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Abstract: Transportation of small-sized rigid objects in industrial environment may be
provided by throwing it from the source point and catching it at the destination point. This
approach promises better flexibility than traditional transportation systems based on conveyor
belts. Accurate real-time forecasting of the object ballistic trajectory is necessary to provide
successful catching of the object by the gripper. The development of a sample-based algorithm
for trajectory forecasting is a scope of this paper. The input for the forecast is a reference of
object spatial coordinates measured by the stereo vision system. Such measurements allow
defining the position of the object in a camera-related coordinate system with millimeter
accuracy, however they sometimes include outliers. A reference of coordinate transformations
is proposed, which translates object coordinates from the camera related 3D system to a 2D
system with relations to gravity and motion direction. Outlier detection is made during these
transformations. The forecasting is performed in 2D coordinate system with use of k nearest
neighbors approach. Applying the algorithm to the measured trajectories showed that it is able
to predict future position of the object with 3 centimeters precision in 92 % of cases.
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1. INTRODUCTION

Transport-by-throwing (TbT) is a novel approach for
transportation of small-sized rigid objects, especially in
industrial environment (where there is a need to trans-
port a high number of objects between machine tools). It
was introduced by Frank et al. (2006). According to this
approach the transportation of an object from a source
point to a destination point is provided via throwing it
at the source point (towards the destination point by the
specific throwing device) and catching it at the destina-
tion point (by the specific capturing device). Throwing-
based transportation systems have potential advantages
in comparison with traditional conveyors: better flexibility,
higher productivity and lower consumption of energy and
resources (Frank et al. (2006)).

While the task of the throwing device is exact - it must
throw objects everytime with fixed direction and velocity
- the catching challenge is more complicated: the gripper
must catch airborne object in a priori unknown intercep-
tion point at a priori unknown time moment with a priori
unknown velocity. The task of catching an airborne object
with a robotic manipulator was considered prior to the
foundation of ThT as one of common robotic activities.
It was introduced by Hove and Slotine (1991). To define
catching time, position, and velocity the trajectory of the
object is predicted based on the observation of its flight.
While most existing approaches on trajectory prediction

are based on physical models of the object motion, here we
apply a sample-based predictor that does not require exact
knowledge about physical parameters of the trajectory.
Our predictor uses a modified version of the algorithm pro-
posed by Mironov et al. (2014). The development and val-
idation of the proposed ideas is implemented with tennis
ball as a thrown object. The reason is that the tennis balls
is a well-known aerodynamic object; there is a number of
scientific works exploring the aerodynamic properties of
the tennis ball (the review on such exploration is given
e.g. by Mehta et al. (2008)). On the other hand most of
existing robotic catching applications also deal with small-
sized sport balls, e.g. catchers by Hove and Slotine (1991),
Frese et al. (2001), Birbach et al. (2011). On the other hand
the basic principle of prediction should be independent
from the spherical shape of the body and may be extended
to the objects of another shapes.

This article is organised in the following way. In the second
section quick overview of existing techniques for ballistic
trajectory prediction is given. In the third section the
collected database of trajectories used for learning and
validation is discussed. In the fourth section coordinate
transformation reference is discussed. Coordinate trans-
formations are made in order to increase accuracy of
prediction, to decrease the complexity of further calcu-
lations (e.g. decreasing dimensionality of the data), and
to make use of trajectory database more efficient. The
last subsection of section 4 is concentrated on prediction
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of object movement in transformed coordinate system. In
section b evaluation results for the whole algorithm based
on the dataset are presented and discussed. In section 6
concluding remarks are given.

2. RELATED WORKS AND CONTRIBUTION

In the first robotic ball catcher developed by Hove and
Slotine (1991) parabola fitting was used to estimate and
predict the trajectory of the thrown balls. Parabolic mo-
tion models were also applied in recent robotic catchers
developed by Herrejon et al. (2009) and Batz et al. (2010).
In such models gravity is considered as the only significant
force, which influence on the flying object, and acceleration
of the object is considered as equal to gravity acceleration
while the object is airborne:

X = {_97070} (1)

where X = {x1,29,23} is a vector of object coordinates
(and axis x; is directed upwards), ¢ is gravitational ac-
celeration. The solution of this equation is a well-known
formula of motion with constant acceleration:

X = X(0) + X(0)t + {—g,0, 0}% (2)

where t is time. This model does not consider air drag
which may be neglected on short distances and become
a significant force on the long term (see, e.g. the simula-
tion of ballistic motion by Tutz (2007)). Further physical
models of ball motion, considering gravity and air drag as
significant forces were applied e.g. by Frese et al. (2001),
Barteit et al. (2008), Birbach et al. (2011). In such models
the object coordinates at the certain time moment after
the throw may be calculated by solving the following
differential equation:

X:{79,0,0}7k|X|{£L’1,$2,:E3} (3)

where k is a coefficient defining air drag. Unlike (1) this
equation has no analytical solution and is usually solved
numerically. Such a model is also simplified, however
allows achieving 66-80% rate of success in catching (Frese
et al. (2001), Birbach et al. (2011)).

Increasing precision of the motion model lead to increas-
ing complexity of calculations and to the need of more
complicated experiments in order to define aerodynamic
properties of the object. Even for simle-shaped objects
like tennis balls complicated experiments in aerodynamic
tube are necessary to define drag coefficients (Mehta et al.
(2008)). Accurate aerodynamic model of the object is
much dependent on its shape. Learning-based methods
draw attention as a potential way for trajectory predic-
tion because they do not need exact knowledge about
object physical properties to work correct. Kim and Bil-
lard (2012) propose the predictor based on process model
with parameters obtained by means of machine learning.
This approach lies between analytical and learning-based
prediction: prediction is performed by integrating tangen-
tial and angular acceleration of the object, while these
accelerations are estimated based on learning. Later Kim
et al. (2014) apply this concept for catching airborne ob-
jects with robotic manipulator and achieved 73% success
rate. The learning based approaches were introduced by

Mironov and Pongratz (2013) - neural network prediction,
- and by Mironov et al. (2014) - nearest neighbors.

In this paper we extend and apply the predictor in-
troduced Mironov et al. (2014). Observed trajectory of
the object is compared with sample trajectories from
the database. The input of the predictor includes the
reference measurements of the current trajectory C(1 :
m) = {X.(1), Xc(2),...X.(m)} where m is a number of
frames captured by the observation system till the mo-
ment when prediction is made. The database include N
trajectories S1, Se, .., Sy where each trajectory S;(1:n) =
{X:(1), X;(2),...,X;(n)} and n > m is overall number of
frames. The predictor task is to calculate a forecast of
the current trajectory C(f : n) = {Xc(f), Xc(f), ... Xe(n)}
where m < f < n. This task is solved in the following way:.
Two trajectories A(1 : n) = {X.(1),X.(2),,...Xa(n)}
and B(1 : n) = {Xp(1), Xp(2), ..., Xp(n)} are taken from
the database such that measured points of the current
trajectory C(1 : m) lie higher than corresponding points
of trajectory B(l : m) and lower than corresponding
points of trajectory A(1: m) and that the distances from
trajectories A(1: m) and B(1:m) to C(1 : m) are smaller
than from any other trajectories from the set. Distance
is defined as a mean value of euclidean distances between
corresponding points of trajectories:

D(4,C) = 3" |A(0) - C() @

The forecast C(f : n) is calculated as a weighted mean of

B(f :n) and A(f : n):
C(f:n) =w,A(f :n) +wpB(f : n) (5)

Weights w, and wy, are defined according to the distances
from A and B to C. Two extensions of the algorithm
were proposed by Mironov et al. (2014). First it was
proposed to sort the trajectories in the dataset with
respect to launching velocity (or launching angle, or any
other parameter characterizing the shape of trajectory)
and take in mind only such trajectories from the database
that have the same value of thus parameter as C. This
allow decreasing the volume of calculations as the current
trajectory is compared only with a small subset of the
dataset. Secondly, it was proposed to translate the 3D
trajectory coordinates into 2D ”Plane-of-Flight (PoF)”.
Goals of this transform are discussed more precisely in
subsection 3.2.

Mironov et al. (2014) explored the theoretical usefulness
of the kNN approach via the numerical simulation of the
object flight. This simulation was including a number of
simplifying assumptions. Here we extended the prediction
algorithm in order to overcome these assumptions. The
main advances in comparison with the work by Mironov
et al. (2014) are listed below.

e The model of the object motion based on (3) was
used for simulating trajectories. Validation of the
algorithm was done based on this simulation. Here we
validate our algorithm by forecasting real trajectories
of the thrown balls observed by the vision system.

e It was assumed that the center of the coordinate
system coincide with the starting point of the object
flight and coordinate axis x; is directed upwards.
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Therefore all trajectories in the database have the
coordinate value X(0) = {0,0,0}. Estimating the
PoF coordinates in this case is simplified: it is equal
to estimating the proportion a between coordinates
values in x5 and x3. This proportion is equal to the
tangent of angle o between the Plane-of-Flight and
plane expressed by x; and x3. In real environment
we deal with object location in camera coordinate
system, which has no relation to the gravity direc-
tion and to the launching point. In this article we
introduce a reference of coordinate transformations
which translate object trajectory into coordinate sys-
tem which is, first, related to the gravity direction,
secondly, related to the Plane-of-Flight, third, provide
that X (0) = {0,0, 0} for all trajectories. The transfor-
mation sequence include detection and filtering object
positions measured with high errors. Such transfor-
mation reference is invariant to the location of the
cameras (if such location allow observation and stereo
triangulation of the whole trajectory) and allow cre-
ating the common database even if the trajectories
were acquired with different camera setup.

e It was assumed that the small subset of the trajecto-
ries with similar shape-characterizing parameters is
already allocated. Here we deal with the situation
when the values of these parameters must be esti-
mated from the trajectory measurements. The subset
is allocated from the dataset in real time.

3. TRAJECTORY MEASUREMENTS

Most of existing robotic catchers use stereo vision to
observe the 3D position of a flying ball (e.g. Hove and
Slotine (1991), Frese et al. (2001), Batz et al. (2010),
Birbach et al. (2011)). As an exception Barteit et al.
(2008) and Herrejon et al. (2009), use single camera setup
to track the flying ball. Ball positioning in these works
was based on physical model of the ballistic motion,
which is not likely if we try to develop sample-based
predictor without relations to physics. Stereo vision allows
to determine position of the ball center in 3D space based
on its pixel positions on the synchronized images from
two cameras. The knowledge about these positions may be
acquired using circle detection algorithm based on Hough
transformation (Scaramuzza et al. (2005), Barteit et al.
(2008)). Accuracy of positioning static untextured spheres
using stereo vision was evaluated by Pongratz and Mironov
(2015). A pair of cameras with a resolution of 2048 by
2048 pixels were examined (the same cameras are used
in experiments described in this paper). The standard
deviation of object positioning was found independent
from distance to the cameras (when it is more than
0.5 and less than 2 meters) and lies within 2-3 mm for
considered setup. This research is concentrated on the
static objects and does not consider motion blur, possible
visual collisions with other objects on the scene, and
specific texture of the tennis ball. Exposure time of the
camera sensor was set to the minimum possible value of
41 ps. If the object is flying with velocity of 10 m/s its shift
after 41 us be equal to 0.41 mm. Therefore the influence
of the motion blur was considered negligible.

In our throwing experiments a specific throwing device
was used to throw the balls with known force and velocity.

Fig. 1. Throwing device used in the experiments

The photo of this device is shown on figure 1. The device
is controlled from PC via the serial port. The objects
(tennis balls) are thrown by the spring catapult. An
electromechanical drive is used to achieve needed tension
of the springs. It is connected with the catapult cup by
the solenoid magnet. When the operator switches off the
magnet the connection with the cup is interrupted and the
catapult throws the object. Two light barriers are mounted
in front of the cup, which measure the time when the
object flies through them. The angle of throw is near to
60 degrees upwards.

The cameras are mounted with 1 meter baseline and posi-
tioned opposite to the throwing device. The distance be-
tween camera baseline and the catapult is approximately
3.2 meters. Exploration on the performance of the camera
system showed that acquiring and processing double 2048
by 2048 images provided by the sensors of the cameras is
time-expensive and limit the feasible frame-rate to 40-50
fps. Therefore only the small area of interest (AOI) within
the image with the size of 300 by 300 pixels is searched for
the object by the recognition algorithm. Position of the
AOI on the image is preliminary aligned to the launching
area around the throwing device and then recalculated
after receiving each new frame according to the new po-
sition of the object. This approach reduces computational
expenses and increase available frame-rate up to 110 fps.

Using the described setup 183 trajectories of the tennis
balls were acquired. The tension of the spring was mostly
adjusted to provide the launching velocity of 4.5 m/s.
However the measured velocity deviated from this nominal
value varying from 4.3 to 5.1 m/s. In addition a few throws
with lower or higher tension were made, therefore the
overall range of launching velocities is 3.7-5.3 m/s. Each
trajectory includes 80-95 frames until the object leaves the
field of view. Each frame is processed by the Canny edge
detection algorithm first, then Hough transformation is
applied to determine the center position of the ball in the
images. Then the stereo triangulation procedure is applied
to ball center positions in order to define 3D coordinates
of the object center.

In most of the cases the reference of the center positions
has an appearance of the smooth curve (figure 2.a). How-
ever in some cases strong deviations in trajectory was
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Fig. 2. Illustration of the effects that distort object positioning.

detected. The appearance and nature of such deviations
are shown on figure 2.b and 2.c. The texture (printed
text and curve lines) on the surface of the ball may be
recognized as a part of ball edge. This leads to the errors in
center positioning which achieve more than 10 mm (figure
2.b). Much bigger errors in positioning are connected with
the influence of scene objects. The edges of the objects
on the scene (e.g. light sources, figure 2.c) may also be
recognized as edges of the ball. Three trajectories in the set
have artificially added background noise (the light-sources
were switched on) which leads to wrong positioning.

4. PREDICTION IN MODIFIED COORDINATES

The stereo vision tracker allows to measure position of
the object X, = {xc1,Zc2, T3} in the coordinate system
connected with optical center of the camera. However
for a more efficient processing of the trajectory and for
simplifying further calculations it may be useful to adjust
the coordinate system with the parameters of the ob-
ject motion. The reference of coordinate transformations
aiming such simplification is discussed in this section.
Three main transformations are applied: first of all gravity-
related coordinates Xy = {241,242, 243} are defined (the
coordinate axis x4 is collinear with gravity direction),
then coordinates are transformed from 3D space into 2D
Plane-of-Flight (PoF) X, = {xp1,2p2} and after that one
of the measured points of the trajectory is picked as a
zero point for the coordinates X, = {zs1,x52}. Relations
between the coordinate systems are shown on figure 3.
Forecasting operation is made in the zero-point related
coordinates.

4.1 Gravity-related coordinates

Mironov et al. (2014) consider that trajectories are repre-
sented in such coordinate system that one of the coordi-
nate axes (z1) is collinear with gravity direction. The first
transformation aims to make this assumption true. The
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Fig. 3. Relation between the coordinate systems

main motivation of this step is to simplify the estimation
of the Plane-of-Flight (PoF). As it is shown in the next
subsection, the definition of the PoF in a gravity-related
coordinate system is a task of line fitting in the plane,
while the definition of the PoF directly from the camera
coordinate system is a more complicated task of plane
fitting in 3D space. From the point of the ballistic model
gravity-related coordinates have better interpretability as
gravity acceleration g is localized in dimension z4;. The
dependencies of coordinates x4 and z,3 from time are
monotonous functions and the dependency of coordinate
Zg1 from time is a convex function.

Gravity direction is estimated by hanging a long pendulum
in the field of view of the stereo system. When the
pendulum is static it is directed downwards. Two distant
points are picked on the pendulum nail and the gravity
direction is defined as a vector between these points in 3D
space. The direction of horizontal axes is not an important
factor on this stage, however for better interpretability x3
was aligned with the nominal direction of throw.
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4.2 Defining the Plane of Flight

Gravity is always directed downwards while drag is always
directed opposite to the motion direction. If these are the
only significant forces (i.e. there are no forces directed to
the side from the motion direction) the whole trajectory of
the ball will lie within a plane expressed by the gravitation
axis x4; and the horizontal projection of initial object
velocity. In case of rotating object the Magnus force
exist, which may curve trajectory to the side; however
no significant influence of any side-directed force was
detected during the throwing experiments. Therefore 3D
object coordinates may be transformed to a 2D coordinate
system defined by these two vectors. Mironov et al. (2014)
proposed to forecast object coordinates within this 2D
"Plane of Flight” (PoF) and then translate the results
back to the 3D coordinate system. PoF representation
has the following advantages in comparison with a 3D
representation:

e Decreasing volume of the data. Less items are needed
to represent trajectories and less volume of calcula-
tions is needed to process it.

e More efficient use of the database. The nearest neigh-
bors prediction is based on searching the database
for the trajectories that are similar to the current
one. When trajectories are compared in 3D space two
trajectories with various horizontal directions can not
be considered as neighbors because the distances be-
tween corresponding points are high. In PoF represen-
tation trajectories with various horizontal directions
could be also considered as neighbors. Simulation
by Mironov et al. (2014) showed that accuracy of
prediction in PoF is higher than in 3D.

e Qutlier detection. Good fitting of the points to the
PoF shows that the measurement of these points is
accurate. If the fit of certain point to the plane is bad
this point may be marked as an outlier and rejected
from the further calculations.

The question is how to define PoF from the available data.
In common case a 2D plane in 3D space may be expressed
as a dependence of one coordinate from two others. Such
dependence has three independent parameters marked as
a, b, and c:

Ty =axs +bxr +c¢ (6)

The task of plane fitting in 3D space mean the determina-
tion of these parameters from the available data. As the
PoF is vertical in the gravity-related coordinate system,
one of its axes is equal to z4;. Therefore the parameter b
is equal to zero and the task simplifies to line fitting in 2D
space: the position of the second axis with respect to x4
and x43 must be estimated:

To =axrs+c (7)

Estimation of @ and ¢ may be done using various methods.
Such method should have the following properties:

e Accuracy. It is hard to determine the accuracy of the
fit as no ground-truth data about object coordinates
is available. If the points are translated to the esti-
mated PoF and then back to 3D, their coordinates
will vary from the original value. It is hard to distin-
guish whether such a variation is a result of algorithm

inaccuracy or the correction of measurement errors.
According to Pongratz and Mironov (2015) there is
no significant systematic error in positioning spheres
on a long distances and the deviations have random
appearance. The wrong estimation of ¢ and ¢ leads
to appearance of a systematic component in the co-
ordinate differences. Hence, if there is a significant
systematic errors in the PoF transformation the esti-
mator can be marked as inaccurate.

e Robustness. The algorithm must work correct even if
there are a few points with wrong coordinates (like
shown on figure 2.a and 2.b). The algorithm should
allow detecting such outliers and rejecting them from
the further calculations.

e Stability. The estimated values of a and ¢ should not
vary strongly depending on what points of the same
trajectory were used for estimation. Especially the es-
timated values of the parameters should be the same
when the whole trajectory {X (1), X4(2),..., Xg(n)}
is used for estimation and when only the input part
{X,(1),X,4(2),...,X4(m)} is known.

e Performance. As the application is real-time, all cal-
culations must be done within the fixed period.

Several estimation methods were applied to determining
a and c: least squares fitting (LS), robust least squares
(RLS), random sample consensus (RANSAC), mean cal-
culation, median calculation. LS showed high speed and
sufficient stability. It works accurate enough on the tra-
jectories that do not contain outliers (errors seem to be
randomly distributed around zero value, they are usually
less then 2 mm). However the robustness of LS is very
low: systematic errors achieve several tens centimeters for
the trajectories with false recognitions. Application of RLS
(we used the implementation from MATLAB (2012) curve
fitting toolbox) improve the tolerance to outliers. However
on the trajectories where the number of outliers is more
than 5 it also does not work correctly. The stability and
accuracy on the outlier-free dataset has the same quality
as for LS, while time expenses increase drastically (in
MATLAB environment RLS estimation of the trajectory
takes about 20 ms, while LS takes 1-2 ms).

RANSAC PoF estimation is based on picking two random
points on the trajectory and checking whether the vertical
plane including these two points coincide with the PoF.
For this purpose the distance from all the points to the
candidate PoF is calculated. The points for which the
distance does not exceed certain threshold (three times
the standard deviations in static positioning defined by
Pongratz and Mironov (2015) was taken as such threshold;
this value is equal to 9 mm) are marked as inliers, other
points are marked as outliers. If the percentage of outliers
does not exceed certain limit (variations of the limit from
10% to 50% were checked) these outliers are removed from
the set and the values of a and c¢ are estimated based
on remaining points using LS method. If the number of
outliers exceed the limit, the whole operation is repeated.
RANSAC implementation showed better robustness than
LS, however the accuracy and stability of the estimation is
much worse. Estimated values of a and ¢ have oscillations
about 20% in various runs of the algorithm. This lead to
differences up to 1 centimeter in the estimated coordinates
of the object.
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RANSAC algorithm picks the points randomly, which
allows processing even large ammounts of data fast. On
the other hand the number of points in one trajectory
is relatively small (less than 100). Therefore a determin-
istic way of picking the pairs of points is proposed, as
it is not very calculation-expensive in this case. If the
available part of the trajectory is {X (1), X(2),..., X(m)}
where m is even number, then m/2 pairs of points are
picked: {X(1),X(m/2 + 1)}, {X(2),X(m/2 + 2)}, ...
{X(m/2), X(m)} and m/2 hypotheses about the values of
a and ¢ are made. The most simple way of estimating PoF
from this hypotheses is calculating mean values of a and c.
Unexpectedly accuracy and stability of such estimation is
not worse then for LS. To make the estimation more robust
it is done twice. After the first iteration outliers (defined
in the same way as in the RANSAC solution) are removed
from the set and mean calculation procedure is repeated.
The robustness of this algorithm is not worse than for RLS,
however it also can not deal with the trajectories where the
rate of false recognitions is high. In this case the value of
systematic error achieve several centimeters.

If the median values of a and c¢ are taken instead of
mean values the robustness of the estimation increases.
The median is much less distorted by the outliers then the
mean: in the sorted set outliers lie in the beginning or in
the end of the list, while median value lies most probably
between inliers. Therefore median calculation is chosen as
a method for estimating PoF. It is accurate (errors seem
to be randomly distributed around zero value, they are
usually less then 1 mm, only for 1-2% of the cases difference
exclude 2 mm), robust (accuracy stays the same even when
the number of outliers is about 20% of the whole dataset),
stable (values of @ and ¢ do not vary more than in second
digit depending on is X (1 : n) or only X (1 : m)) and faster
than any other method (execution in MATLAB take about
1 ms for processing the trajectory consisting of 80 points).

Good accuracy and stability of median PoF estimation also
proves that PoF model is valid and there is no significant
side-directed force influencing on the thrown object. If the
horizontal projection of the trajectory is not a straight
line, errors would be dependent from the time and the
parameters of the PoF would vary depending on m. As
median fit does not include such effect the influence of
sideforce is considered as negligible. These results show
that PoF transformation is valid for spherical objects
thrown by linear launching device. Applicability of this
concept for other objects depends on the shape of these
objects. As the TbT on the current stage is considered as
an approach for transporting the compact objects (with
properties near to the point mass) thrown without a spin,
the influence of sideforce on the distance of several meters
should be small for such objects. More careful evaluation
of sideforce influence for various objects is a part of future
work.

4.8 Determining zero-point

One of the assumption made by Mironov et al. (2014)
that allows using nearest neighbors solution is that there is
certain zero time moment when coordinates of the objects
from all trajectories are equal to zero. This point in theory
corresponds to the launching point. In practice it seems

not feasible to position the launching point accurately as
it lies outside of the cameras’ field of view and there is no
confidence that it is every time the same. In order to have
common zero coordinates for all the trajectories we pick
one of the points X (i) (zero-point) in the beginning of the
trajectory and subtract its coordinates from next points
of this trajectory:

Cs = {0, X, (i + 1) — X;,(3), ..., Xp(n) — X,p() } (8)

The following heuristic is proposed for choosing zeropoint
X (4). As it should be the point measured with relatively
good accuracy monotony and convexity of the trajectory
around this point is examined. The validity of the following
statements is checked:

e The coordinate values for X (¢) in both dimensions are
higher than for X (i — 1) and lower than for X (i + 1).
This means that the dependence of z; on time is
monotonous (growing) around X ().

e The object velocity in vertical dimension after X (¢) is
less than before: z1 (i +1) — 21 (7)) < 21(¢) —z1(i — 1).
This means that the dependence of z; on time is
concave around X (7).

First point on the trajectory that satisfies these statements
is taken as a zero point. This heuristic does not guarantee
that chosen point is measured very accurate however it
allow rejecting bad points.

4.4 Sorting and prediction

A light-weight robot (KUKA LWR 4+) was proposed by
Pongratz et al. (2013) as a capturing device. In preliminary
experiments it was defined that it need about 30 ms
(which correspond to 4 frames of the vision system)
to accelerate to the maximum speed. This means that
catching movement will take approximately 50-70 ms
(about 9 frames). It was assumed that data frames from 10
to 40 may be used to predict object coordinates on frames
from 60 to 75, which correspond to 180 ms time limit for
the catching movement.

Mironov et al. (2014) propose to sort the trajectories
in the database with respect to a certain parameter p
and compare the current trajectory C' only with those
trajectories from the set, which have a similar values of
p as C. Three parameters of the trajectory were suggested
to be taken as p: angle of throw «, launching velocity
v, horizontal projection of the velocity v;,. Here we sort
the trajectories with respect to vp,. This parameter is
preferable as it can be estimated directly from zero-
point coordinates. It corresponds to the change of object
coordinate x,3. Another advantage is that v, does not
change its value much in comparison with v and «. The
gravity does not effect directly on the horizontal velocity
and the influence of air drag is relatively small on a scale of
several tens milliseconds (see e.g.Tutz (2007)). Therefore
the estimate of v could be calculated as a mean of its
measurements from several neighboring frames.

The mean horizontal velocity after ¢ frames can be calcu-
lated using the following equation:

) _ -'1733<i) (9)

vh(l 1 ﬁ
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Fig. 4. Dependence between the sequential number of
trajectory in the sorted dataset and the path made

by the object in 55 frames after the zero-point

If vp(1 : ¢) is used to characterize trajectory, it is better
if the value of ¢ is big, as the influence of measurement
errors on the estimate is low in this case. Therefore the last
frames available before prediction are used to determine
horizontal velocity. The estimation of p is done in the
following way:
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Each element of the sum represent the mean object veloc-
ity on the interval from the first frame to frame number
1. Therefore p roughly corresponds to the mean value of
vy, on the interval from the 1st to the 37th frame. Due
to the influence of the air drag the value of v, is not
constant, however it can be assumed that if the object from
trajectory A has value of v, similar to object from tra-
jectory B in the beginning of flight they will have similar
horizontal coordinates in the end of flight. The illustration
of this assumption is given on figure 4. Here the horizontal
positions of the objects in zero-point coordinate system in
55 frames after the zero-point are plotted with respect to
sequential number of the trajectory in the dataset, where
trajectories are sorted with respect to o5,(1 : 37). It can
be seen that the difference in horizontal positions for the
neighboring trajectories with similar sequential numbers
(i.e. with similar values of op(1 : 37)) does not exceed
several centimeters (at least for trajectories with sequential
numbers from 20 to 160). Trajectories with sequential
numbers less than 20 and more then 160 was acquired,
when the throwing velocity was set lower or higher then
4.5 m/s. There were not much such cases hence small dif-
ference in sequence number correspond to high difference
in 95(1 : 37) than for the trajectories in the middle of plot.

Prediction itself is implemented in the following way.
Candidate trajectories A and B are picked among the
trajectories that have nearest values of p to the current
trajectory. The number of such trajectories (the size of the
cluster according to Mironov et al. (2014) terminology) can
vary from 3 to the size of complete database. If there are
no higher or no lower values within the cluster they are
searched outside the cluster and first one, which is lower
or higher, is considered as a neighbour. The forecast is
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Fig. 5. Reference positions of the ball from the current
trajectory, its lower neighbor, and its higher neighbor;
filled circles show the predicted positions of the object

then done according to (5). Two versions of the algorithm
were evaluated: simple kNN (both w, and w;, are set to
0.5) and weighted kNN (w, and w; are defined as the
mean proportion of the distances from A and B to C; this
definition was proposed by Mironov et al. (2014)).

5. EVALUATION

For evaluating the usefulness of the proposed solutions the
work of the predictor is applied to the trajectories acquired
during the throwing experiments. Prediction for each tra-
jectory is done based on other trajectories from the set.
Trajectories that have significant outliers were not used in
prediction of other trajectories (i.e. the learning algorithm
removes trajectories with outliers from the set). Prediction
of trajectories, which were acquired with unusual value of
spring tension were not considered (it is assumed that such
values are set on the throwing device only on learning stage
to provide that all trajectories generated with nominal
throwing setup will have higher and lower neighbors).

Totally the prediction of 150 trajectories was checked using
this setup, while the size of the set used for prediction
was 168 trajectories. The exploration about the cluster
size showed that it seems useless to make it more than 20
trajectories: the numbers of A and B do not change if the
cluster size is more. On the other hand the time needed
to perform prediction increases drastically with increase
of cluster size. In MATLAB environment it takes 3 ms to
perform the forecasting with 20 trajectories in cluster, 9 ms
with 60 trajectories in cluster, and 24 ms with 140 trajecto-
ries in cluster. Therefore the cluster size of 19 trajectories
was found to be optimal in the current conditions. An
example plot of successful trajectory prediction is shown
on figure 5. Here the references of measured positions
for trajectories A (yellow circles), B (dark circles) and
C (magenta circles) and respective predicted positions of
C' (blue filled circles) are plotted. The difference between
respective blue filled dots and magenta dots represent the
error of prediction. It can be seen that the distance be-
tween observed and predicted position is small absolutely
(does not exceed several mm) and in comparison with
distances to respective points of A and B.
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The results of prediction accuracy evaluation on the
dataset are shown in table 1. The error here is defined
as the euclidean distance from the predicted position of
the object at the certain time moment to its measured
position at the same moment. The term "error < 20 mm”
means that there is no cases along the trajectory, when
the difference between observed and predicted coordinate
is more that 20 mm.

Table 1. Accuracy of the prediction

Parameter simple kNN  weighted kNN
% of throws with error < 30mm 92 85
% of throws with error < 20mm 85 73
Median error in mm 10 13

The use of 20 and 30 mm thresholds is based on the
exploration of Birbach et al. (2011) where a precision
from 20 to 30 mm is found to be sufficient for successful
grasping of a ball by the robotic hand. If the object is
caught passively, e.g. into a basket or cup, allowed error
could be higher and depends on the basket size; such setup
was applied e.g. by Frese et al. (2001). The results show
that the proposed algorithm has relatively good precision
of the forecast. Unexpectedly simple kNN works more
accurate than weighted kNN. The reason could be that the
distances between trajectories are sensitive to the small po-
sitioning errors. The reason for the most of erroneous cases
is either fringe effect (higher errors when the velocity of
the object is near to maximum or minimum values) or the
situation of the wrong choose of the neighbor trajectories.
Within the future work the accuracy may be improved
by collecting larger dataset consisting of trajectories with
various velocities and direction and improving the strategy
of nearest neighbor choice.

6. CONCLUSION

An algorithm of estimating and forecasting the ballistic
trajectory of a flying ball is developed and evaluated based
on stereo vision measurements. The reference of coordinate
transformations allows reducing size of the data, detecting
outliers, increasing efficiency of processing the database.
The algorithm of nearest neighbors trajectory prediction in
transformed coordinates is also evaluated. Nearest neigh-
bors choice based on similarity of the horizontal velocity
and on picking one higher and one lower trajectory shows
good accuracy of prediction and lower time expenses in
comparison with taking in mind only the distance between
trajectories. The evaluation of proposed forecasting algo-
rithm shows that it is able to achieve 2 cm prediction
accuracy in 85% of cases and 3 cm prediction accuracy in
92% of cases. These results are an intermediate step in the
development of a robotic ball catcher. Next steps include
integration of the algorithm into the robot control in order
to provide the information about ball future position to the
robot motion generator and exploration of the algorithm
applicability to the objects with various shapes.
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