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Abstract: This paper compares several regularisation methods for di↵erential-algebraic equa-
tion systems of high di↵erential index by applying them to two model problems. Both problems
are mechanical systems which are described by equation systems of index three, a pendulum
and a double pendulum, where the latter furthermore shows chaotic behaviour. Some methods
turn out to be not suitable at all for high index di↵erential-algebraic equation systems while
the quality of many regularisation methods depends on an adequate choice of parameters,
implementation and the system itself to be solved with the respective method.
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1. INTRODUCTION

The description of mechanical systems in general leads
to di↵erential algebraic equation systems (DAEs) of high
index. To solve these DAEs, di↵erent methods for regu-
larisation or index reduction can be applied, see Hairer,
and Wanner (2002). In this paper, six of those methods
are compared by two case studies. The two considered
case studies are mechanical systems of index three. On
the one hand the equations of motion of a pendulum on
a circular path in Cartesian coordinates are considered.
On the other hand, the equations of motion of the double
pendulum in Cartesian coordinates, which shows chaotic
behaviour, are used. For the comparison of the considered
regularisation methods, the obtained numerical solutions
and the deviation from the constraint equations are taken
into account. The presented methods are di↵erentiation
and substitution of the constraint equations (DaS C), the
Baumgarte-Method (BM) (see Eich, and Hanke (1995)),
the Pantelides algorithm (P), the orthogonal projection
method (OP), the symmetric projection method (SP) (see
Hairer (2000)) and transformation of the state space
(SST).

2. CASE STUDIES

2.1 Pendulum

The equations of motion of a pendulum in Cartesian
coordinates are given by
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where F is the force and g is the gravitational acceleration,
see Cellier, and Kofman (2006). The constraint equation
of this system is given by x

2 + y

2 � 1 = 0. In the following
the constraint equation and its derivatives with respect to
t are considered
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where it can be observed that from the second deriviative
the force F can be obtained. This shows that the given
DAE has di↵erential index three.
All following simulations are done with MATLAB R2012b.
The initial values for the presented scenario are x = 1,
y = 0 and v

x

= v

y

= F = 0, where the initial value
for the force F is not necessary for every method. Fig. 1
shows that the substitution of the constraint by its second
derivative (3) is no suitable method for this problem as a
clear numerical drift-o↵ can be observed due to the loss
of information by di↵erentiation. The Baumgarte-Method

Fig. 1. Drift-o↵ occuring after di↵erentiation and sub-
stitution of the constraint, calculated with ode15s
(MATLAB)

substitutes the constraint by a linear combination of the
constraint and its derivatives, see (4).

g̈ + 2↵ġ + �

2
g = 0 (4)

Due to the consideration of the original constraint in the
new system, there is no loss of information. Nevertheless,
the choice of suitable values for the parameters ↵ and �

can be challenging.
For the application of the Pantelides algorithm, four dif-
ferent systems have to be considered for di↵erent areas of
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the coordinate system due to the squares in the constraint,
which has to be transformed to become an assignment for
either x or y.
The results of the two projection methods both stay close
to the circular path, but the positions themselves di↵er
gravely. This is caused by a seemingly unbounded increase
of speed with the orthogonal projection method, see Fig. 2.
For this system, a global transformation - the common po-

Fig. 2. Increase of speed with the orthogonal projection
method (solved with an own implementation of the
explicit Euler method)

lar coordinatisation, resulting in (5) - can be found. These
equations represent an ordinary di↵erential equation which
can easily be solved with common ODE solvers.

'̇ = ⌘

⌘̇ = g cos'. (5)

2.2 Double Pendulum

The second case study is the double pendulum, where the
equations of motion in Cartesian coordinates are given by
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where F1 and F2 are forces and g is the gravitational
acceleration. The constraint equations are given by x

2
1 +

y

2
1�1 = 0 and (x1�x2)2+(y1�y2)2�1 = 0. Deriving the
constraint equations two times with respect to the time
t shows that the system has di↵erential index three in
analogy to section 2.1.
The method of di↵erentiation and substitution of the
constraint equations again causes a grave numerical drift-
o↵. Figure 3 shows that the Baumgarte method provides
di↵erent results for di↵erent values of ↵ and �. The

(a) ↵ = � = 10 (b) ↵ = � = 100

Fig. 3. Results of the Baumgarte-Method for di↵erent
values of ↵ and �, calculated with ode45 (MATLAB)

Pantelides algorithm results in sixteen equation systems

of 22 equations each, which represents a very complex
description of the given problem. With the orthogonal
projection method, an unbounded increase of speed can
again be observed, while the symmetric projection method
delivers quite reasonable results but takes a long time to
simulate due to iteration in each step.
Similar to the pendulum, a global transformation can also
be found for the double pendulum, see (7).
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2.3 Results

In Table 1 the maximal error (deviations to the circular
paths) and the computing time of all methods until 100
seconds simulation time are shown. It becomes clear that

pendulum double pendulum

method max err e t(s) max err e1 max err e2 t(s)
DaS C 24.731 1.1 1.008 9.495 4.9

↵ 6= � 1.909 · 10�5 1.7 1.612 · 10�4 1.605 · 10�4 11.7

↵ = � 2.464 · 10�4 0.7 2.242 · 10�5 0.013 3.8

P 3.345 · 10�4 8.5 1.550 · 10�4 2.677 · 10�4 21.0

OPM 5.551 · 10�16 76.2 4.441 · 10�16 6.662 · 10�16 166.6

SPM 2.701 · 10�8 71.7 2.538 · 10�7 4.764 · 10�7 129.6

SST 2.221 · 10�16 0.6 2.221 · 10�16 2.221 · 10�16 3.7

Table 1. Maximal error and simulation time

di↵erentiation and substitution of the constraint and the
orthogonal projection method (in spite of staying close to
the circular path, compare Fig. 2) lead to unreasonable
results while state space transformation proves to be the
most suitable for the given problem.

3. CONCLUSION

Di↵erentiating and substituting the constraint equations
turns out to be not suitable, therefore other approaches
for solving the case studies are necessary. The orthogonal
projection method has problems with the correct positions
due to the increasing speed and hence does not provide
reasonable results. The Baumgarte-Method shows good
results if the parameters are chosen well. The Pantelides al-
gorithm has the disadvantage of a complex implementation
and the used ode-solver has problems to solve the equation
systems. In contrast to the orthogonal projection method
the symmetric projection method has bounded speed and
leads to reasonable results. The last method is the state
space transformation which can be done globally for both
case studies. All in all, it can be stated that the most
suitable method depends highly on the given problem.
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