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Abstract

We investigate the behaviour of the primary solutions at a Hopf-Hopf interaction close to a 1:3 resonance. It turns out, that the

secondary bifurcations from the primary periodic solution branches are governed by Duffing and Mathieu equations.

By numerical path following a homoclinic orbit at a saddle node was detected, giving rise to the Shilnikov scenario. In order to

understand the creation of homoclinic orbits, a continuation of that orbit was applied, which terminated at an equilibrium with a

triple zero eigenvalue. The existence of different types of homoclinic and heteroclinic orbits in the vicinity of triple zero bifurcation

points has already been established. A short discussion of the local bifurcations at the triple zero eigenvalue is given.
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1. Introduction

During the investigation of oscillatory systems Hopf-Hopf mode interactions occur quite frequently and may al-

ready give rise to interesting dynamics, like 3-frequency tori or heteroclinic orbits, which indicate small-scale chaotic

behaviour in the non-averaged system. If further parameters are varied, low order resonances can occur, increasing

the possibility of complicated solution patterns.

A mechanical model with a rich bifurcation structure is given by a fluid conveying tube1, which is supported at

the position s = ξ� by a linear spring of stiffness c. A typical stability chart of the straight downhanging equilibrium

is displayed in Fig. 1: If the flow rate � increases, either a zero eigenvalue (dashed curve) is encountered for large

values of c, leading to a buckling of the tube, or a pair of imaginary eigenvalues σ = ±iω (solid curve) is found for

smaller stiffness c. For the chosen parameter values the Hopf bifurcation curve intersects the curve with σ = 0 in
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Fig. 1. Stability boundaries in (c, �)-parameter space for an elastically

supported fluid conveying tube.

Fig. 2. Variation of the stability boundary for a slightly changed sup-

port position ξ.

a Bogdanov-Takens point (“BT”), where the purely imaginary eigenvalues σ = ±iω coalesce at the non-semisimple

double eigenvalue zero. The Hopf bifurcation curve forms a loop and intersects itself at the point (cc, �c): If the

stiffness c is fixed at cc, two pairs of purely imaginary eigenvalues occur at � = �c simultaneously. For a certain

value (ξr ≈ 0.88634) of the parameter ξ the imaginary parts satisfy the resonance condition ω2 = 24.8076 = 3ω1.

In Fig. 2 the Hopf bifurcation boundaries for ξ = ξr and ξ = ξr + 0.001 (dashed curve) are displayed close to the

resonant Hopf-Hopf interaction. For ξ = ξr + 0.001 the bifurcation boundary intersects itself close to (cc, �c); the

purely imaginary eigenvalues ±iω j at this point satisfy

ω1 = 8.63917, ω2 = 24.5399, δ = ω2 − 3ω1 = −1.37757.

In Fig. 2 also the directions of the mathematical unfolding parameters λ and μ are displayed. They are tangent to the

stability boundaries at the intersection points and point in the direction of increasing real parts of the eigenvalues.

A combined analytical and numerical investigation of the 1:2 and 1:3 resonances was carried out in Ref.4, dis-

playing a rich solution scenario in the vicinity of the bifurcation point. While in the non-resonant case the secondary

bifurcations create tori, the secondary branches in the resonant case also contain transitions between periodic and

quasiperiodic solutions.

The focus of the investigations in the first part will be the stability loss of the primary solution branches. It turns

out, that the slow oscillation also excites the higher harmonics, whose dynamics is governed by a Duffing equation,

whereas the the bifurcation from the fast oscillation is governed by a nonlinear Mathieu-type equation.

During the path-following of a periodic solution in the reduced problem a homoclinic orbit was observed, which

gives rise to a Shilnikov scenario. Originally we supposed that this homoclinic orbit is related to the heteroclinic

orbit between the primary branches in the non-resonant system. Performing a continuation of the homoclinic orbit in

the unfolding parameters, the branch ended up in the vicinity of a bifurcation with a threefold zero eigenvalue. The

occurence of homoclinic and heteroclinic solutions close to the triple zero bifurcation was already shown in3 and2. In

the final section of this article a short discussion of the threefold zero bifurcation will be given.

2. Normal Form equations for the Hopf-Hopf interaction with 1:3 resonance.

The third order normal form equations of the unfolded system close to a 1:3 resonant Hopf bifurcation are given

by the complex equations7

ż1 = (λ + iω)z1 + A1|z1|2z1 + A2|z2|2z1 + A3z2
1z2, (1a)

ż2 = (μ + 3iω + iδ)z2 + A4|z1|2z2 + A5|z2|2z2 + A6z3
1, (1b)
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where λ, μ, and δ are the unfolding parameters and the complex valued coefficients Aj = c j + id j are obtained from

the cubic expansion of the system at the bifurcation point. The terms with A1, A2, A4 and A5 would also show up

at a non-resonant Hopf-Hopf interaction, whereas the last terms in both equations appear due to the 1:3-resonance.

Throughout this article the following values for the cubic coefficients will be used for the numerical calculations

A1 = 4.03479 − 1.80535i, A2 = 10.2064 + 5.82019i, A3 = 0.48729 + 13.0561i,

A4 = −14.4166 − 0.712095i, A5 = −1.22844 + 0.0601914i, A6 = −1.35391 + 3.9928i.

These values were obtained by Center Manifold reduction and Normal Form computation at an 1:3-resonance for a

fluid conveying tube with elastic support and an additional mass at the lower end.

By introducing polar coordinates z j = r j exp(iϕ j) the equations (1a) and (1b) could be reduced to the three-

dimensional real equations for the amplitudes r j and the resonance angle ψ = 3ϕ2 − ϕ1

ṙ1 =(λ + c1r2
1 + c2r2

2)r1 + (c3 cosψ − d3 sinψ)r2
1r2, (2a)

ṙ2 =(μ + c4r2
1 + c5r2

2)r2 + (c6 cosψ + d6 sinψ)r3
1, (2b)

ψ̇ =δ + (d4 − 3d1)r2
1 + (d5 − 3d2)r2

2

+ (d6 cosψ − c6 sinψ)r3
1/r2 − 3(d3 cosψ + c3 sinψ)r1r2. (2c)

Since (2c) becomes singular for r2 = 0, we introduce rotating coordinates

z1(t) = exp(iΩ(t)) w1, z2 = exp(3iΩ(t)) w2, (3)

where Ω(t) is chosen, such that w1(t) ∈ R:

Ω̇ = ω + d1|w1|2 + d2|w2|2 + Im A3 w2
1w2. (4)

With ż2 = exp(3iΩ(t))(ẇ2 + 3iΩ̇w2) we obtain the regular system for w1 = x1 and w2 = x2 + iy2

ẋ1 = (λ + c1x2
1 + c2|w2|2)x1 + (c3x2 − d3y2)x2

1, (5a)

ẋ2 = (μ + c4x2
1 + c5|w2|2)x2 − (δ − 3Ω̇ + d4x2

1 + d5|w2|2)y2 + c6x3
1, (5b)

ẏ2 = (δ − 3Ω̇ + d4x2
1 + d5|w2|2)x2 + (μ + c4x2

1 + c5|w2|2)y2 + d6x3
1. (5c)

Instead of (4) we could equally well have chosen the rotation, such that w2(t) ∈ R.

3. Primary solution branches

First we have a closer look at the primary solution branches, which bifurcate from the trivial state z = 0 at the

stability boundaries λ = 0 and μ = 0.

3.1. Branching and stability of the slow mode solution

Along the line λ = 0 the trivial state looses its stability by a Hopf bifurcation with imaginary eigenvalues ±iω.

In the non-resonant case a pure Mode-1 solution (z2 = 0) would bifurcate from the origin, but in the resonant case

the term A6z3
1

in (1b) prevents that simple solution. If μ and δ are sufficiently far from zero, we could apply Center

Manifold reduction and obtain

z2(t) ≈ z3
1A6/(μ + iδ), (6)

so |z2| = O(|z1|3. Using this estimate in (1a) we observe, that the cubic terms containing z2 can be savely neglected

and we recover the bifurcation equation for the non-resonant problem

ż1 = (λ + iω + A1|z1|2)z1. (7)
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Fig. 3. Solution manifold for the bifurcation equation (9) for fixed r1. The dashed curve indicates zero eigenvalues; along the dot-dashed curve

secondary Hopf bifurcations to quasiperiodic solutions occur.

Its periodic solutions z1 = r1 exp(iΩ1t) with Ω1 = ω + d1r2
1 satisfy the branching equation λ + c1r2

1 = 0 and are

supercritical and stable, if c1 < 0.

In order to investigate the behaviour of this solution in the second direction, we assume, that |z2| remains sufficiently

small, such that it doesn’t influence (1a). Inserting the slow motion into the fast equation (1b), we obtain the equation

ż2 = (μ̃ + iδ̃ + 3iΩ1 + A5|z2|2)z2 + A6z3
1, (8)

with the shifted parameters

μ̃ = μ + c4r2
1,

δ̃ = δ + (d4 − 3d1)r2
1.

Since the last term in (8) oscillates with angular frequency 3Ω1, (8) is the equation of a Duffing oscillator with linear

and non-linear damping. It’s periodic solutions with angular frequency 3Ω1 are obtained using the ansatz

z2 = b exp(3iΩ1t − iψ),

which leads to the equations

(μ̃ + c5b2)b = −Re(A6 exp(iψ))r3
1,

(δ̃ + d5b2)b = − Im(A6 exp(iψ))r3
1.

Eliminating ψ yields the equation (
(μ̃ + c5b2)2 + (δ̃ + d5b2)2

)
= |A6|2r3

1, (9)

which for fixed b describes a circle with radius |A6|r3
1
/b and center (−c5b2,−d5b2) in the (μ̃, δ̃) plane. The shape of the

solution set of eqn. (9) is displayed in Fig. 3.

The stability of the slow periodic oscillations is determined by the coefficient c1 in the direction of the first mode

and by the Jacobian of (8)

J2 =

(
μ̃ + iδ̃ + 2A5|z2|2 A5z2

2

A5z2
2 μ̃ − iδ̃ + 2A5|z2|2

)
(10)
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in the fast direction. The trace and determinant of J2 are given by the real valued expressions

tr(J2) = 2μ̃ + 4c5|z2|2,
det(J2) =

∣∣∣μ̃ + iδ̃ + 2A5|z2|2
∣∣∣2 − |A5|2|z2|4.

Zero eigenvalues of J2 occur, when det(J2) = 0, which happens, when the tangential plane to the solution set of (8)

becomes vertical, indicated by the dashed curve in Fig. 3.

Hopf bifurcations occur, when tr(J2) = 0 and det(J2) > 0. At these points, which are shown as dot-dashed

curve in Fig. 3, a quasiperiodic solution bifurcates from the slow oscillation. At the intersections of these bifurcation

boundaries a Takens-Bogdanov bifurcation occurs.

3.2. Branching and stability of the fast oscillation

Along the stability boundary μ = 0 the branch of fast oscillations

z1 = 0, (11a)

z2 = r2 exp(3iΩ2t) with μ + c5r2
2 = 0 and 3Ω2 = 3ω + δ + d5r2

2 (11b)

bifurcates from the trivial state. Its stability in the fast direction is determined by the sign of c5. A secondary

bifurcation occurs, if the Jacobian of (1a) at (11)

J1(0) = λ + iω + A2|z2|2 (12)

becomes unstable, that is, if Re(J1(0)) = λ + c2|z2|2 = 0. In the non-resonant Hopf-Hopf interaction a quasi-periodic

solution would bifurcate from the periodic oscillation, but in the resonant case the last term A3z2
1z2 in (1a) acts like

a parametric excitation and gives (1a) the form of a nonlinear Mathieu equation for a given periodic oscillation z2(t).
Therefore we should also expect periodic solutions for certain parameter values.

With the ansatz z1 = r1 exp(iΩ2t − iφ) and the shifted parameters

λ̃ = λ + c2r2
2,

Δ̃ = (d2 − d5/3)r2
2 − δ/3,

we obtain the bifurcation equation

(λ̃ + iΔ̃ + A1r2
1)r1 + A3r2

1r2 exp(3iφ) = 0. (13)

Dividing by r1 and eliminating φ from (13) we obtain the scalar equation

(λ̃ + c1r2
1)2 + (Δ̃ + d1r2

1)2 = |A3|2r2
1r2

2, (14)

which for fixed values of r1 and r2 describes a circle of radius |A3|r1r2 in the (λ̃, Δ̃)-plane centered at (−c1r2
1,−d1r2

1).

The solution manifold in (λ̃, Δ̃, r1)-space is displayed in Fig. 4. It touches the plane r1 = 0 in the point (λ̃, Δ̃) = (0, 0):

If λ̃ = λ + c2r2
2 and Δ̃ = (d2 − d5/3)r2

2 − δ/3 vanish simultaneously, a family of synchronous periodic solutions is

born. Otherwise a branch of quasi-periodic solutions bifurcates at λ̃ = 0 from the fast periodic solution. At higher

amplitudes the quasiperiodic solution connects to the family of periodic solutions.

The stability of the periodic oscillations in the first component can again be determined by the Jacobian of (14)

J1(w1) =

(
λ̃ + iΔ̃ + 2A1|w1|2 A1w2

1 + 2A3w1r2

A1w2
1 + 2A3w1r2 λ̃ − iΔ̃ + 2A1|w1|2

)
with w1 = r1 exp(−iφ). (15)

Its real valued trace and determinant are given by

tr(J1(w1)) = 2(λ̃ + 2c1r2
1), (16a)

det(J1(w1)) = |λ̃ + iΔ̃ + 2A1|w1|2|2 − |A1w2
1 + 2A3w1r2|2. (16b)
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Fig. 4. Bifurcation diagram for (14) displaying the family of periodic oscillations. The dashed and dot-dashed curves indicate turning points and

Hopf bifurcation points.

The location of turning points, where tr(J1(w1)) vanishes, is indicated by the dashed curve in Fig. 4. A Hopf bifurcation

occurs, when tr(J1(w1)) = 0 and det(J1(w1)) > 0; it is indicated by the dot-dashed curve in Fig. 4. At the intersection

of these two stability boundaries a Takens-Bogdanov bifurcation occurs. Since in our problem c1 > 0, the mixed-mode

periodic solution is unstable.

It should be noted, that the discussions of the mixed mode solutions are valid only for r2 � r1 for the Duffing

scenario, and for r1 � r2 in the Mathieu scenario, respectively. In these two cases we could either neglect the influence

of the term A3z2
1z2 or A6z3

1
, resulting in a bifurcation equation, which contained one unknown angular variable, which

could then be eliminated. If we allow both modes to be of comparable size, we have to deal with the full three-

dimensional system and also have to investigate the three-dimensional Jacobians for the stability calculations.

3.3. Numerical observations and Shilnikov bifurcation6

For a set of coefficients Aj we followed the bifurcation branches of the reduced system (5) numerically using

the continuation software MatCont5. Since we considered only cubic nonlinearities in the bifurcation equations, the

system (1) is invariant under the scaling transformation

λ �→ ε2λ, μ �→ ε2μ, δ �→ ε2δ,

zi �→ εzi, t �→ t/ε3.

Therefore we can keep one unfolding parameter constant. Since the slow mode bifurcates subcritically, we choose

λ = −1. Some solution branches for fixed δ = 0.5 are shown in Fig. 5: The lower equilibrium branch corresponds

to the low amplitude response in the Duffing equation for the slow oscillation. The upper branch shows the large

amplitude response for that case. According to Fig. 3 we would expect that this separated branch is closed, but due to

the large amplitude of |z2| the Duffing approximation becomes inappropriate.

From a Hopf bifurcation along the lower branch a subcritical periodic solution emanates, corresponding to a torus

in the original system (1). This branch spirals towards a certain point. Looking at the period along this branch, as it

is shown in Fig. 6, we observe the typical snaking behaviour for a Shilnikov scenario: Along the branch the period T
increases to infinity, while the bifurcation parameter μ converges to some fixed value. At the endpoint of this curve

a homoclinic orbit of a saddle-focus instability is found: Starting along the unstable two-dimensional manifold the

orbit spirals off the equilibrium point and returns along the stable one-dimensional manifold. In the vicinity of such

a homoclinic orbit an infinite set of horseshoe maps can exist, leading to very chaotic dynamics. Such a homoclinic

orbit was also observed in Ref.4.
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Fig. 5. Partial bifurcation diagram for (5) with λ = −1 and δ = 0.5.

“EP” denotes equilibrium points, “PS” denotes a periodic solution.

Fig. 6. Period T of the periodic solution in Fig. 5 and of a bifurcating

period-2 branch.

In order to understand the occurence of this phenomenon in the 1:3 Hopf-Hopf interaction, a continuation strategy

was applied for the homoclinic orbit in the (μ, δ) parameter plane. Starting at (μ, δ) ≈ (1.25, 0.5), the branch finished

at (μ, δ) ≈ (2.72,−3.68), where the homoclinic orbit became very small. All three eigenvalues decreased towards 0,

so we expected a steady solution with a triple zero eigenvalue at the endpoint. Since a triple zero eigenvalue requires

three parameters for a generic unfolding, we had to allow a third parameter, in addition to μ and δ, to vary. Selecting λ
as third parameter wouldn’t help due to the scaling invariance. Therefore we introduced a scaling parameter γ, which

multiplies the nonlinear resonance coefficients A3 and A6. For γ = 1 we have our original set of parameters, whereas

for γ = 0 we would obtain the non-resonant case.

For γ ≈ 0.9225 we found an equilibrium point with a threefold zero eigenvalue. This artificial point would not

occur in the original system, but it can be regarded as organizing center for the observed homoclinic orbits.

3.4. Short survey of the threefold zero eigenvalue

It was shown in2,3, that at a triple zero eigenvalue several kinds of homoclinic orbits can be found. A possible

unfolding of the normal Form system at second order is given by the system

ẋ = y, (17a)

ẏ = z, (17b)

ż = μ0 + μ2y + μ3z + a1x2 + a2xy + a3y2 + a4xz, (17c)

where the small parameters μ0, μ2 and μ3 are the unfolding parameters of the linear system and the ai are the normal

form coefficients of the second order system. The equilibria of (17) are given by

x1,2 = ±
√−μ0/a1, y = 0, z = 0,

for μ0/a1 < 0. The stability of these equilibria is determined by the Jacobian

J(xi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0

0 0 1

2a1xi μ2 + a2xi μ3 + a4xi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0

0 0 1

ν1 ν2 ν3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (18)

In the three-dimensional vicinity (ν1, ν2, ν3) of the origin, the following bifurcation boundaries of co-dimension 2 can

be found:

• ν1 = ν2 = 0: Bogdanov-Takens points,
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• ν1 = ν3 = 0, ν2 > 0: Zero-Hopf points.

For the appearence of homoclinic orbits also the case ν3 = 0 plays an interesting role, because in that case the flow

is volume preserving and the equilibria are of saddle-focus type. Along the homotopy path of the homoclinic orbit

towards the triple zero bifurcation point that condition was fulfilled very well.

For the simplified system a2 = a3 = a4 = 0, an exact homoclinic orbit could be constructed in Ref.2. By a

numerical continuation from this solution, different kinds of homoclinic orbits could be found. It would be interesting

to find more of these observed orbits also in the resonant Hopf-Hopf interaction.

4. Conclusions

For a Hopf-Hopf bifurcation with 1:3 resonance the branching behaviour and stability of the primary solution

branches was considered. It could be shown, that the behaviour close to the slow solution mode can be modelled as

a Duffing equation with nonlinear damping. The bifurcation from the fast mode is governed by a nonlinear Mathieu

equation close to the resonance.

During the numerical investigation of the system a homoclinic solution for a saddle-focus equilibrium was found.

This solution could be continued to a homoclinic orbit close to an equilibrium with a triple zero eigenvalue, for which

the occurence of homoclinic orbits has already been established.
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