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1 : 3-Resonance in a Hopf-Hopf bifurcation

Alois Steindl1,∗

1 Institute for Mechanics and Mechatronics, TU Wien, Getreidemarkt 9, 1060 Wien

We investigate the bifurcating solutions at a Hopf-Hopf interaction point with an internal 1 : 3 resonance. It turns out, that
the transitions from single to mixed modes can be described by Duffing or Mathieu szenarios.
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1 Normal Form equations and investigation of the primary solution branches

If in some dynamical system, like the model of a fluid conveying tube, three parameters are varied, Hopf-Hopf mode inter-
actions with internal low-order resonances may occur, which can lead to very interesting system dynamics. In this article we
have a closer look at the 1 : 3-resonance, in which the resonance terms appear at third degree and therefore have the same
order of influence as the leading terms in the non-resonant system. After shortly summarizing the results for a Hopf-Hopf
mode interaction without resonance, we will investigate the existence and stability of the primary solution branches and study
the transition to mixed-mode solutions.

After transforming the original system at the bifurcation point to Jordan Normal Form, reducing the system to the Cen-
ter Manifold, applying nonlinear Normal Form and unfolding of the linearized system, we obtain the complex differential
equations ( [1, 2])

ż1 = (λ+ iω +A1|z1|2 +A2|z2|2)z1 +A3z
2
1z2, (1)

ż2 = (µ+ 3iω + iδ +A4|z1|2 +A5|z2|2)z2 +A6z
3
1 , (2)

where λ, µ and δ are the unfolding parameters and the complex valued coefficients Aj = cj + idj are obtained from the
nonlinear contributions of the original equations.

1.1 Bifurcation szenario for the non-resonant Hopf-Hopf bifurcation

If the frequencies ωj at the Hopf-Hopf interaction are not close to a low order resonance, also the terms A3z
2
1 and A6z

3
1 can

be eliminated by the Normal Form method. In polar coordinates zj = rj exp(iϕj) the Normal Form equations become

ṙ1 = (λ+ c1r
2
1 + c2r

2
2)r1, ṙ2 = (µ+ c4r

2
1 + c5r

2
2)r2, (3)

ϕ̇1 = (ω1 + d1r
2
1 + d2r

2
2), ϕ̇2 = (ω2 + d4r

2
1 + d5r

2
2). (4)

The angles ϕj have completely disappeared from the equations for the radii and need not be taken into account during the
further investigation, because the frequencies ωj are of order 1.

Besides the trivial solution with eigenvalues λ and µ the equations (3) have the equilibria listed in Table 1. The mixed

Table 1: Nontrivial solution branches of the non-resonant Hopf-Hopf interaction

Type Branching equation Eigenvalues σi resp. matrix
Mode 1 r1 6= 0, r2 = 0 λ+ c1r

2
1 = 0 σ1 = 2c1r

2
1, σ2 = µ+ c4r

2
1

Mode 2 r1 = 0, r2 6= 0 µ+ c5r
2
2 = 0 σ1 = λ+ c2r

2
2 , σ2 = 2c5r

2
2

Mixed mode r1 6= 0, r2 6= 0
λ+ c1r

2
1 + c2r

2
2 = 0

µ+ c4r
2
1 + c5r

2
2 = 0

Eigenvalues of 2

(
c1r

2
1 c2r1r2

c4r1r2 c5r
2
2

)
mode branch bifurcates from the primary solutions along the rays

(λ, µ) = −(c1, c4)r21, and (λ, µ) = −(c2, c5)r22

by pitchfork bifurcations.
If the coefficients c1 and c5 have different signs and c1c5− c2c4 > 0, a tertiary branch of slow periodic solutions bifurcates

from the mixed mode solutions. At the same parameter values a heteroclinic orbit connecting the single modes exists. In order
to calculate the branching behaviour for the periodic solutions and distinguish it from the heteroclinic orbit, higher order terms
in the bifurcation equations are needed.
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266 Section 5: Nonlinear oscillations

1.2 The slow solution branch in the resonant case

Due to the presence of the term A6z
3
1 in (2) no pure slow mode can exist, there will always be a contribution of O(|z1|3) in

the second mode. Taking care of this term by applying a center manifold reduction to the fast equation (2), which is possible
as long as µ + iδ + A4|z1|2 is sufficiently far from 0, we find that this term only contributes high order terms to the slow
equation (1). Therefore we recover the slow oscillation from the non-resonant case and observe that outside the critical region
it has the same branching behaviour. But its stability with respect to oscillations in the second mode is quite different: If z1(t)
oscillates like r1 exp(iΩt), the term A6z

3
1 acts like an external Duffing-like excitation in (2). With Ω = ω+ d1r

2
1 we find that

the primary resonance in this equation occurs when

3ω + δ + d4r
2
1 = 3(ω + d1r

2
1) and µ+ c4r

2
1 = 0.

Introducing for fixed values of r1 the shifted “parameters”

δ̃ = δ + (d4 − 3d1)r21 and µ̃ = µ+ c4r
2
1,

and setting z1 = r1 exp(iΩt) and z2 = w2 exp(3iΩt), we obtain the autonomous differential equation

ẇ2 = (µ̃+ iδ̃ +A5|w2|2)w2 +A6r
3
1, (5)

whose stationary values satisfy the Duffing-like equation(
(µ̃+ c5r

2
2)2 + (δ̃ + d5r

2
2)2

)
r22 = |A6|2r61. (6)

For given values of r1 and r2 the possible values of µ̃ and δ̃ lie on circles with radius |A6|r31/r2 and center at (−c5r22,−d5r22).
The backbone of this family of solutions, which is obtained by setting A6 = 0, corresponds to the mixed-mode solution of the
non-resonant case.

These stationary solutions correspond to slow periodic oscillations of the full system (1,2) and approximate both the mode-
1 solution and the mixed mode solution of the non-resonant case, as long as the contribution of the slow mode is dominant.
We observe, that the pitchfork bifurcation from the slow mode to the mixed mode in the non-resonant case is governed by a
Duffing szenario in the 1 : 3-resonance.

1.3 The fast solution branch in the resonant case

If we set z1 = 0, (1) is fulfilled and for the fast mode we obtain the same branch equation as in the non-resonant case. The
solution oscillates with constant amplitude r2 and frequency Ω2 = 3ω + δ + d5r

2
2 .

The stability of z1 = 0 is lost, when λ + c2r
2
2 = 0. Since in that case the imaginary linear part Ω1 = ω + d2r

2
2 6= 0,

we would expect a Hopf bifurcation to occur. But the situation is somewhat more difficult, because the term A3z
2
1z2 forces

an oscillation close to the slow eigenfrequency, therefore we have to deal with a nonlinear Mathieu szenario. In order to
investigate the bifurcation in this case we assume |z1| � |z2| and that the influence of z1 on the motion of z2 can be neglected.

We introduce the new parameters

λ̃ = λ+ c2r
2
2 and ∆ = Ω1 − Ω2/3 = −δ/3 + (d2 − d5/3)r22 (7)

and set z1 = w1 exp(Ω2t/3). Then w1 satisfies the autonomous equation

ẇ1 = (λ̃+ i∆ +A1|w1|2)w1 +A3w
2
1r2 (8)

The steady states are obtained from the equation

(λ̃+ c1r
2
1)2 + (∆ + d1r

2
1)2 = |A3|2r21r22, (9)

which for fixed r1 and r2 describes a circle with radius |A3|r1r2 and center −(c1, d1)r21 in the (λ̃,∆)-plane. The backbone
curve of this solution set, given by A3 = 0, coincides again with the mixed-mode solution of the non-resonant case. If ∆ = 0,
a pair of slow periodic oscillations bifurcates from the fast solution branch. Otherwise first a quasiperiodic oscillation with
frequencies Ω2 and Ω1 + d1r

2
1 is found. For larger amplitudes of r1 the two oscillations can synchronize into the frequency

ratio 1 : 3.
Due to the parametric excitation termA3z

2
1z2 the pitchfork bifurcation from the fast mode in the non-resonant case changes

to a Mathieu-like transition in the resonant case.
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