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Abstract

An automated approach to emulate the absorbing properties of a perfectly matched layer (PML) in wave equations is presented. Instead
of applying the coordinate stretching to obtain a modified PML wave equation, a feedback boundary controller is parameterized. The
set of unknown control parameters is obtained through genetic optimization by minimizing the error between the wave equation with
additional feedback controller and the desired damped fundamental solution at certain frequency pairs. With this approach the time-
consuming task of constructing a PML, especially for complex wave-like equations like the moving Euler-Bernoulli beam, is automated
and it leads to an easy-to-implement and computationally efficient alternative.

Keywords: Absorbing boundary conditions, Genetic optimization, Euler-Bernoulli beam

1. Introduction

In many applications where an unbounded solution of a wave-
like equation is desired, the problem occurs that due to limited
computational capabilities the domain has to be truncated at some
point. To let the solution of this confined domain approximate
the free-wave propagation, boundary conditions with absorbing
properties have to be applied. The work by Engquist and Ma-
jda [1] addressed this issue and absorbing boundary conditions
(ABCs) were derived which worked well under certain circum-
stances. The technique to surround the computational domain
with a perfectly matched layer was first described by Berenger
[2] for the absorption of electromagnetic waves. The idea of the
perfectly matched layer was later extended and applied to other
wave propagation problems, both in a split or un-split field for-
mulation [3] [4].
The key idea of the perfectly matched layer is that if the funda-
mental solution of a wave equation is evaluated along a complex
coordinate an additional damping is gained. This can be easily
shown by investigating the one-dimensional wave equation
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with its fundamental solution

w(x, t) = eiωxxeiωtt (2)

where ωx is the so called wavenumber or spatial frequency and
ωt the angular frequency. If this fundamental solution is eval-
uated along a contour that is stretched into the complex plane
x̃ = x+ if(x), Eq. (2) can be rewritten as

w(x̃, t) = eiωx(x+if(x))eiωtt = e−ωxf(x) eiωxxeiωtt︸ ︷︷ ︸
w(x,t)

. (3)

Note, that when f(x) is zero the original fundamental solution
is obtained, whereas if f(x) > 0 an exponential decay is added.
The wave equation with respect to its complex coordinate is then
transformed back to its real-valued coordinate using
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This transformation is a tedious task especially when spatial
derivatives of higher orders are involved as, for example, in the
Euler-Bernoulli beam equation and usually involves using several
auxiliary variables which increases the computational effort.

2. PML as a control optimization problem

For demonstration purposes, again the scalar wave equation
(1) is considered for deriving the PML as a control optimization
problem. As it is shown later, this method can easily be adapted
for controlling different, more complex, wave-like equations such
as the Euler-Bernoulli beam equation. Discretizing the scalar
wave equation using central finite difference approximations on
a uniform grid results in
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which can be aggregated for every node into a discrete state-space
system

xj+1 = Axj (6)

where xj = [wj ,wj−1]T is the solution vector at the discrete
time j∆t. The fundamental solution becomes

wj
n = eiωx∆xneiωt∆tj . (7)

Inserting (7) into the discretized wave equation (5) results in the
so-called dispersion relation which expresses the dependency be-
tween ωx and ωt. There exist infinitely many {ωx, ωt}-pairs
but the magnitudes of ωx∆x and ωt∆t can be confined between
[−π,+π]. Higher magnitudes can not be resolved by the grid. To
control the system so that it has a reflection-less exponential de-
cay of the solution inside a layer surrounding the computational
domain, a state feedback controller is added.

xj+1 = Axj +BKxj (8)

where the control matrix K is defined to have diagonal substruc-
tures of the form

K =
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where p is the number of nodes that are inside the damping layer.
The input matrix B distributes the control input to the corre-
sponding nodes of the damping layer.
The desired behavior can be analytically given for a single fun-
damental wave, e.g. a single frequency pair {ωx, ωt}, by evalu-
ating the discrete form of (3). For f(x), a function that is zero
inside the computational domain, increasing with second or third
order within the damping layer and continuous at the interface is
preferable. Let this desired fundamental solution be denoted as
wj

fund(ωx, ωt, j) where {ωx, ωt} ⊂ Ω is a certain frequency pair
and Ω a set containing a finite number of pairs.
Eq. (6) is initialized with x1 = [w1

fund,w
0
fund] and continued

for certain amount of time steps jmax. The error between the
fundamental solution and the controlled state space system is ag-
gregated over time and the frequency set Ω to form the objective
function

J(K) =
∑
Ω

jmax∑
j=2

∣∣wj
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∣∣2
2

(10)

The objective function is then minimized using a genetic algo-
rithm to obtain the optimal control matrix K. To address stabil-
ity of the controlled damping layer, the eigenvalues of the state
space system (8) are evaluated during the optimization and desta-
bilizing controllers are penalized with a multiplicative weighting
term.

3. Resulting controller for moving Euler-Bernoulli beam

The procedure described above is used to find a state feed-
back controller that emulates PML properties on one side for the
moving Euler-Bernoulli beam equation

ρAẅ = −EIw′′′′ + (T − ρAv2)w′′ + 2vρAẇ′ (11)

where ρA is the mass per unit length, EI the bending stiffness, T
the tensile force and v the speed of the moving coordinate. Fig-
ure 1 shows the normalized phase velocity for the non-moving
and the moving Euler-Bernoulli beam. Substantial dispersion oc-
curs due to the bending stiffness. Furthermore, the two branches
for left and right going waves are not symmetrical for the moving
Euler-Bernoulli beam.

Figure 1: Normalized phase velocity for left and right going
waves over the spatial frequency The phase velocity for the
non-moving EBB (black) is symmetric around zero whereas the
branches for the moving EBB (red) are tilted.

The parameters used are shown in Table 1. When discretiz-
ing to obtain the state space system the spatial grid size was set to
∆x = 0.4 [m] and the temporal grid size to ∆t = 7 ∗ 10−4 [s].

Table 1: Simulation Parameters
Parameter Symbol Value

mass per unit length ρA 1.35 [kg/m]
bending stiffness (contact) EI 150 [Nm2]

tensile force (contact) T 20 [kN]
speed v 50 [m/s]

The state feedback controller actuates p = 10 nodes . For the
two outer nodes of the damping layer Dirichlet boundary condi-
tions are applied. The set Ω consists of 10 pairs where ωx∆x
is equidistantly spaced between 0 and π and the corresponding
ωt∆t are calculated from the dispersion relation. The maximum
number of time steps for which the objective function is evalu-
ated is set to jmax = 100. The satisfactory performance of the
optimized feedback controller is illustrated in Figure 2. No sig-
nificant reflections into the domain are produced.

Figure 2: The optimized feedback controller is applied on the left
boundary. A frequency sweep excites the right boundary. No
reflections back into the computational domain are visible

4. Conclusion

In this work the construction of a PML is described as an op-
timization problem to obtain a feedback controller. The method
is applied for the moving Euler-Bernoulli beam and it was shown
in numerical results that a high absorption is achieved. The pro-
cedure is highly automated, and the mathematical effort for the
user is reduced to determining the dispersion relation instead of
performing the original PML transformation which is a task espe-
cially tedious with wave-like equations of high orders of (mixed)
derivatives.
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