\]
with auxiliary variables \(t_1 \in \mathbb{R} \) and \(t_2 \in \mathbb{R} \), where the constraint (50c) is convex in \(w \). We relax the non-convex constraint set \(\mathcal{W} \) to its best convex approximation
\[
\mathcal{W}_c = \{ w \mid 1^T w = d, 0 \leq w_m \leq 1, m = 1, 2, \ldots, D \}.
\]
Using the Schur complement and the property that \(\Phi^T \Phi = \text{diag}(w) \), the constraint (50b) can be equivalently expressed as
\[
\begin{bmatrix}
A_T \text{diag}(w) A & A_T \text{diag}(w) x \\
x_T \text{diag}(w) A & t_1 - x_T \text{diag}(w) x
\end{bmatrix} \succeq 0,
\]
which is convex and linear in \(w \) and \(t_1 \). The convex relaxed hybrid model-data-driven sensing problem then becomes
\[
\begin{align*}
\arg\min_{w \in \mathcal{W}_c, t_1, t_2} & \quad t_1 + \lambda t_2, \\
\text{subject to} & \quad \begin{bmatrix}
A_T \text{diag}(w) A & A_T \text{diag}(w) x \\
x_T \text{diag}(w) A & t_1 - x_T \text{diag}(w) x
\end{bmatrix} \succeq 0, \\
& \quad f(w) \leq t_2.
\end{align*}
\]
The solution of this problem is not Boolean; however, an approximate Boolean solution can be obtained by using deterministic or randomized rounding as discussed in [6].

Contrary to the solver presented in this subsection, the proposed MH method for solving (49), which will be introduced next, does not use any convex relaxations.

B. MH Sampler

For the data-driven MH sampler as proposed in Section III, the target distribution (cf. (16), (5)) for the linear problem considered in this section becomes
\[
p_f(w) \propto \exp\left(-\frac{1}{2\sigma^2} \| x_w - A_w \theta_{\text{max}}(w) \|^2 \right)
\]
\[
\times \exp\left(-\frac{1}{2\sigma^2} \hat{r}(w) \right),
\]
where we used (45) and (47). In analogy to the hybrid problem formulation in (49), we can modify the above \(p_f(w) \) to
\[
p_{f,\text{hybrid}}(w) \propto \exp\left(-\frac{1}{2\sigma^2} \left(\hat{r}(w) + \lambda f(w) \right) \right), \tag{52}
\]
in order to design a MH sampler for hybrid model-data-driven robust censoring.

Analogously to Subsection IV-B, we design a simple and effective proposal distribution \(p_{\text{prop}}(m \mid w^{(j-1)}) \) (cf. the discussion above (23)) by simplyifying the target distribution to a product of factors \(p_{\text{prop}}(w_m) \) such that each factor depends only on one element of \(w \). To this end, we first replace \(f(w) \) from (48) with
\[
f(w) = \sum_{m=1}^D w_m \left(\text{tr}\{a_m a_m^T\} \right)^{-1} = \sum_{m=1}^D w_m \frac{1}{\|a_m\|^2},
\]

\(1932-4553 \odot 2015 \text{IEEE.} \text{Personal use is permitted, but republication/redistribution requires IEEE permission.} \text{See}\ http://www.ieee.org/publications_standards/publications/rights/index.html\text{for more information.}

12 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
Furthermore replacing $\theta_{\text{max}}(w)$ with a fixed $\tilde{\theta}$ that does not depend on w—we use $\tilde{\theta} = \theta_{\text{max}}(w(j-1))$—leads to

$$p_{\text{diag}}(w) \propto \exp \left(-\frac{\|x_{w} - A_{w} \tilde{\theta}\|^2 + \lambda f(w)}{2 \sigma^2} \right),$$

$$= \prod_{m=1}^{D} \exp \left(-\frac{w_{m}}{2 \sigma^2} \left(x_{m} - A_{m} \tilde{\theta} \right)^2 + \lambda \frac{1}{\|a_{m}\|^2} \right),$$

for all $m \in \{1, 2, \ldots, D\}$ such that $w_{m}(j-1) = 1$. Differently from (37), non-negativity of the probabilities is already guaranteed in (54) without adding a constant. The distribution $p_{\text{rem}}(m \mid w(j-1))$ is normalized such that its sum over the indices m where $w_{m}(j-1) = 1$ equals 1.

The proposed MH algorithm for hybrid model-data-driven robust censoring in linear problems follows Algorithm 1, using (54) for generating m_{rem} and inserting (52) and (54) into (25) and (26) for calculating α_{j}.

The proposed MH approach is more flexible than the convex-relaxation-based method presented in Subsection V-A in that it can be extended to non-linear and/or non-Gaussian data models.

C. Numerical Results

In the numerical experiments presented in the following, we assess not only the two methods proposed above but also the hybrid censoring scheme itself, in comparison to the data-driven scheme and the model-driven scheme. To this end, we chose the dimensions of the problem small enough to allow for an exhaustive search over W, thus obtaining the truly optimal estimate according to each sampling scheme, without potential inaccuracies due to some optimization method. We generated data according to (4) using $D = 16$, $N = 2$, $d = 4$, and $\sigma^2 = 10^{-2}$. For each experiment, the elements of θ and A were generated individually from zero-mean Gaussian distributions with variance 1. In each data vector, 3 out of the $D = 16$ measurements were contaminated with outliers, by adding zero-mean Gaussian noise with variance 1.

Evaluation of the Scheme. As mentioned in the previous subsection, both the data-driven and the model-driven scheme have their respective strengths and weaknesses. In a given scenario, either of them may perform better, depending on the strength and number of outlier measurements, among other parameters. Similarly, the proposed hybrid scheme may perform better or worse than either of the original schemes in a given scenario. It is interesting to note, however, that although the hybrid cost function is a linear combination of the two original cost functions, the best performance that can potentially be achieved by the hybrid scheme is not necessarily between the best performances achieved by the two original schemes. This is illustrated in Fig. 8, where we show the empirical cdf’s of the error of the optimal estimate $\tilde{\theta}$ according to the three schemes. These optimal estimates were not obtained by applying the methods proposed above but by performing an exhaustive search over W. For the hybrid scheme, we chose $\lambda = 5$. The cdf’s were obtained from 1000 experiments. We can see that, here, the hybrid censoring scheme allows for a lower minimal error than both original schemes. Evidently, it exploits both the robustness with respect to outliers, which it shares with the data-driven scheme, and the information about the average reliability of each sensor, which it shares with the model-driven scheme.

Evaluation of the Methods. The two methods presented in Subsections V-A and V-B are compared in Fig. 9. More specifically, we assess the empirical cdf’s of their estimates $\tilde{\theta}$ from 1000 experiments using $\lambda = 5$. We can see that the error distribution achieved with the MH method almost coincides with that of exhaustive search, while the errors obtained by the convex relaxation method are larger.

VI. Conclusions

We proposed a novel joint approach to the two tasks of online data censoring and outlier-robust learning. This problem was formulated in terms of non-convex optimization, by jointly maximizing the likelihood of the reduced dataset with respect
to both the inferred model parameters and the data selection vector. We showed that the specialization of our general approach to the linear Gaussian model is closely related to existing state-of-the-art methods for outlier rejection in this model. Based on the concept of Metropolis-Hastings sampling, we proposed a method for solving the general non-convex problem of robust censoring. We applied the proposed method to the problem of robust censoring for target localization and demonstrated its excellent performance in comparison to other approaches, as well as its high robustness with respect to the number and strength of outliers and other parameters. Finally, we also studied an extension to the original problem formulation, allowing us to improve the inference results in terms of average performance. We showed that the resulting hybrid censoring scheme may indeed perform better than both original schemes from which it was derived.

REFERENCES

Georg Kail (M’14) received the B.Sc. and Diplom-Ingenieur (M.Sc.) degrees in electrical engineering/telecommunications and the Dr. techn. (Ph.D.) degree in signal processing from Vienna University of Technology, Vienna, Austria in 2005, 2008, and 2012, respectively. During his master and doctoral studies, he visited UTB Zlín, Czech Republic, ETH Zürich, Switzerland, and ENSEEIHT, Toulouse, France as a short-term guest researcher. From 2008 to 2013, he was with the Institute of Telecommunications, Vienna University of Technology. During 2013/14, he spent eight months as a postdoctoral researcher with the Telecommunications Circuits Laboratory, EPFL Lausanne, Switzerland. Subsequently, as a recipient of an Erwin Schrödinger Fellowship, he was with the Circuits and Systems Group, Delft University of Technology, Delft, The Netherlands for one year. In 2015, he returned to the Institute of Telecommunications in Vienna as a postdoctoral research assistant. His research interests include statistical signal processing with a focus on Bayesian methods and their application to localization tasks.

Geert Leus (M’01-SM’05-F’12) received the Electrical Engineering degree and the Ph.D. degree in applied sciences from the Katholieke Universiteit Leuven, Belgium, in 1996 and 2000, respectively. Currently, he is an “Antoni van Leeuwenhoek” Full Professor at the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology, Delft, The Netherlands. His research interests are in the area of signal processing for communications.

Prof. Leus received a 2002 IEEE Signal Processing Society Young Author Best Paper Award and a 2005 IEEE Signal Processing Society Best Paper Award. He was the Chair of the IEEE Signal Processing for Communications and Networking Technical Committee, and an Associate Editor for the IEEE Transactions on Signal Processing, the IEEE Transactions on Wireless Communications, and the IEEE Signal Processing Letters. Currently, he is a Member-at-Large to the Board of Governors of the IEEE Signal Processing Society and a member of the IEEE Sensor Array and Multichannel Technical Committee. He finally serves as the Editor in Chief of the EURASIP Journal on Advances in Signal Processing.

Sundeep Prabhakar Chepuri (S’11) was born in Bangalore, India in 1986. He received the Bachelors in Engineering degree (with distinction) from the PES Institute of Technology, Bangalore, India, in 2007, and the Master of Science degree (cum laude) from the Delft University of Technology, The Netherlands, in 2011. He is currently pursuing his PhD at the Faculty of Electrical Engineering, Mathematics and Computer Science of the Delft University of Technology, the Netherlands. He has held positions at Robert Bosch, India, during 2007–2009, and Holst Centre/imec-nl, The Netherlands, during 2010–2011. He has received the “Best Student Paper Award” for his publication at ICASSP 2015 conference in Australia. His general research interest lies in the field of mathematical signal processing, statistical inference, sensor networks, and wireless communications.