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Abstract: This paper deals with the analysis of different realizations regarding groundwater pollution.
The groundwater behaviour can be implemented using a mixture of diffusion and convection equations.
The analysis of the convection diffusion equation is also interesting for other research areas, for example
biology, chemistry and the stock market. The first part will deal with the derivation of the regarded
equation. Then there are different types of approaches which will be used to analyse the behaviour of
this equation. On the one hand there are analytical and numerical methods to solve or approximate this
partial differential equations. On the other hand a more stochastic approach will be introduced.
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1. INTRODUCTION

The pollution of groundwater is an important field of interest
regarding the water supply of all countries no matter how poor
or rich. The analysis of this problem is based on the study of
partial differential equations. In this case it can be restricted
to the analysis of the convection diffusion equation. Diffusion
equations are not only used to describe distribution of pollution.
In biological fields of studies these equations are used to model
the development of pattern formation for example in the fur
of cats. There are also other fields which are confronted with
the analysis for example of reaction-diffusion equation. In the
chemistry the mixture of two substances can be simulated using
this equation. Also in the finance market another form of the
diffusion equation is used to predict the behaviour of stock
buyers. The main point of this paper is a comparison of differ-
ent methods simulating convection-diffusion equations. There
are three different approaches explained. At first a analytical
solution is given. Unfortunately this may not be possible in
any given scenario. Therefore the second approach deals with
numerical methods solving the partial differential equation. In
order to evaluate the results of all approaches properly the
analytical solution can be used. The third method covers a
stochastic approach, well known as Random Walk. In the paper
not only the results but also the advantages and disadvantages
of the methods are discussed.

The starting point of this research was a Benchmark of EU-
ROSIM. In this Benchmark a rectangle is given. There is a flux
along the x–axis which is constant. The given diffusion coef-
ficient is constant as well. Therefore the convection diffusion
equation will be analysed in a two dimensional rectangular area
with a constant flow along the x–axis.

2. CONVECTION DIFFUSION EQUATION

The needed convection-diffusion equation can be separated in
two parts, each describing a different process. One the one hand
there is the oriented movement, called the convection. On the

other hand there is a chaotic behaviour which describes the
diffusive motion. This movement is characterized by minimal
randomized motion of small particles. A transport of particles
from regions with high concentration to areas with low con-
centration can be observed. This behaviour is mathematically
formalized in Fick’s First Law:

Jd : Rn→ Rn with Jd(x) =−D(x) ·∇c(x) (1)

It declares that the flux is proportional to the concentration
gradient going from regions with high concentration to regions
with low concentration as described in Larsson et al. (2005).
The variable Jd stands for the diffusive flux. This can be a
function of space x. The flux is also influenced by the diffusion
coefficient D and the concentration c.

The oriented movement, the convection, accrues due to a flux.
The flux is described with a velocity field v. This vector field
contains the flow movement in every possible direction. It
can, as well as before, depend on space variables. Due to flux
velocity the concentration c of a certain substance at point x will
be transported to the place x+ tv after time step t. Therefore the
convective flux of mass Jc : Rn→ Rn can be written as:

Jc(x) = v · c(x). (2)

Due to the fact that a closed system is considered the conser-
vation law can be used. In this case it means, that the regarded
property does not change. It describes the relation between the
time rate of change regarding the concentration of a certain
quantity c and the change in space regarding the flux J.

∂c
∂ t

+∇ · J(x) = 0 (3)

The combination of the equations (1) and (2) results in the
replacement of the the flux J in equation (3) with J = Jc + Jd .
This leads to the diffusion equation.



∂c
∂ t

+∇ · J = 0⇒ ∂c
∂ t

+∇(−D ·∇c+ v · c) = 0 (4)

⇒ ∂c
∂ t

= ∇(D ·∇c)−∇(v · c) (5)

If the diffusion coefficient and the velocity field are constant the
equation can be written as follows:

∂c
∂ t

= D ·∇2c− v ·∇(c) . (6)

Due to the fact that the convection-diffusion equation will
be analysed in a two dimensional area the equation of the
following form will be needed.

∂c
∂ t

= D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
− v

∂c
∂x

(7)

Every partial differential equation needs a certain initial con-
dition and if the equation is second order also boundary con-
ditions. In the following analysis two different scenarios will
be considered. On the one hand the initial condition can be
described using the δ–distribution. This means that there is
an initial amount of pollution at the source which will be dis-
tributed during time. In the other scenario there is a constant
source of pollution.

3. ANALYTICAL SOLUTION

Due to the special initial and boundary condition it is possible to
find the analytical solution very easily. In order to solve the two
dimensional equation the solution of the one dimensional case
should be considered. Below the equation and the conditions
for the one dimensional area are given.

∂c
∂ t

= D
∂ 2c
∂x2 − v

∂c
∂x

with c(x,0) = δ (x)

lim
x→±∞

c(x, t) = 0.
(8)

Using a certain substitution, see Schulten et al. (2000), the
equation (8) can be transformed to the following form:

τ = Dt, b =
v
D

(9)

y = x−bτ, y0 = bτ0 (10)

∂c(y,τ)
∂τ

=
∂ 2c(y,τ)

∂y2 . (11)

The multiplication of the equation (11) by e−pτ and the in-
tegration with respect to τ afterwards results in an ordi-
nary differential equation. This equation can be solved with
the according theory very easily. Using the inverse Laplace-
transformation the resulting solution will be transformed again.
After backwards-substitutions the solution of the one dimen-
sional problem can be given.

c(x, t) =
1√

4πDt
e−

(x−vt)2
4Dt (12)

In order to solve the following two-dimensional equation

∂c
∂ t

= D · ∂
2c

∂x2 +D · ∂
2c

∂y2 − v · ∂c
∂x

with

c(x0,y0,0) = δ (x)δ (y)
lim

x,y→∞
c(x,y, t) = 0

lim
x,y→−∞

c(x,y, t) = 0

(13)

a solution of the following form can be assumed as in Zoppou
et al. (1999).

c(x,y, t) = g1(x,x0, t)g2(y,y0, t) (14)

Whereas the two functions g1 and g2 are solutions of the
one-dimensional convection-diffusion equation with constant
coefficients as seen above. Therefore g1 and g2 are the solution
of the one dimensional equation(12) which will be formulate
for the x– and the y–axis.

g1(x,x0, t) =
A1

2
√

Dπt
exp
(
−(x− x0− vt)2

4Dt

)
g2(y,y0, t) =

A2

2
√

Dπt
exp
(
−(y− y0)

2

4Dt

) (15)

The source of pollution is located at the origin of the area. That
means that the values x0 and y0 can be set to zero. Additionally,
due to the initial condition the integral over the whole area has
to be 1.

1 =
∫

∞

−∞

∫
∞

−∞

c(x,y, t)dxdy =

=
∫

∞

−∞

g1(x,0, t)dx
∫

∞

−∞

g2(y,0, t)dy = A1A2

(16)

This leads to the analytical solution in two dimensions.

c(x,y, t) =
1

4Dπt
exp
(
−(x− vt)2− y2

4Dt

)
(17)

The implementation of this solution for the two-dimensional
case can be shown in the following figure.

Fig. 1. Two dimensional diffusion using (17) for different time
steps (250,500,750 seconds) is shown.

Figure 1 shows the analytical solution of the convection-
diffusion equation for the case of an instantaneous release of
all pollution. The used parameter are velocity v = 0.02 and dif-
fusion D = 0.02: To visualize the behaviour over time different
values for the simulation time are chosen, t = 250s, t = 500s



and t = 750s. The three correspondent graphics show show the
concentration as a function of x and y. On the one hand the
movement according to the flux along the x–axis is obvious.
The peak in the first figure is located at x = 5, for the second
at x = 10 and for the last one at x = 15. Also the influence
of the diffusion coefficient is visible. Altough the figures show
different sclaes on the third axis the height values can be given.
The peak of the curve starts at 0.035, goes to 0.016 and ends
at 0.012. The choice of the parameter shows a good balance
between convective and diffusive transport.

Fig. 2. Analytical solution of equation (17) on the rectangle.

Figure 2 shows three different aspects of the analytical solution.
The two plots in the middle of the figure sketch the diffusive
progress from the x– and y–axis point of view. The red one
shows the convection of the concentration peak moving from
x= 0 at the beginning to x= 10 at the end. The peak of the green
bell curve is still at y = 0 because there is no velocity along the
y-direction. The lowest plot shows the concentration dependent
on x and y as in Figure 1, which offers a three dimensional
view of the red and green curves. The uppermost illustration
can be seen as the aerial perspective of the third graphic. The
different colors mark the grade of pollution. The duration of
this simulation is t = 500s. All other parameters are the same
as in figure 1, velocity v = 0.02 and the diffusion coefficient
D = 0.02.

4. NUMERICAL APPROXIMATION

This section introduces two types of numerical approximations.
On the one hand there is the finite difference method (FDM).
In this approximation the derivatives of the partial differential
equation are approximated by taking the difference quotient of
the neighbouring grid points. The method is easy to use but
slightly weak concerning the accuracy. The second method is
the finite element method (FEM) and is based on formulating
variations of the differential equation. FEM determines approx-
imated solutions consisting of piecewise defined polynomials
on a fine resolution of the domain. The advantage of FEM is its
suitability for any geometry.

4.1 Finite Difference Method

The finite difference method for one dimension can be ex-
plained easily. Instead of the first derivative of the function the

differential quotient of neighbouring points is used. In order
to receive the second derivative this procedure is applied on
the resulting first derivative of neighbouring points. The same
principle is used to apply the finite difference method for a two
dimensional domain. Consider the finite domain covered with
an equidistant grid.

Fig. 3. Equidistant grid in the two dimensional domain.

Considering the principle of the one dimensional finite element
method explained above one can imagine how the first partial
derivatives of the function c(x,y) look like, shown in equation
(18).

∂c
∂x

=
cx+1,y− cx−1,y

2dx
∂c
∂y

=
cx,y+1− cx,y−1

2dy

(18)

To establish second derivatives again the central finite dif-
ference is used. Repeating the finite difference for the first
derivative of two neighbouring points it results into the second
derivative for variable x of c(x,y). The partial derivatives for
y can be defined analog. Combining these two equations and
assuming the usage of a equidistant grid, which means dx = dy,
one receives the needed form of the second derivation and the
Laplace operator.

∂ 2c
∂x2 =

cx+1,y−2cx,y + cx−1,y

dx2

∂ 2c
∂y2 =

cx,y+1−2cx,y + cx,y−1

dx2

⇒∆c =
cx+1,y + cx−1,y−4cx,y + cx,y+1 + cx,y−1

dx2

(19)

For simulating the convection-diffusion equation an approx-
imation of the convection is necessary. Due to the fact that
the velocity field is only parallel to the x-axis the convection
consists of the first derivative only in x as explained and defined
in equation (18). The concentration c depends on the spatial
coordinates as well as time. Hence, the equation (13) using
FDM can be written as:



ct =
dc
dt

=D ·
cx+1,y + cx−1,y−4cx,y + cx,y+1 + cx,y−1

dx2

− v
cx,y− cx−1,y

dx

(20)

In (20) the time derivative can be written with dt instead of
∂ t because the finite difference method transforms the equation
into an ordinary differential equation. The numerical method
which is used to calculate the next time step is called explicite
Euler method. This method calculates the next time step by
using the last one and adding the derivative of the function times
step size h.

cx,y(t +∆t) = cx,y(t)+h · dc
dt

(21)

The equation (20) is implemented in MATLAB using the ex-
plicit Euler method (21).

Fig. 4. Numerical solution using FDM for a two-dimensional
domain with instantaneous source.

For Figure 4 the parameter setting is: velocity v = 0.02, dif-
fusion coefficient D = 0.02 and the duration time is t = 250s
left and t = 500s right. Therefore the diffusion and velocity
coefficient are similar to the analytical results. The same pa-
rameters are used to enable comparability. In the first figure the
centre of pollution after 250s can be found at (x,y) = (5,0)
and the height is approximately c(5,0) = 1.8. The second plot
shows the same parameter set running for 500s. The height
decreases and the centre of peak changes to (x,y) = (10,0). The
convective movement is exactly the same as in the analytical
solution.

As mentioned at the beginning different initial scenarios are
simulated. In the following the source changes from an instan-
taneously to a steady releasing source. The steady source of
pollution is realized by adding partial pollution to the concen-
tration value at (0,0) which leads to c0,0 = c0,0 + prate ·∆t in
every time step, whereas prate stands for the constantly added
pollution rate.

The velocity and diffusion coefficient in figure 5 are v = 0.02
and D = 0.02. They are equal to the parameters in figure

Fig. 5. Numerical solution using FDM for a two-dimensional
domain with steady source.

1. The pollution rate was set to prate = 1
tend

. In doing so
the same amount of pollution as in the simulations with in
instantaneous source is distributed. In first two images the
running time is tend = 500s and in the third tend = 1000s.
Regardless of how long the simulation runs the maximum of
pollution is always at the source itself. The influence of the
flux is obvious. The absence of flow in y-direction causes a
cone-shaped pollution in x-direction. The upper graphic shows
again a colour map of the grade of pollution. The steep peak
in the second illustration pictures that the pollution rate added
every time step is bigger than the moved pollution due to
the convective motion. Therefore some pollution stays near
the source for minimal one more time step which causes this
peak. Using a longer simulation time the cone gets longer. The
pollution particles reaches till x= 13 for tend = 500s and around
x = 23 for the double time span tend = 1000s.

4.2 Finite Element Method

Numerical approaches need much computing time due to the
need of high accuracy and the requirement of useable outputs.
The finite element method for two-dimensional regions is more
complicated than for one dimension. Putting a grid on the do-
main expanses the number of elements to the power of two. For
the basis function a linear or quadratic approximation can be
used. A direct implementation of the algorithms in MATLAB
would be very time-consuming. Instead the software called
COMSOL, formerly FEMLAB, is used. It is qualified for phys-
ical simulations and is based on the interaction of differential
equations. The actual solving algorithm of COMSOL uses the
finite element method.



As already mentioned COMSOL offers many different tool-
boxes. In this case the mathematical package without any ad-
ditional physical specification is used. In the next step the ob-
tained geometry has to be designed. In this study it is only a
rectangular but in case of an natural application it can be neces-
sary to upload a difficult geometry. Therefore the connection to
graphical design programs can be used and to import the exact
data. The global variables, including the diffusion and velocity
coefficient can be defined and stored. The mathematical tool-
box offers some prepared equations. The convection-diffusion
equation in the following form (22) is one of them.

∂u
∂ t

+∇(−D∇u)+ v∇u = f (22)

The point source is located at (0,0). For the following simu-
lations the function f is set to zero. The simulation time for
all parameter choices is tend = 500 and the concerning ∆t = 1

4 .
Before the simulation starts the regarded domain is covered
with a fine grid 6.

Fig. 6. Grid used in the FEM calculations.

This grid adapts to the certain conditions. The element size
is chosen very small to avoid mathematical errors at critical
points. Due to the fact that a point source is used the grid refines
at its location, which means at (0,0).

Fig. 7. FEM solution realized using COMSOL.

Figure 7 shows the simulation of the convection-diffusion equa-
tion using the software COMSOL. The based method is the
finite element method. In the first plot the parameters are set
to D = 0.02 and v = 2. The velocity dominates the diffusive
motion. Therefore the concentration distribution shape is only a
beam and the pollution reaches the right end of the plotted area.
Due to the fact that COMSOL can distinguish different phys-
ical meanings of the equation the same variables have another
effect to the visualization. In the second graphic the diffusion

Fig. 8. A surface plot of the COMSOL results is shown.

coefficient is changed to D = 0.2. The results look more like
the numerical solution outputs achieved with the FDM.. The
convection is still dominating but also the diffusive effect can
be seen. In the third plot the relation between diffusion and
convection is completely different. The parameter are set D = 2
and v = 1. This parameter choice already shows the domination
of diffusion. In the graphic the effects of convection nearly
disappears.

Figure 8 shows the second plot of firgue 7 from another angle.
The pollution distribution from the x–axis point of view is pic-
tured. Due to the different physical interpretation this solution
is not compared to any other approach. For prospective studies
COMSOL will play an important role. Especially for complex
geometries it is a very comforting application.

5. GAUSSIAN-BASED APPROACH

Conventional numerical methods need a very high grid resolu-
tion and in addition a small time step to generate useable results.
This leads to long execution times even with the available
computer performance nowadays. This problem also occurs
regarding the simulation of diffusion.

All the numerical methods describe the convection-diffusion in
a macroscopic way. An alternative for simulating transport is
the use of random walk. This approach is contrary to the nu-
merical solutions before. The focus changes to the microscopic
behaviour of diffusion by analysing single particles. Probability
theory is an important basis of random walk. The following
solution is implemented without using any grid. The velocity
field is chosen to be constant. As in the analytical and numerical
simulations it is independent from the particle’s position.

The random walk implementation is connected to the two-
dimensional analytical solution (17) of the diffusion equation
with the following initial and boundary conditions.

∂c
∂ t

= D
∂ 2c
∂x2 − v

∂c
∂x

with c(x,0) = δ (x)

lim
x,y→±∞

c(x,y, t) = 0

lim
x→∞

lim
y→−∞

c(x,y, t) = 0

lim
x→−∞

lim
y→+∞

c(x,y, t) = 0

(23)

Looking at the simplified but differently arranged analytical
solution (17)



c(x,y, t) =
1

2
√

Dπt
exp
(
−(x− vt)2

4Dt

)
1

2
√

Dπt
exp
(
−y2

4Dt

)
(24)

the equation parts belonging to the movement along x on the
one hand and y on the other hand become visible. Once more
the connection to the Gaussian distribution is obvious.

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

There is a formal equivalence regarding parts of the equation
(24). The parameters for the mean value µ and the standard
deviation σ can be extracted.

µ = v · t
σ

2 = 2 ·Dt

Therefore the concentration can be approximated using the
information of height and width given by the Gaussian parame-
ters. The corresponding particle movement in x and y-direction
can be defined as in (25), see Winkler (2014).

pnew
x = pold

x + v∆t +
√

2 ·D∆tXx

pnew
y = pold

y +
√

2 ·D∆tXy
(25)

Xx and Xy are independent normally distributed random num-
bers which generated in every step for each particle. The con-
vection is included in the variable v∆t and is only necessary
in the x related equation. Due to the fact that the diffusion
coefficient constant and additionally equal for the x- and y-
direction the diffusive movement is characterised trough the
term

√
2 ·D∆t in (25). It is the same term for both directions.

Fig. 9. Gaussian random walk for convection-diffusion with
instantaneous releasing source

In Figure 9 two results of the implementation are shown.
The parameters are similar to the intuitive approach to enable
comparability. This means that the setting is v = 0.02 for the
velocity and D = 0.02 for the diffusion coefficient. The other
two variables are set N = 8000 which stands for the number of
particles and the time step ∆t = 1. The spatial step size ∆x = 1
is used to calculate the velocity part for every time step. The
simulation time is set t = 250 in the first graphic and t = 500
in the second. The first figure consists of three partial plots.
The first one shows the position of all used pollution particles.
In the second one the histogram of the pollution distribution
is pictured. The third one combines the first two. On the one
hand the locations of the particles are visible. The additional
colour scale shows the density of the particles in the certain
area. For the second simulation time only the combined sight is
shown. The centre of concentration is equal to the results of the
analytical and numerical solutions. The progressive diffusion
shows the influence of the diffusion coefficient.

This approach is also used to approximate the convection-
diffusion equation in case of a steady polluting source. This is
realized by releasing N

tend
1
dt

particles every time step.

Fig. 10. Gaussian random walk for convection-diffusion with
steady source

6. DISCUSSION AND CONCLUSION

The three approaches show the possible variety of implemen-
tations regarding the convection diffusion equation. In order
to pick the best approximation different circumstances have
to be minded. Regarding the programming effort the Gaus-
sian approach is the easiest and quickest possibility. Another
advantage is also a flexible geometry of the area. The results
are acceptable. The FEM based realisation has the highest
accuracy. Compared to the other two approaches the theory
is more complex. Therefore it also offers different kinds of
realization. The finite difference method has a disadvantage re-
garding complex geometry and is the slowest implementation.
All in all a useful approximation of the general behaviour can
be given in all realizations. Further studies regarding analytical
approximations for the steady source problem and new methods
or implementations will be examined.
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