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Abstract

Information retrieval must move from a pure surface-based point-of-view to a conceptual point-
of-view that matches the contents on a semantic level. Exploring the opportunities offered by
statistical semantics, we revisit text-based retrieval on two very different domains (social im-
age as well as patent retrieval) in order to provide a comparative analysis of the efficiency and
effectiveness of the analyzed methods. Our semantic-based retrieval approach consists of two
elements: first, the methods to create the semantic representations of the terms and second, the
approaches to measure the conceptual-based similarity of the texts. For term representations,
we use Word2Vec, a state-of-the-art approach based on deep learning, as well as Random In-
dexing, a more straightforward but effective count-based method. Reviewing the literature, we
also select two text similarity methods: one directly measuring similarity at document level
(SimAgg) and the other considering the similarity of two documents as a linear combination of
the relatedness of their terms (SimGreedy).

We assess the performance and limitations of the mentioned methods, by comparing them
to the state-of-the-art text search engines. On both the domains, our semantic retrieval methods
show a statistically significant improvement in comparison to a best practice term-frequency-
based search engine, at the expense of a significant increase in processing time. To address the
time-complexity problem of semantic-based methods, we also focus on optimization to enable
larger and more real-world style applications.
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Kurzfassung

Information Retrieval (dt. Informationsrückgewinnung) muss sich von einer rein Oberfläche-
basierten Sicht zu einer begrifflichen Sicht, die den Inhalt auf einer semantischen Ebene über-
einstimmt, bewegen. Während wir die Möglichkeiten der statistischen Semantik erforschen, neh-
men wir das textbasierte Information Retrieval Methoden in zwei sehr unterschiedliche Bereiche
(soziale Medien sowie Patent Retrieval) wieder auf, um eine vergleichende Analyse der Effizi-
enz und Effektivität der untersuchten Methoden zu liefern. Unser semantischbasiertes Vorgehen
für Informationsrückgewinnung besteht aus zwei Elementen: auf einer Seite finden wir Metho-
den die semantische Begfriffdarstellungen erstellen, und auf der anderen Seite die Methoden um
die begriffbasierte Ähnlichkeit der Texte zu messen. Für Begriffschilderungen, verwenden wir
Word2Vec, eine auf dem neuesten Stand der Technik, auf tiefes Lernen basierte Methode, und
Zufalls Indexierung, eine einfache aber effektive Zählbasierte Methode. Nach der Überprüfung
der Literatur, wählen wir auch zwei Methoden die Textähnlichkeiten messen: eine Methode die
die Textähnlichkeint direkt auf Dokumentebene misst (SimAgg), und eine Methode die Ähnlich-
keit zweier Dokumente als Linearkombination der Begriffverwandtschaft ihrer Begriffe misst
(SimGreedy).

Wir bewerten die Leistung und die Grenzen der oben genannten Verfahren durch einen
Vergleich mit den modernsten Suchmaschinen. Für beide Domänen zeigt unsere semantische
Suchverfahren eine statistisch signifikante Verbesserung im Vergleich zu einem bewährten, fre-
quenzbasierten Suchverfahren, auf Kosten einer wesentlichen Erhöhung der Bearbeitungszeit.
Um die Zeit-Komplexität der semantisch basierten Methoden anzugehen, konzentrieren wir uns
auf Optimierungen die größere und erfahrungspraktischere Anwendungen ermöglichen.
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CHAPTER 1
Introduction

In this work, we shed additional light on the use of the meaning of the words in domain-specific
Information Retrieval. We study the state-of-the-art statistical semantic methods and explore
their performance and limitations by testing them on two challenging Information Retrieval
datasets. In addition, we focus on optimizing the execution time without decreasing the overall
performance. In this chapter, we first explain the motivation and specify the domain of the study.
Then, we describe the objective of the work, followed by the methodology to achieve it. Finally,
the structure of the work is described.

1.1 Motivation

Information Retrieval is a highly experimental, often heuristic research area where ‘discovery’
is more frequent than ‘invention’. In a standard model of information retrieval, searching the
information consists of two phases: First, the system analyses the document and the query to
create a clear and determined representation of each. This is a quite intuitive phase and in
many ways the achieved representation hides the complexity of human language, while it can be
addressed using formal statistical methods. In the second phase, the representations are matched
and the documents with the best matches are retrieved as potential information resources [62].

Text Retrieval, as a branch of Information Retrieval, traditionally represents the documents
as a set of terms (words) and finds the text similarity by matching the identical terms between the
query and the documents. In these methods, the measuring the text similarity is essentially based
on the number of occurrence of the matching terms between the documents (term-frequency-
based). Despite their successes, they fail when two texts use a disjunct vocabulary to describe
the same fact or situation. Measuring the degree of how well two texts relate semantically
(semantic similarity) can be seen as the natural succession of text similarity.

In semantic similarity, each text unit (term, sentence, document and etc.) is represented
by a set of concepts. For our purpose, we shall denote by concept, vectorial representations
obtained by several terms, which do not necessarily have a correspondence in natural language.
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Considering a defined set of concepts, in this thesis, the term semantics refers to a transformation
from terms to a vector in a vector space where proximity is indicative of conceptual similarity.
This numeric vector indicating the meaning of a term is called semantic representation of the
term. In contrast to text similarity, semantic similarity goes beyond the surface of the text, tries
to find conceptually similar aspects of the documents.

In order to generate the semantic representation of a term, some make use of knowledge
databases e.g., WordNet [16] or, OpenCyc 1. These databases encode term meanings from a pri-
ori and explicitly human-entered knowledge. WordNet in particular is a manually constructed
semantic network for English inspired by human semantic memory. The database groups the
terms into sets of synonyms called synsets, each representing a concept. The synsets are inter-
linked based on semantic and lexical relations. Although these methods are effective in repre-
senting the underlying relation of the terms, they cannot be applied to less supported languages
or to more specific domains without pre-existing knowledge.

As an alternative to knowledge-based systems, corpus-based semantic methods model the
co-occurrence of terms to represent their meaning. The idea behind these methods is that the
meaning of terms must depend on the use and the context in which they appear [62]. In fact,
if two terms occur often in the same context, they are more likely to share a similar meaning.
In contrast to knowledge-based, corpus-based methods do not need any pre-existing knowledge
and exclusively derive the information from large corpora.

Regardless of the applied approach (knowledge- or corpus-based), both eventually provide
a representation for each term which can be used to identify the degree of conceptual similarity
between the terms. As the succession of term-to-term similarity, text-to-text similarity tries
to measure the semantically relatedness of two texts. The method is generally divided into
short text (sentence, phrase, sequence of terms, etc.) and long text (paragraph or document)
similarity. Semantic similarity of short texts has been investigated in a number of different tasks,
e.g., paraphrase recognition [14], image retrieval by caption [9], Twitter tweets search [55] by
applying the techniques from related fields, including natural language processing and artificial
intelligence [58]. Despite a generally strong interest on term-to-term or sentence-to-sentence
similarity [20], research on any text-to-text and specifically document retrieval level remains
limited.

Beside similarity measures, the domain of the data plays an important role in retrieval ap-
proaches. We put the focus of this study on two specific domains: Social Image Retrieval based
on textual features and Patent Retrieval. Both domains potentially have an intriguing possibil-
ity of being explored by semantic similarity methods. In addition, since each domain requires
specific considerations, evaluating the methods on very different domains provides a better un-
derstanding on the capabilities of the semantic methods.

The first domain is Social Image Retrieval which uses image as well as textual features to
retrieve the most similar documents. Despite the recent success of image deep learning meth-
ods [23], text remains an important source of information in many cases where tags, descriptions,
or other textual contexts are associated with the image. Nevertheless, and understandably, the fo-
cus resided on image processing and, so far, the methods used for text similarity for the purpose
of image retrieval are fairly mainstream [56]. Such methods fail when two texts use a disjunct

1
http://www.cyc.com/platform/opencyc
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vocabulary to describe the same fact or situation. As semantic similarity discovers the interlinks
beyond the surface of the terms, therefore it is interesting to explore the effect of these methods
on image metadata document retrieval level.

The second studied domain is Patent Retrieval. Search on patent data has attracted re-
searchers’ attention as early as 1977. As a specific characteristic, the language used in patents is
precise while very sophisticated such that even an educated, native speaker cannot fully under-
stand the language in which the documents were written. Another characteristic of the domain
is the distribution of the term and document frequencies such that they are statistically different
from other natural language domains. These characteristics make addressing these tasks much
more challenging than the usual use cases, such as web search [28]. Considering these facts, a
patent search system aims to ensure the novelty of a patent such that there is no significant over-
lap between the essence of the patent application and an earlier invention or publication [47]. It
is therefore sensible to explore the opportunities offered by semantic text similarity methods in
the context of patent retrieval.

1.2 Research Objectives

In this research, we focus on text-to-text semantic similarity based on statistical corpus features.
We test state-of-the-art term representations in conjunction with semantic text-to-text similarity
methods. The objective of the study is to evaluate the performance and limitations of the methods
and term representations and provide a comparative study on two very different domains: Social
Image Retrieval and Patent Retrieval. We provide experiments incorporating state-of-the-art
test collections in both domains. Using corpus-based features sets our approach apart from the
ones that use knowledge-based databases or Natural Language Processing (NLP). The corpus-
based semantic approach can be applied to other, less supported languages as well as more
specific domains without pre-existing knowledge. In addition, we examine possible optimization
techniques.

Therefore, in this study we address three questions:

1. Can statistical semantics outperform state-of-the-art text search engines in terms of text-
based retrieval effectiveness?

2. Among statistical semantic methods, do newer approaches (i.e., deep learning) outperform
older ones (i.e., random indexing)?

3. To which extent do statistical semantics methods perform similarly/differently in different
domains?

1.3 Methodology

As shown in Figure 1.1, our approach to explore the goal of the study consists of four main
steps: Semantic Retrieval, Optimization, Baseline, and Evaluation. In the following, we explain
each step in detail.
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Figure 1.1: Overview of the essential steps of the study

Semantic Retrieval

This step focuses on applying semantic-based methods to retrieve related text documents. It con-
sists of two sets of approaches: Term Representations and Semantic Similarities. As mentioned,
term representation methods create the models, representing the terms in the vector space which
are used to achieve a conceptual representation of the documents. The characteristics of term
representations are influenced by many factors such as the training data set, the pre-processing
phase, the training methods and their parameters tunings as well as the choice of the number
of dimensions of the vector to represent the term. We focus on two semantic representation
methods, namely Word2Vec and Random Indexing. Word2Vec is a state-of-the-art approach
based on neural network and deep learning algorithms. Random Indexing introduces a more
straight-forward but effective method which refines randomly generated vectors by the effect
of the occurrence of the terms in their contexts. Given the vector representations of two sets
of terms (two documents), semantic similarity methods measure the relatedness of these doc-
uments. We adopt two text-to-text semantic similarity measures introduced in the literature.
The first is SimAgg which directly calculates the similarity at document level and the second
is SimGreedy which considers the similarity of two documents as a linear combination of the
relatedness of their terms.

By having two methods for each set (term representation and semantic similarity), we then
examine the one-to-one combinations of the elements of the sets on textual document retrieval.
For this purpose, we develop an information retrieval system called TextSim2 which provides a
framework for combining the different similarity, representation and preprocessing methods as
well as running the experiments.

2
https://github.com/neds/textsim
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Optimization

In the optimization part, we focus on reducing the execution time by studying the effect of
two methods: Approximate Nearest Neighbor Index (ANN-Index) and Hybrid Search Engines.
ANN-Index uses nearest neighbor search techniques to create an index which later is used to
enhance the document retrieval. The Hybrid approach combines two retrieval methods with the
aim of exploiting the capabilities of both. The detail of the method is described in Section 4.3. A
common characteristic of the mentioned methods is that they both use approximation techniques
to select a portion of the data for retrieval instead of all of it. Obviously, this technique may affect
the performance of the system by the case that the related documents has been filtered out in the
approximation step. The goal is to optimize the execution time in a way that the performance
remains in the range of significantly indifferent in comparison to not-optimized methods.

Baseline

In contrast to semantic-based methods, as mentioned bofore, the term-frequency-based methods
use the number of occurrence of the terms to explore related documents. Since many state-
of-the-art search engines are based on these methods, we define them as the baseline of the
experiments. In other words in each experiment, the result of the semantic-based methods are
assessed regarding to a best-practice of a term-frequency-based search engine.

Evaluation

As the last step, we evaluate the mentioned methods on Social Image and Patent Retrieval do-
mains. For each domain, we select a state-of-the-art test collection to address specific infor-
mation access task. The first test data set is the MediaEval Retrieving Diverse Social Images
Task 2013/2014 [21, 22] which addresses result relevance and diversification in the social im-
age retrieval domain. The second is CLEF-IP Claims to Passage Task 2013 [47] which targets
the patent retrieval domain by providing a large data set in three languages (English, German,
French). Before running the experiments on the mentioned domains, we first check the san-
ity of the methods using the SemEval data set [2] which is specifically designed for semantic
evaluation. In the following, we briefly explain each test collection and the size of its data:

• SemEval 2014 Task 10: The goal of the task is to measure the semantic similarity of
two sentences and express it as a similarity score. The data set covers different topics
such as news, image description, discussion forums and tweet comments, comprising an
overall of 4500 sentence pairs. Participating systems are compared by their correlation
between the system output and the human-annotated gold standard. Although the task is
in Paraphrasing field and not Information Retrieval, we examine the sanity of our systems
by understanding its performance in comparison to other participants.

• MediaEval Retrieving Diverse Social Images Task 2013/2014: As mentioned, the task
focuses on result relevance and diversification in social image retrieval. The data set
of both the 2013 and 2014 editions consists of about 110k photos of 600 famous world
locations (e.g. the Eiffel tower). Each location is provided with a ranked list of photos,
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a representative text, Flickr’s metadata, a Wikipedia article of the location, and only for
2014 version user tagging credibility estimation.

• CLEF-IP Claims to Passage Task 2013: The task provides a large, clean data set for
experimentation of patent data in English, German, and French languages. The purpose of
the passage retrieval task is to find passages relevant to a given (set of) patent claim(s). The
test collection contains almost 1.5 million patents, stored into approximately 3.5 million
Xml documents.

1.4 Structure of the Work
The remainder of this study is organized as follows: Chapter 2 provides the background on
text processing, semantic term representation and statistical measures as well as approximation
techniques for finding the nearest neighbors. Chapter 3 studies the related work and state of the
art of semantic text similarity and also retrieval techniques in the mentioned domains. Then,
Chapter 4 describes the architecture of the framework as well as text processing and similarity
algorithms, followed by suggesting two optimization techniques. The outline of the experiments
as well as the results are discussed in Chapter 5. We conclude the study and propose future
research directions in Chapter 6.
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CHAPTER 2
Background

In this chapter, we provide a comprehensive background on the methods and tools used in this
work. First, we explain main text preprocessing techniques for cleaning and extracting data.
Then, a variety of statistical measures for similarity and significance, as well as their usage
in Information Retrieval is discussed. Afterwards, we thoroughly study a range of semantic
representation approaches, comparing them based on the existing literature. Finally, we explain
nearest neighbor search—a method to find the closest nodes in an n-dimensional space—as well
as two of its optimization approaches.

2.1 Text Preprocessing
Preprocessing is an important step in Data Mining and Information Retrieval, which aims to
remove irrelevant and redundant data and prepare it for the analyzing step. The phrase ‘garbage
in, garbage out’ points out the fact that a lack of effective preprocessing can produce misleading
results. In particular, Text Mining—as a branch of Data Mining—introduces specific prepro-
cessing techniques in order to obtain the key features from text documents. The objective of
these methods is to select the significant keywords that carry the meaning of the text and discard
the terms that do not contribute to distinguishing between the documents [49]. In the following,
we explain five text preprocessing steps: Tokenization, removing Stop Words, Normalization,
Stemming and Lemmatization, and finally Part-Of-Speech (POS) tagging. The techniques are
broadly used in Text Mining, Information Retrieval and Natural Language Processing (NLP).

Tokenization

Tokenization is the process of breaking a text into meaningful elements (tokens). A token is in
fact a sequence of characters grouped together, representing a useful unit for processing. Tokens
can be individual terms, phrases or even whole sentences but generally they are taken to be
terms. The trivial strategy to achieve tokens is splitting the stream of text on whitespace. While
it generally tokenizes most sections of the text, many cases still need specific considerations. For

7



Table 2.1: Standard stop words used in Lucene

a an and are as at for if in into
is it no not of on or such that the
their then there these they this to was will with
be but by

example, the apostrophe used in the verb isn’t should be processed differently rather than the one
in the name O’Briens. In addition, instead of separating, sometimes the tokenizer should merge
the terms to represent them as one token (e.g., New York, or Technical University of Vienna).
While the discussed cases are generally related to English, each new language also presents new
issues. For example de-compounding nouns in German (Suchmaschine ‘Search Engine’), or
two-sectioned verbs in Farsi (  ‡ XQª Òj. ⇣JÇk. ‘to search’) [35].

Removing Stop Words

Stop words are terms which are assumed as non- or less-informative and need to be excluded
from the vocabulary entirely. The list of stop words depends on the domain of the text, the
objective of the system, and the language. Nevertheless, the general strategy for determining a
stop list is to sort the terms by collection frequency and select the most frequent ones. Table 2.1
shows a list of common stop words for English used in Lucene1. Removing stop words signif-
icantly reduces the processing time when analyzing the data. In addition, it normally increases
the overall performance of the system by dropping the terms that have little value in helping to
select documents [35].

Normalization

Text Normalization is the process of transforming the source text into a standard, less variable
form. This step requires awareness about the type of the text as well as the needs of the next
steps. Here is a brief description about some important Normalization techniques:

• Homogeneous Case: It transforms the terms to capital or small case in order to prevent
ambiguity between the same terms written in different letter cases.

• Abbreviation Expansion: This process reconstructs full terms or sentences from an abbre-
viated term using a dataset of abbreviations. Since an abbreviation may also have many
expanded forms, each in different topics, the expansion process also needs an understand-
ing of the context of the text.

• Markup and Punctuation Removal: Markups, often called ‘tags’, are sequence of char-
acters or other symbols which describe the document’s logical structure (e.g., XML, or

1Lucene is an open source popular Information Retrieval library, also known as a search engine library, available
on http://lucene.apache.org
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Table 2.2: Result of applying Stanford NLP POS tagger.

Original Text Exerting yourself to the fullest within your individual lim-
its: that is the essence of running, and a metaphor for life
and for me. Haruki Murakami

Stanford NLP POS tagger Exerting/VBG yourself/PRP to/TO the/DT fullest/JJS
within/IN your/PRP$ individual/JJ limits/NNS :/: that/DT
is/VBZ the/DT essence/NN of/IN running/VBG ,/, and/CC
a/DT metaphor/NN for/IN life/NN and/CC for/IN me/PRP
./. Haruki/NNP Murakami/NNP

Table 2.3: A set of part of speech tags and their abbreviated forms

CC Coordinating conjunction
DT Determiner
IN Preposition or subordinating conjunction
JJ Adjective

JJS Adjective, superlative
NN Noun, singular or mass

NNP Proper noun, singular
NNS Noun, plural
PRP Personal pronoun

PRP$ Possessive pronoun
TO to

VBG Verb, gerund or present participle
VBZ Verb, 3rd person singular present

HTML tags). Markups as well as unnecessary punctuation are removed in this phase,
usually done by regular expression.

Part of Speech Tagging

Part Of Speech (POS) tag refers to the label of a term in its narrow context which gives relevant
information about its grammatical category such as noun, verb, adverb, adjective, pronoun, con-
junction, etc.. Part of speech tagging is the process of identifying the POS of a term in a text,
based on both its definition and context. In other words, POS tagging attempts to resolve the
ambiguity of part of speech tags of a term when the term can belong to more than one part of
speech (e.g., run is both noun and verb).

Table 2.3 shows a set of POS tags and their abbreviated forms. As an example, we run
Stanford NLP POS tagger [57] on an arbitrary example text and show the results in Table 2.2.

There are mainly two type of taggers: rule-based and stochastic. Rule-based taggers use

9



hand-written rules based on the grammar of a language. In contrary, stochastic taggers use
statistical methods with no use of pre-existing conventions. They generally choose the tag by
maximizing the probability of occurring of term and tag sequences based on training data [7].
In practice, taggers either definitely identify the tag for the given term or make the best guess
based on the available information, which can cause occasional errors. In addition, POS tagging
is expensive and time consuming in comparison to other discussed text processing methods.

Stemming and Lemmatization

For grammatical reasons, a term can appear in documents in different forms (e.g., make, makes,
and making). Additionally, some terms, derived from the same roots, have similar meanings
(e.g., bureaucracy and bureaucratic). Since these are different forms of the terms with the same
root, it is then useful from an IR system to search for one common form instead of consider-
ing them as different terms. Stemming and lemmatization aim to tackle this issue by reducing
inflectional forms and sometimes derivationally related forms of a term to a common base form.

Lemmatization methods try to return the base or dictionary form of a term by use of a vo-
cabulary and morphological analysis of terms. For example, passing the term geese to NLTK
WordNet lemmatizer [60], it fetches the correct singular form (goose) from its internal dictio-
nary. These methods also takes into account the part of speech tag of the term such that for
example, loving as verb is lemmatized to love, while the lemmatizer returns loving when the
input is considered as noun.

Stemming refers to an algorithm, written for a specific language, that heuristically cuts off
suffixes and prefixes. These algorithms generally consist of different rules and conventions to
reduce the terms step by step. Unlike lemmatizers, stemmers operate on a single term without
considering its position in the sentence, and therefore cannot discriminate between terms which
have different meanings depending on parts of speech. Revisiting the mentioned examples,
NLTK Porter stemmer [60] returns gees as an incorrect singular form of geese and love regardless
of the part of speech of loving. However, stemmers are typically easier to implement and also
faster to run, but as the examples show, they have less accuracy in comparison to lemmatization.
There exist a variety of English stemmers, such as Porter stemmer, Lancaster Stemmer, and
Snowball Stemmer [35].

Table 2.4 shows the output of the NLTK Porter and Lancaster stemmer as well as WordNet
lemmatizer. The Lancaster stemmer applies a more aggressive approach in comparison to the
NLTK Porter such that the terms open, operation and operate all result to op. Among the
results, the lemmatizer performs better as it also considers the part of speech of operation and
discriminate it from the verb operate.

2.2 Statistical Measures

Statistical measures are of key importance in IR evaluation and retrieval. In this section, we
explain two main categories: Similarity and Significant tests. Similarity measures interpret the
position of a data point in comparison to another one. Statistical significance tests examine

10



Table 2.4: Result of applying NLTK Porter, Lancaster stemmer, and WordNet lemmatizer [60]

Original Text an open market operation is an activity by a
central bank to operate on the market

NLTK Porter Stemmer an open market oper is an activ by a central
bank to oper on the market

NLTK Lancaster Stemmer an op market op is an act by a cent bank to op
on the market

NLTK WordNet lemmatizer an open market operation is an activity by a
central bank to operate on the market

whether the difference between two sets of data most likely reflects a ‘real’ difference in the
population from which the data were sampled.

In the following formula of this section, the arbitrary data point P is defined as follow:
P = (p1, p2, . . . , pn) 2 Rn

Cosine Similarity

The Cosine measure is a very popular measure in text mining and IR, which measures the cosine
of the angle between two vectors using dot product:

Cos(P,Q) =

P ·Q
kPkkQk =

nP
i=1

p
i

⇥ q
i

s
nP

i=1
(p

i

)

2 ⇥
s

nP
i=1

(q
i

)

2

(2.1)

by normalizing the vectors (|P | = |Q| = 1 ), we also have:

Cos(P,Q) =

nX

i=1

p
i

⇥ q
i

(2.2)

An interesting characteristic of this metric is that it measures the orientation and not magni-
tude so that it considers the angle between the documents instead of the value of each dimension.
In fact, it can be seen as a comparison between vectors on a normalized space. Another reason
for the popularity of Cosine similarity is that it is very efficient, especially for sparse vectors, as
only the non-zero dimensions need to be considered.

Euclidean Distance

Euclidean distance is another popular measure which has it roots in geometry as the ‘ordinary’
distance between two points in Euclidean space. The Euclidean distance between points P and
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Q is the length of the line segment connecting them, defined as follows:

D
E

(P,Q) =

vuut
nX

i=1

(q
i

� p
i

)

2. (2.3)

Cosine similarity is closely related to Euclidean distance so that each can be converted to the
other as follow:

D
E

(P,Q) =

p
|P |2 + |Q|2 � 2|P ||Q|Cos(P,Q). (2.4)

after normalizing the vectors (|P | = |Q| = 1 ), we have:

D
E

(P,Q) =

p
2� 2Cos(P,Q). (2.5)

Minkowski Distance

The Minkowski distance is a generalization of the Euclidean distance defined as follows:

 
nX

i=1

|p
i

� q
i

|x
!1/x

(2.6)

As it is clear from the formula above, Euclidean distance can be achieved by setting x = 2.
Manhattan distance is also a specific case of Minkowski where x = 1.

Mahalanobis Distance

Mahalanobis distance provides a powerful method of measuring how similar some set of condi-
tions is to an ‘ideal’ set of conditions. It is based on both the mean and variance of the variables
and takes advantage of the covariance matrix among all the variables. The Mahalanobis distance
of an observation P from a group of observations with mean µ = (µ1, µ2, µ3, . . . , µN

) and
covariance matrix S is defined as:

D
M

(P ) =

q
(P � µ)TS�1

(P � µ) (2.7)

The metric addresses several of the limitations of the Euclidean distance such that:

• It automatically accounts for the scaling of the coordinate axes.

• It corrects for correlation between the different features.

• It can provide curved as well as linear decision boundaries.

However, the covariance matrices can be hard to determine accurately, and the memory and
time requirements grow quadratically rather than linearly with the number of features. These
problems can become quite serious specially when the number of features becomes large.
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Kullback–Leibler Distance

Kullback–Leibler (KL) divergence is a non-symmetric measure of the different between two
probability distributions over the same event space such that:

D
KL

(P ||Q) =

nX

i=1

p
i

log
p
i

q
i

(2.8)

Kullback-Leibler Distance (KLD) generalizes KL divergence to a symmetric distance met-
ric:

D
KLD

(P ||Q) = D
KL

(P ||Q) +D
KL

(Q||P ) (2.9)

KLD has been used in many applications in Information Retrieval (e.g., query expansion,
topic identification, etc.) as well as other domains like speech processing based on statistical
language modeling.

Pearson Correlation

Pearson Correlation calculates the linear relationship between two sets of data and returns a
value between �1 and +1 where +1 is total positive correlation, 0 is no correlation, and �1 is
total negative correlation. Given two samples P and Q, the Pearson Correlation r is calculated
as follows:

r =

P
n

i=1(pi � ¯P )(q
i

� ¯Q)qP
n

i=1(pi � ¯P )

2
qP

n

i=1(qi � ¯Q)

2
(2.10)

where ¯P and ¯Q is the sample mean of the samples P and Q.

Paired Significance Test

Paired Significance Test examines the significance of the difference between two sets of data by
calculating the difference of each pair of the data sets and then running another method called
‘one-sample t-test’. One-sample t-test, as a common significance method, aims to reject the ‘null
hypothesis’ defined as follow:

‘The hypothesis that there is no significant difference between specified populations, any
observed difference being due to sampling or experimental error.’ [61]

Every null hypothesis is defined in a significance level (usually 0.10, 0.05, or 0.01) which is
the probability of observing the given difference of the hypothesis is true. In order to examine
one-sample test, in the first step, the z value is calculated as follows:

z =

¯P � µ0

�

p
n (2.11)

where ¯P is the sample mean, � is the sample standard deviation of the sample, n is the
sample size and finally µ0 is the hypothesized population mean. Once the z value is determined,
another value called p is fetched from the Student’s t-distribution table. If the calculated p-value
is below the threshold chosen for statistical significance, then the null hypothesis is rejected.
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2.3 Semantic Representation
As it is mentioned before, semantic representation methods provide a mapping of text elements
(documents, paragraphs, terms, etc.) to a vector space in which each dimension indicates a
proximity of concepts. Study on semantic representation has attracted researchers’ attention as
early as 1990 and it is still a challenging research area. In this section, we explain main semantic
representation models and compare their characteristics as well as limitations.

Latent Semantic Analysis/Indexing

In the text retrieval community, text semantics started with Latent Semantic Analysis/Indexing
(LSA/LSI), which initiated a new trend in surface text analysis. LSA represents the meaning of
a term as a kind of average of the meaning of all the passages in which it appears. Given a text
corpus, it uses matrix-based methods to model the patterns between the terms and the concepts
of the text [12]. The phrase ‘Latent Semantic’ refers to the fact that the model finds semantic
relations of the terms that are latent in the collection of text.

Calculating LSA is based on Singular Value Decomposition (SVD), a mathematical matrix
factorization technique broadly used in signal processing and statistics. SVD provides powerful
mathematical analysis for LSA and sets it apart from the approaches which use co-occurrence
counts or simple contiguity frequencies [25]. SVD is defined as follows:

Given an M ⇥N matrix C, then there is SVD of C in the form of

C = U⌃V T (2.12)

where:

• U is an M ⇥M unitary matrix (i.e., U.UT

= UT .U = I , when I is the identity matrix)

• ⌃ is an M ⇥N diagonal matrix, where ⌃

ii

= �
i

=

p
�
i

, with eigenvalues �
i

� �
i+1 for

1  i  r, and zero otherwise.

• V T is an N ⇥N unitary matrix, which is the transpose of unitary matrix V

In order to create Latent Semantic Index, first we build term-document matrix C in which
terms and documents are the rows and columns of the matrix. The cells of the matrix are the
results of an arbitrary weighting function which, in the simplest case, is the existence of the
respective term in the document. An example of six documents and five terms (obtained from
Manning et al. [35]) is shown in Table 2.5. Considering the representation of the documents in
matrix C, the cosine similarity between the document d1 and d2 is equal to 1 which is the same
between d1 and d5. Looking in the data, we can observe close relation between documents d1
and d2, as they use the terms ship and boat which are conceptually related. In fact, while the
document d1 and d2 share more common concepts, their similarity value is the same as that of
d1 and d5.

The LSD model addresses this issue, by first applying SVD to the matrix C which results
to three matrices: U known as term matrix, ⌃ as singular values shown in Table 2.7 and finally
V T as document matrix represented in Table 2.6. The matrix V T , specifically, provides a new
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Table 2.5: A simple example of term-document matrix C (binary) achieved from Manning et
al. [35]

d1 d2 d3 d4 d5 d6
ship 1 0 1 0 0 0
boat 0 1 0 0 0 0

ocean 1 1 0 0 0 0
voyage 1 0 0 1 1 0

trip 0 0 0 1 0 1

Table 2.6: Matrix V T achieved by applying SVD on matrix C in Table 2.5 fetched from Manning
et al. [35]

d1 d2 d3 d4 d5 d6
1 -0.75 -0.28 -0.20 -0.45 -0.33 -0.12
2 -0.29 -0.53 -0.19 0.63 0.22 0.41
3 0.28 -0.75 0.45 -0.20 0.12 -0.33
4 0.00 0.00 0.58 0.00 -0.58 0.58
5 -0.53 0.29 0.63 0.19 0.41 -0.22

representations of the documents where the conceptual relations of the terms are also considered.
Using these representations, we repeat measuring the degree of documents similarity with the
cosine function. We thus observe a more similar relation between the documents d1 and d2
(�0.0028) in comparison to d1 and d5 (�0.2718).

The matrix ⌃ (Table 2.7) quantifies the importance of each dimension (here term) in the
text, sorted from the most to least important one. Using this matrix, we can reduce the noise
by ‘zeroing out’ the less important dimensions. In fact, we keep the critical information by
getting rid of the ‘details’. Table 2.8 shows the result of dimension reduction by zeroing all
but the two largest singular values of ⌃ [35]. In order to observe the effect of noise reduction,
we again measure the documents similarities using the new representations. In this case, the
cosine similarity between the document d1 and d2 is +2.0236 while d1 and d5 has the similarity
of +0.973 which shows that how the documents with more conceptual relations become more
similar in the vector space.

Regardless of the success of LSA, the method is limited in practice by efficiency and scala-
bility issues caused by significant computational cost of SVD. In addition, the co-occurrences of
new documents are not captured by other pre-built vectors which causes degrading in the quality
of the representation until the model is recreated from scratch.

Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) is one of the early alternatives of LSA, which exploits the
knowledge of ontologies or encyclopedias to explicitly define the concepts of the text. ESA
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Table 2.7: Matrix ⌃ achieved by applying SVD on matrix C in Table 2.5 fetched from Manning
et al. [35]

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Table 2.8: Result of dimension reduction of matrix C in Table 2.5 obtained from Manning et
al. [35]

d1 d2 d3 d4 d5 d6
1 -1.62 -0.60 -0.44 -0.97 -0.70 -0.26
2 -0.46 -0.84 -0.30 1.00 0.35 0.65

defines the terms as a weighted vector of ‘natural’ concepts defined by humans.
As a realization of the ESA model, Gabrilovich et al. [17] uses Wikipedia articles (e.g.,

Family, Electronic, or Norway) to indicate the manifest concepts grounded in human cognition.
Figure A.1 obtained from Gabrilovich et al. [17] depicts the steps of the process. In the first step,
an inverted index is built, which maps each term into a list of concepts (Wikipedia articles) in
which it appears. This inverted index can be interpreted as a primary representation of the terms
by explicitly defined concepts. In the next step, using the vector representation of the terms of
the input text, the text is transformed to weighted vectors of concepts using machine learning
and text categorization techniques. The meaning of a text fragment is thus interpreted in terms
of Wikipedia concepts (articles).

Since ESA relies on co-occurrence of the terms, it uses much less computational resources
in comparison to LSA. As an another advantage of ESA, the built weighted inverted index can
be applied many times on the input documents with no need of semantically indexing them.
However, unlike LSA, ESA relies on a pre-existing set of concepts, which may not always be
available or related to the retrieval domain [26].

Random Indexing

Random Indexing (RI) [53] introduces a more efficient while still effective method in com-
parison to LSA and ESA. The method creates representation vector for each term with a much
smaller dimensionality than the whole number of the documents by accumulating the occurrence
of the terms in their contexts. Creating the Random Indexing model is described as follows:

• In the first step, a unique and randomly generated representation, called index vector, is
assigned to each context. These index vectors are sparse so that just a small number of
their elements are randomly set to +1 or -1, and the rest are 0.
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• Then, while reading the text, everytime a given term occurs, the index vectors of the
terms in its context (e.g. in a document, or within a sliding context window) are added
to the context vector of the term. Terms are thus represented by context vectors that are
effectively the sum of the terms’ contexts.

Random Indexing has the benefit of being incremental such that the representation model
can be enriched by new documents, with no need of re-building whole the vectors. In addition,
it operates with significantly less resources in comparison to LSA/LSI. Furthermore, Random
Indexing, unlike ESA, does not rely on any pre-existing knowledge and extracts the meanings
of the terms from the context of the text.

In order to take advantage of the performance of LSA while addressing the issue of SVD
tractability, Sellberg et al. [54] uses the RI vectors to create SVD matrix with lesser dimen-
sionality. They introduce three alternatives: the standard LSA, the standard Random Indexing,
and finally SVD on a reduced RI matrix. They evaluate these three approaches on a subset of
MEDLINE-corpus [41]. As shown in Figure A.2 and Figure A.3 (obtained from the paper),
while SVD on reduced RI matrix is about twice as fast as SVD on non-reduced matrix, the
performance of their approach is only slightly worse than the pure LSA.

Word2Vec

Word2Vec [37] has gained a lot of attraction lately, by providing state-of-the-art term repre-
sentation. The model is based on Deep Learning, an effective unsupervised Machine Learning
method. Deep Learning models high-level abstractions in data by composing multiple non-
linear transformations in hidden-layers of a neural network. Word2Vec is highly incremental
and scalable and, in principle, allows exploiting the implicit knowledge within corpora. In prac-
tice, when trained on large datasets, it captures many linguistic subtleties, such as semantic and
syntactic relations that allow basic arithmetic operations within the model. In the following, we
explain the architecture of the model as well as its characteristics.

The Word2Vec model is initiated from the idea of Recurrent Neural Network Language
Model (RNNLM) [38]. The main difference between RNNLM and the standard neural networks
is that the model uses a recurrent matrix that provides time-delayed connections within the hid-
den layer. The architecture of RNNLM is illustrated in Figure 2.1 obtained from Mikolov et
al. [39]. The architecture consists of an input layer w(t), a hidden layer at current time s(t),
recurrent connection of hidden layer to previous time line s(t-1), plus the output layer y(t). The
input vector represents input term, and the output layer represents a probability distribution over
terms. The hidden layer provides a representation of the sentence maintained by an inter-linked
memory (time-delayed hidden layer).

Since RRNLM is computationally expensive, Mikolov et al. [37] propose two alternative
architectural models: Continuous Bag-Of-Words (CBOW) and Skip-gram. The models try to
replace the non-linear hidden layer of the RRNLM with simpler but still effective substitutes.
The approaches are depicted in Figure 2.2 fetched from Mikolov et al. [37]. CBOW predicts the
current term based on its context, by averaging all the terms in the window. In fact, it projects
the terms into the same position while using a shared weight matrix between the input and the
projection layer for all the term positions. The Skip-gram approach is similar to CBOW, but

17



Figure 2.1: Recurrent Neural Network Language Model for term representation obtained from
Mikolov et al. [39]

it tries to maximize classification of a term based on an another term in the same sentence. In
other words, each term is an input to a log-linear classifier which aims to predict the terms in its
window. In addition to the prediction result, a weight value is assigned to each connection based
on the distance of the terms in the context window. In fact, using this weight value more distant
terms influence to a smaller extent. Comparing to CBOW, Skip-gram shows better performance
for infrequent terms while being computationally more expensive.

In addition to the architecture alternatives, Word2Vec introduces two additional parameters
for discarding noise: The first is rare-term pruning which removes the terms that appear less
than a minimum frequency in the input data (default for skip-gram is 10, and for CBOW 5). The
second is sub-sampling which down-samples frequent terms in order to increase the effective
window size. This noise-reduction feature is motivated by the idea that frequent terms are less
informative. Therefore, Mikolov et al. [37] heuristically defines the sub-sampling feature such
that it discards each term w

i

in the training set with probability computed by the formula:

P (w
i

) = 1�

s
t

f(w
i

)

(2.13)

where f(w
i

) is the frequency of term w
i

and t is an input parameter, typically between 1e�5

to 1e�3. As it is clear from the formula, the higher the value of t, the more aggressive is this
feature for discarding frequent terms.

Although the model itself does not have any specific knowledge about the linguistic sub-
tleties (i.e., syntax, morphology, or semantics), training the model on big corpus of text provides
term representations with striking syntactic and semantic properties. For example, the relation
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Figure 2.2: Two proposed architectures for the Word2Vec model obtained from Mikolov et
al. [37]

between male and female is automatically learned such that an arithmetic operation on vector
representations of ‘King - Man + Woman’ results in a vector very close to Queen [39]. Fig-
ure A.4 obtained from Mikolov et al. [39] shows the similar relation between countries and their
capitals projected in two dimensional space. In addition to semantic relations, the model also
discovers the syntactical relations between terms. For instance, given the vector representations
of the terms biggest, big and small, we can simply compute the vector ‘biggest - big + small’ to
which the representation of the term smallest is the closest node [37].

2.4 Nearest Neighbor Search

In this section, we study nearest neighbor search (also known as proximity search) as well
as two of its optimization techniques, namely KD-tree and Ball-tree. Both the optimization
methods apply tree-based data structures as well as approximation techniques to improve the
query time. We also discuss the effective factors in the choose of the optimal nearest neighbor
search approach.

Nearest Neighbor

The principle behind nearest neighbor method is to find a predefined number of samples closest
in distance to a new point. The method can be also used as a classification algorithm where each
node has defined labels and the method predicts the label of a new node based on an aggregation
of the neighbors’ labels. The number of selected neighbors can be a user-defined constant (k-
nearest neighbor), or vary based on the local density of points (radius-based neighbor search).
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Figure 2.3: 3-NN classification of new data point y0

Despite its simplicity, nearest neighbors has been successful in a large number of classification
and regression problems, including handwritten digits or satellite image scenes.

Formally, given a set of data points {y1, ..., yn} and a query point y0, each with a set of
features {x1, ..., xm}, k-Nearest Neighbor (k-NN) calculates the distance of y0 to all the other
nodes and returns the k nearest ones. The distance can, in general, be any metric measure defined
in Section 2.2 while standard Euclidean distance is the most common choice.

Figure 2.3-left shows an example of k-NN classifier with data points in two-dimensional
feature space (m = 2). The nodes are classified into categories circle and triangle. Given a new
data point y0, we want to classify it based on 3 nearest neighbors. As two out of three neighbors
(a probability of 66. ˙6%) are circle, k-NN choose the label circle for y0 shown in Figure 2.3-
right [19]. This way of choosing the class is also referred to as majority voting.

Optimization Methods

Fast computation of nearest neighbors is an active area of research. The basic implementation of
nearest neighbor search is the computation of the distance between the query to all the points in
the dataset (Brute-Force). For N samples in D dimensions, the computation complexity of this
approach is O[DN2

]. Although Brute-Force neighbors search performance is very competitive
for small data samples, as the number of samples, the approach quickly becomes infeasible.

In order to address the computational inefficiencies of the Brute-Force method, we study
two optimization approaches, both using tree-based data structures. In general, these approaches
attempt to reduce the required number of distance calculations by efficiently encoding aggregate
distance information for the sample. The basic idea is that if point A is very distant from point
B, and point B is very close to point C, then we know that points A and C are very distant,
without having to explicitly calculate their distance. In this way, the computational complexity
of a search can be reduced to O[DN log(N)] or better which is a significant improvement over
Brute-Force for large N [45].

The first approach is KD-tree data structure (short for K-Dimensional tree), which general-
izes two-dimensional Quad-trees (every node has exactly four children) to an arbitrary number of
dimensions. The KD-tree recursively partitions the space along the Cartesian axes which makes
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its construction very fast as D-dimensional distances does not need to be computed. Once con-
structed, the nearest neighbor of a query point can be determined with only O[log(N)] distance
computations. Although the KD-tree approach is very fast for low-dimensional data (D < 20),
it becomes inefficient as D grows very large [5].

The second approach is Ball-tree data structure which addresses the inefficiencies of KD-
trees in higher dimensions. Ball-tree partitions data in a series of hyper-spheres. This makes tree
construction more costly than that of the KD-tree, but results in a data structure which can be
very efficient on highly-structured data.

A Ball-tree recursively divides the data into hyper-spheres, defined by a centroid C and
radius r, such that each point in the data lies within one of them. With this data structure,
a single distance calculation between a test point and the centroid is sufficient to determine a
lower and upper bound on the distance to all points within the hyper-sphere. Because of the
spherical geometry of the Ball-tree nodes, it can out-perform a KD-tree in high dimensions,
though the actual performance is highly dependent on the structure of the data [42].

Comparison

The optimal algorithm for finding the nearest neighbor is a complicated choice, and depends on
a number of factors. We discuss the effect of three main factors: Dimensionality, Number of
Samples, and Number of Neighbors.

The first studied factor is dimensionality. As mentioned before, Brute-Force time complexity
is O[DN ] (D and N stand for the dimensionality and the number of samples) which clearly
makes it very sensitive about increasing the dimensionality. KD-tree query time changes with
D in a way that is difficult to precisely characterize. For D  20, the cost is approximately
O[D log(N)] which is the same as Ball-tree, while for larger D, it can become very inefficient
so that the cost increases to nearly O[DN ]. Considering the overhead due to the creating of the
tree structure, it can lead to queries which are even slower than Brute-Force. The Ball-tree query
time however grows as approximately O[D log(N)] and therefore the method is a better choice
for high dimensional data.

The other important factor is the number of samples. For small data sets (N  30), log(N) is
comparable to N , and Brute-Force algorithms can be more efficient than a tree-based approach.
In this special case of small size of samples, both KD-tree and Ball-tree address the efficiency
problem through providing a leaf size parameter. Leaf size refers to the maximum number of
nodes inside the hyper-spheres of the Ball-tree or the leaves of the KD-tree. Therefore, in this
case, both the algorithms turn to an usual Brute-Force search although the overhead of creating
the tree structures still makes them slower than the Brute-Force approach.

The last studied factor is the number of neighbors (k) requested by the query point. As
Brute-Force computes the distance to all the nodes, its query time is completely unaffected by
the value of k. However, Ball-tree and KD-tree will become slower as k increases. As k becomes
large compared to N , the ability to prune branches in a tree-based structure is reduced so that
the Brute-Force search can be even more efficient [45].
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CHAPTER 3
Related Work

We review the related work and literature in three sections. First, we study the state-of-the-art
research on the use of semantic representations and concept-based IR systems. We then study
the current work in social media domain and specifically social image retrieval. Finally, we
explain patent domain and review the research in patent retrieval.

3.1 Semantic Similarity

Wittgenstein [62] stated that the meaning of words must depend on the use and the context of
these words. If two words occur often in the same context, then they are more likely to share a
similar meaning. As mentioned in Chapter 2, based on this idea many semantic representation
methods with different computation techniques (matrix-based, count-based, neural networks,
etc.) have been introduced. Naturally, these methods provide different conceptual representa-
tions of the terms and hence they have different performance.

In order to compare the representation methods, Blacoe and Lapata [6] run experiments on
terms similarity as well as paraphrase detection tasks. They introduce a new neural network
based model and compare it with two count-based representations. They observe a better result
for count-based methods in the phrase similarity task, whereas the representations show com-
parable performance in the paraphrase detection. As Mikolov et al. [39] introduce Word2Vec
(Section 2.3), they also compare it with LSA using a ‘semantic’ as well as a newly created ‘syn-
tactic’ test collection. Both test sets put forward analogy questions of the form ‘a to b is like
c to what?’. The ‘syntactic’ test collection contains questions with the format of singular/plu-
ral, base/comparative/superlative, etc., while the ‘semantic’ provides pairs of the form Class-
Inclusion:Singular-Collective (e.g., ‘electronic device to tv is like clothing to shirt’). They even-
tually find that Word2Vec is highly superior in all the tasks. However, they provide very little
details about the created LSA representation models.

While the mentioned papers compare representation methods, their focus is on evaluation of
the introduced models. In fact, they are still lacking providing a comprehensive comparison. In
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order to address this problem, Baroni et al. [4] systematically compare a neural network based
approach, namely Word2Vec, with classical count-based approaches. They create a set of models
with different parameter settings and evaluate them across a wide range of lexical semantics
tasks. The experiment consists of 5 tasks: The first is Semantic Relatedness which measures the
topical (family/planning) or co-hyponymy (king/queen) relations. Synonym Detection for verbs
with similar meanings and Concept Categorization (e.g., dogs and giraffes belong to mammals
class) are introduced as the second and third task. The forth task is Selection Preferences which,
in a verb-noun relation, assesses the typicality of the noun as a subject or object of the verb (e.g.,
people has higher score of being subject of to eat than being its object). Finally Analogy task
uses the test collections introduced by Mikolov et al. [39] (see above). They observe an overall
better performance of Word2Vec than the classic count-based methods in all the tasks. All of
these tasks are however not directly applicable for an information retrieval scenario.

Exploiting the semantic representations, many information systems study text similarity
techniques in order to facilitate a better text (document, sentence, word) retrieval. Rus et al. [51]
provide a general-purpose semantic information retrieval system called SIMILAR. It implements
a number of algorithms for assessing the semantic similarity between two texts. The algorithms
combine the statistical semantic corpus-based methods with knowledge-based resources. As an
example, they try to find an optimal assignment from words in the source text to words in the
destination one by introducing an state-of-the-art algorithm based on the Quadratic Assignment
Problem (QAP). Pilehvar et al. [46] focuses on aligning the words of a text to a set of seman-
tically related words in the other text. They use POS tags to disambiguate the meaning of the
words and finally introduce a unified approach to measure text-to-text similarity.

While the mentioned approaches use NLP or know-ledge based data sets, Kashyap et al. [24]
introduce a similarity measure only based on corpus-based features. The method, called Align-
and-Penalize, first measures the similarity by heuristically assigning words in the texts and then
normalizes the result by introducing two penalizing factors: The first factor eliminates term
alignments with naive similarity values, and the second penalizes the terms with syntactic con-
tradictions. Similar to many semantic based information systems, it extracts the features of the
texts and applies machine learning to tune the results. However, the method is only applied on
paraphrasing tasks with short texts and is not tested on an information retrieval scenario.

3.2 Social Image Retrieval

In the social media domain, different modalities (image, text, tags, etc.) often occur together
in the same document (scientific paper, website, blog, etc.). It is well known that combining
information from multiple modalities assists in retrieval tasks. For instance, the results of the
ImageCLEF campaign’s photographic retrieval task have shown that combining image and text
information results in better retrieval than text alone [44]. There are two fundamental approaches
to fusing information from multiple modalities: early fusion and late fusion [13].

Late fusion is widely used, as it avoids working in a single fused feature space but, instead,
fusing results by reordering them based on the scores from the individual systems. Clinchant
et al. [8] propose and test a number of late fusion approaches involving the sum or product
combination of weighted scores from text and image retrieval systems. Difficulties arise from
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• weights that must be fixed in advance or that need to be learned from difficult to obtain
training data

• modality weights that might be query dependent and

• weights that are sensitive to the IR system performance for the various modalities [13]

Separate queries are needed for each modality, so that for example to find a picture of a cat
in a database of annotated images, one would need to provide a picture of a cat and text about
the cat. There are ways of getting around this limitation, such as choosing the images for the top
returned text documents as seeds in an image search [13], but these are generally ad-hoc.

With early fusion, a query would not have to contain elements from all modalities in the
dataset. To continue the previous example, pictures of a cat could be found only with text input.
Early fusion suffers from the problem that text tends to sparsely inhabit a large feature space,
while non-text features have denser distributions in a small feature space. The simplest approach
to early fusion is to simply concatenate the feature vectors from different modalities. However,
concatenated feature vectors become less distinctive, due to the curse of dimensionality [13],
making this approach rather ineffective. A solution proposed by Maes and Rüger [1] is to trans-
form the feature vectors to reduce the dimension of the text feature vectors and increase the
dimension of the image feature vectors using the minimum description length (MDL) principle.

As an alternative to the fusion problem, it is however possible to turn the document into one
modality (generally text) by automatically obtaining the bags of ‘visual words’ [10] from images.
These automatic-generated annotations are generally achieved by using machine learning and
also clustering local image features. Magalhães and Rüger [30] study the accuracy of different
annotations techniques. They split the manual tags into two subsets of amateur and professionals
and evaluate them against automatic-generated ones on Flicker image documents. They find
similar performance on using amateur-level manual annotations than automatic-generated ones.

Despite the effectiveness as well as limitations of using multiple modalities, many infor-
mation systems has only used textual features as the main resource of retrieval. For instance,
recently, Eskevich et al. [15] considered a wide range of text retrieval methods in the context
of multimodal search for medical data, while Sabetghadam et al. [52] used text features in a
graph-based model to retrieve images from Wikipedia. However, these works do not particu-
larly exploit text semantics.

Approaching the text semantics, Liu et al. [27] introduced the Histogram for Textual Con-
cepts (HTC) method to map tags to a concept dictionary. However, the method is reminiscent of
ESA described above, and it was never evaluated for the purpose of text-based image retrieval.

3.3 Patent Retrieval
Before reviewing the state-of-the-art of the patent retrieval domain, it is worth to take a closer
look at the patent documents. As an example of patent documents, Figure A.5 shows the first
page of US patent application 836630 obtained from Google Patent1. As mentioned in Lupu and
Hanbury [29], the application and granted patents consists of four sections:

1
www.google.com/patents
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• Bibliographical Data: Title, metadata, the inventors, assignees, domestic filing data, clas-
sification data, and relation to the other documents.

• Abstract: A brief summary of the invention.

• Description: A clear and concise explanation of the known existing work, novelty of the
patent, as well as the related technologies.

• Claims: Legal definition of the subject. Each claim is a single sentence that defines an
invention and its unique technical features, fully supported by the description section.

Patents are typically written in an intricate and hard language in the sense that even an
educated, native-speaker can not easily understand them. Specifically, claims have a particular
writing style, sometimes referred to as patentese [3], which resembles the language of legal
contracts. Considering these facts, Lupu [28] studies the characteristics of the patent data from
a statistical point of view and compare it with ‘regular’ English text. He observes considerable
difference in the collection frequency of the terms so that the domain is rich in both high and
low frequency, while poor in average frequency terms.

Given a patent application, patent examiners closely examine the claims against the existing
documents in order to ensure the novelty of the application (Prior-Art Search). While in general,
typical IR tasks such as web search aim to achieve high precision by retrieving more relevant
documents, the Prior-Art search is a recall-oriented task where the objective is to find all possible
documents.

In addition to complicated language, the length of the queries is also a difficulty in this
domain. Since the queries are typically full patent applications, they are very long and do not
have clear focus on information need. In order to address this problem, Mahdabi [34] proposes
two approaches to extract essential terms and phrases from a query patent. The first approach
extracts generic terms using KL-divergence (Section 2.2) between the terms in the query and the
collection. The second approach focuses on extracting specific phrases by generating statistical
language models through global analysis of the collection. In practice the methods show unstable
performance regarding to different topics. Therefore, the authors provide a framework based on
feature extraction and machine learning which decides the proper method for each topic.

Despite the long query, there is often a significant mismatch between the terms in the query
and the relevant documents. By analyzing the CLEF-IP corpus2, Magdy et al. [33] show that
12% of the relevant patents do not share any common terms with the topics after filtering stop
words. Magdy and Jones [32] therefore attempt to match the relevant documents by finding
synonym terms between them. They generate a database of possible synonym sets for patent
data—called SynSet—by using the parallel translated documents of the CLEF-IP collection. Fi-
nally, they use the SynSet database to expand the query patents. They observe that this method
is the most effective of standard query expansion approaches while it does not show an overall
improvement in retrieval effectiveness. Recently, Wang et al. [59] targets improving query ex-
pansion in the domain by proposing a semantic-based approach which considers matching the

2CLEF-IP track launched in 2009 as a part of CLEF evaluation campaign. The track provides a large, clean
data set of patent data in three languages (English, German, French), accessible under the webpage: http://ifs.
tuwien.ac.at/~clef-ip/

26

http://ifs.tuwien.ac.at/~clef-ip/
http://ifs.tuwien.ac.at/~clef-ip/


domain of the query regarding to the patent data. In this approach, they first extract domain fea-
tures using a modified version of TF-IDF scheme3 as well as International Patent Classification
(IPC) codes. In the next step, the input query is matched to a specific domain, based on which
a list of expansion terms are generated. Furthermore, the candidate expansion terms are refined
based on semantic similarity methods. This approach shows a competitive retrieval performance
in comaprison to other state-of-the-art approaches.

While the mentioned studies focus on the content-based retrieval methods, Lupu [28] ex-
plores the usability of statistical semantic similarity on patent data. He particularly focuses on
Random Indexing, and calculates the document similarity using the model’s vector represen-
tations. The results of the paper show that the direct application of these methods to domain-
specific retrieval challenges is not effective. Considering this, the current work provides addi-
tional insight into the use of statistical semantic methods in the patent data.

3Term Frequency-Inverse Document Frequency, is a measure to reflect how important a term is to a document
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CHAPTER 4
Methodology and Design

In this chapter, we explain in detail our semantic-based approach to retrieve text documents. We
start with explaining the architecture of a semantics-based Information Retrieval system, called
TextSim1, and its building components. Then, we describe two similarity algorithms introduced
in literature, designed to measure the semantic relatedness of two text documents, followed by a
comparison between the methods. Finally, we put forward two optimization techniques for the
similarity algorithms and point out their characteristics as well as limitations.

4.1 System Architecture

The architecture of the TextSim system is depicted in Figure 4.1. The design of the system
follows a similar model to the three-layer architecture model (Presentation, Logic, and Data
layer) in software engineering, with focus on semantics text retrieval. We denote the layers as
Text Processing, Semantic Similarity, and Term Representation. Analogous to the three-layer
architecture, the layers are defined on top of each other. In addition, we define two cross-cutting
aspects—Logging and Performance Monitoring—shared between all the layers. The Perfor-
mance Monitoring aspect, in particular, measures the execution time of the critical processes in
all the layers. In the following, we explain each layer and its main elements in detail.

Text Processing Layer

This layer provides the interface of the system for reading the documents, running the required
processes and finally retrieving the results. In the first step, it reads the documents/topics and ex-
ecutes text preprocessing i.e., normalization, removing stop words, stemming, and tokenization
(see Section 2.1). Then, the cleaned and tokenized texts are passed to the Semantic Similarity
layer for measuring their relatedness. The layer repeats this process and accumulates the simi-
larity relatedness of all the documents to the topics, achieved from the Semantic Similarity layer.

1
https://github.com/neds/textsim

29

https://github.com/neds/textsim


Figure 4.1: TextSim system architecture

Afterwards, this layer generates a ranked list which is generally in TREC2 format. Finally, it
evaluates the list based on the evaluation metric of the data collection and returns the results.

Semantic Similarity Layer

The Semantic Similarity layer consists of three main elements: semantic similarity algorithm,
similarity measure between vector representations, and finally time optimization technique. This
layer receives two sets of terms from the Text Processing layer and asks from the Term Repre-
sentation layer for their corresponding vector representations as well as their weights (the im-
portance of the term regarding to the collection). The text-to-text similarity is then calculated
based on one or more of the available relatedness measure. Additionally, the layer improves the
execution time by applying optimization techniques on the similarity algorithm.

2
http://trec.nist.gov
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Term Representation Layer

As mentioned before, this layer provides vector representations of the terms as well as their
weights to the Semantic Similarity layer. Outside the platform of the TextSim system, the vector
representations are generated from a text corpus using the semantics methods (e.g., Word2Vec,
Random Indexing, etc.). The text corpus can be obtained from the input documents as well as
other resources. These vector representations are then saved in a database as key-value records
which later are fetched by the Term Representation layer. We use Redis3, a fast key-value data
store that allows multi-processing as well as distributed partitioning. The layer reads the term
representations from the database and provides internal caching and vector normalization. The
weight of the term, as the other element of this layer, is achieved from the Lucene4 index of the
text corpus.

4.2 Similarity Algorithms

In this section, we describe two document-to-document similarity measures, both based on the
semantics of the terms in each document. In the first approach, denoted as SimAgg, the terms’
vectors are aggregated in a document vector and then similarity between two such vectors is
computed. The second approach (SimGreedy) identifies similar terms between documents and
aggregates the similarity values of pairs of terms in the two documents. We compare the methods
from the time complexity (efficiency) and performance (effectiveness) point of views.

SimAgg

The SimAgg [53] approach creates a representation vector for each document by aggregating
the vectors of the terms in the document. We define the aggregation method as the weighted
mean of the elements of the term vectors. The document vector is then obtained as follows:

V
A

=

X

t2A
idf(t) ⇤ V

t

(4.1)

where t is a term in the document A and V
A

and V
t

represent the vector representations of
document A and the term t. idf(t) as the weight of the term stands for Inverse Document
Frequency (IDF) of the term t in the corpus. IDF is a measure whether the term is common or
rare across all documents, defined by the following formula:

idf(t) = log

|D|
1 + |{d 2 D : t 2 d}| (4.2)

where |D| is the total number of the documents in the corpus and |{d 2 D : t 2 d}| denotes the
number of documents in which the term t appears.

3
http://redis.io

4
https://lucene.apache.org

31

http://redis.io
https://lucene.apache.org


Having the document vectors of the documents A and B, we calculate the similarity with
the cosine function as defined in follows:

SimAgg(A,B) = Cos(V
A

, V
B

) (4.3)

SimGreedy

The SimGreedy [36] approach is based on the function SimGreedy(A,B) which measures the
similarity of the source document (A) to the target document (B). In this method, each term
in the source document is aligned to a term in the target document to which it has the highest
semantic similarity. Afterwards, the results are aggregated based on the weight of each term.
The SimGreedy(A,B) function is defined as follows:

SimGreedy(A,B) =

P
t2A idf(t) ⇤maxSim(t, B)P

t2A idf(t)
(4.4)

where the function maxSim calculates separately the cosine of the term t to each term in the
document B and returns the highest value. During the search in the other document, if the
maxSim function finds a term with the same surface (sequence of characters), it immediately
returns 1 (the maximum similarity value regarding to the cosine function).

SimGreedy is then defined as the average of SimGreedy(A,B) and SimGreedy(B,A):

SimGreedy =

1

2

(SimGreedy(A,B) + SimGreedy(B,A)) (4.5)

Comparison

From time complexity point of view, we can observe a significant difference between the meth-
ods such that if n and m are the number of terms in documents A and B respectively, the
complexity of SimAgg is of order n + m while SimGreedy is of order n ⇤m. This difference
can be a considerable limitation of SimGreedy in comparison to SimAgg especially when the
documents become long (such as, for instance, in the case of patent documents).

Despite the fact that the performance of the methods is revealed by running experiments on
different domains, we shed light on two factors that are probably effective in the performance of
the methods. The first factor is related to the aggregation function of SimAgg. Since SimAgg
aggregates over all the terms of a document, it is thus expected that when the documents become
larger, the influence of the individual terms gets more indistinctive and thus the final aggregated
vectors become more similar. In contrast, SimGreedy considers the representation of each term
separately and then aggregates the results. The second factor is related to the tolerance of the
methods against the situation that the terms do not have a semantic representation vector. This
situation happens when the vectors are built based on a different corpus (usually a general do-
main, e.g. Wikipedia) or the terms has occurred so infrequent in the corpus that the semantic
representation methods has filtered them out because of not having enough context information.
In this case, while SimAgg simply ignore the terms, SimGreedy matches the terms when they
occur in both documents. In fact, SimGreedy turns the semantic-based method to a simple term-
frequency-based approach when it does not have enough information about the term’s meaning.
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4.3 Optimization
As mentioned in Section 4.2, the SimGreedy method can be highly inefficient when the doc-
uments become larger. In order to address this problem, in the section, we put forward two
optimization techniques. Both methods attempt to reduce the execution time of the SimGreedy
method without degrading its performance.

Hybrid Search Engines

In the first technique, we turn the procedure into a two-phase process [11]. In order to that, we
choose an alternative algorithm with considerably lower execution time in comparison to Sim-
Greedy such as SimAgg or term-frequency-based methods. Then, we apply the faster algorithm
to obtain a first ranking of the results and afterwards, the top n percent of the results is re-ranked
by applying SimGreedy. Therefore, the SimGreedy algorithm computes only on a portion of the
data which is already filtered by the first (faster) one.

Considering the alternative algorithm has the execution time of t and is k time faster than
SimGreedy, applying this approach takes t + t · k · n/100 where n is the percentage of the
selected data. In fact, this approach is k/(1+k ·n/100) time faster than running the SimGreedy
algorithm standalone. While achieving better execution time, the choice of the parameter n can
reduce the performance. Finding the optimal value for n such that the performance remains in
the range of significantly indifferent than non-optimized SimGreedy is a complicated choice.
We show exploration result in Section 5.2

Approximate Nearest Neighborhood Index

As discussed in Section 2.4, nearest neighbor search attempts to find the closest neighbors in a
vector space. Considering this method, we can adapt the maxSim function of the SimGreedy
approach to a nearest neighbor search where it returns the closest node (k = 1) of a term. In this
approach, we should first create an optimized nearest neighbor data structure for each document
(semantic-based index) and then use the index to find the most similar terms.

The overhead time of creating the indexes depends on different factors such as vector’s
dimension, the number of terms in the document, and the selected data structure. Although this
excessive time can influence the overall execution time, it can be especially effective when the
indexes are used frequently by many queries. In Section 5.2, we show concrete results regarding
this optimization method.
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CHAPTER 5
Experiments and Results

In this chapter, we explain in detail the experiment procedure and report the achieved results. We
start with examining the similarity methods and semantic representations on a paraphrasing task
which is specifically tailored for semantic evaluation. A good result in this tasks would confirm
the ability of the methods for identifying semantic similarity in general texts. In the next step,
we focus on the use of the semantic methods on social image retrieval domain. After running
a wide range of experiments, we thoroughly study the effect of optimization methods discussed
in Section 4.3. Finally, we experiment the semantic retrieval methods on the patent domain and
report the results.

5.1 Preliminary Experiments

As mentioned before, we check the sanity of the proposed semantic representations and sim-
ilarity methods on SemEval 2014 Multilingual Semantic Textual Similarity - Task 10 [2], the
English subtask. The goal of this task is to measure the semantic similarity of two sentences.
Participating systems are compared by their mean Pearson correlation (Section 2.2) between the
system output and a human-annotated gold standard. The dataset consists of sentence pairs from
different resources: news headlines of Europe Media Monitor (EMM), sense definition pairs of
WordNet [16], image descriptions, discussion forums and finally tweet comments. The gold
standard is achieved by annotating each sentence pair with a score between 5 to 0 (5 completely
equivalent, 0 completely dissimilar).

In order to test the methods, we used the English Wikipedia text corpus to train semantic
representations based on Word2Vec and Random Indexing, each with 200 and 600 dimensions.
We cleaned the corpus by removing HTML tags and non-alphabetic characters. We trained our
Word2Vec word representation using Word2Vec toolkit1 by applying CBOW architecture with
context windows of 5 words and sub-sampling (down-sampling frequent words) at t = 1e�5.

1
https://code.google.com/p/word2vec/
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Table 5.1: Mean Pearson correlation of SemEval 2014 Task 10 [2] using Word2Vec (W2V) [37]
and and Random Indexing (RI) [53] word representations

Representation Dim SimAgg SimGreedy
RI 600 0.691 0.706
RI 200 0.678 0.702
W2V 600 0.685 0.715
W2V 200 0.654 0.715

The Random Indexing word representations were trained using Semantic Vectors package2. We
used the default parameter settings of the package which considers whole the document as con-
text window. In both Word2Vec and Random Indexing we considered the words with frequency
less than five as noise and filtered them out.

Table 5.1 shows the Mean Pearson correlations between the similarity methods and the gold
standard. The most impressive result is that SimGreedy with Word2Vec achieved an average
correlation of 0.71 as the best overall performance. This represents rank 11th out of the 38
submitted runs. However, all 10 runs above use a knowledge base and/or NLP which would
not generalize to other domains or languages. Between similarity methods, SimGreedy shows
better performance than SimAgg. The results also show that the similarity method has more
effect than the number of dimensions or word representation. In what follows, we shall verify
this observation for our domains of interest.

5.2 Social Image Retrieval

The evaluation is conducted using Flickr data, in particular in the framework of the MediaEval
Retrieving Diverse Social Images Task 2013/2014 [21, 22]. The task addresses result relevance
and diversification in social image retrieval. For a larger test collection, we merged the datasets
of 2013 (Div400) [22] and 2014 (Div150Cred) [21] and denoted it as MediaEval. The resulting
dataset consists of approximately 110k photos of 600 world landmark locations (e.g., museums,
monuments, churches). For each of these 600 locations, the provided information include a
ranked list of photos, a representative text, Flickr’s metadata, a Wikipedia article of the location
and for 2014 edition only user tagging credibility estimation.

For semantic text similarity, we focused on the relevance of the representative text of the
photos namely the title, description, and tags. We cleaned the text by removing HTML tags
and numbers. Then, we decompounded the tags by applying a greedy-based approach (see
Algorithm B.1) using the dictionary obtained from the whole corpus. Decompounding was
necessary even for English because in the data, the tags with many terms are concatenated with
no space. As a sample result, the tag ‘cityofwestminster’ is decompounded to ‘city of west
minster’.

2
https://code.google.com/p/semanticvectors/
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Table 5.2: P@20 of MediaEval Retrieving Diverse Social Images Task 2013/2014 [21, 22].
Models are trained on Wikipedia. (Q,D) and (D,Q) are SimGreedy(Q,D) and SimGreedy(D,Q).
Digits in brackets indicate the ID of each run

Repr. Dim SimAgg SimGreedy (Q,D) (D,Q)
RI 200 0.774 (1) †0.788 (5) 0.704 0.766
RI 600 0.766 (2) †0.787 (6) 0.703 0.769

W2V 200 0.778 (3) †0.795 (7) 0.690 0.760
W2V 600 0.779 (4) †0.793 (8) 0.693 0.757

As an evaluation metric, the MediaEval Retrieving Diverse Social Images task used P@20,
and we therefore use this measure in our experiments as well. Precision at 20 is the proportion
of relevant documents (images) in the first 20 images retrieved by a system. A standard Solr
index was used as the baseline. Solr is a state-of-the-art search engine using the Lucene search
library, commonly used in many commercial systems such as eBay and Instagram. The Solr
search engine produces a P@20 of 0.76 on the test collection. For all experiments, statistical
significance against the baseline is calculated using paired randomization test (Section 2.2). In
all tables, † denotes statistical significant difference at p 0.05 or lower.

In the following, first we report the result of semantic text similarity experiments and then
we study the effect of the optimization techniques.

Semantic Similarity

The results of evaluating the combination of methods and word representations are shown in
Table 5.2. In addition to the similarity methods defined in Section 4.2, we also considered
the asymmetric version of SimGreedy (SimGreedy(Q,D) and SimGreedy(D,Q)) to explore the
directional nature of semantic similarity. Namely, whether semantic similarity is different from
the perspective of the query or from that of the document. This in itself should not be surprising:
such unbalances are quite common in nature: i.e. a member of a small group might find a
member of a larger group closer than the other way around.

The experimental results show that SimGreedy outperforms SimAgg regardless of the train-
ing method while all runs with SimAgg have no significant difference from the baseline. Ob-
serving the asymetric versions of SimGreedy, SimGreedy(D,Q) shows better results than Sim-
Greedy(Q,D) since documents are generally longer and more descriptive than queries. However
SimGreedy outperforms both SimGreedy(Q,D) and SimGreedy(D,Q). We hypothesize that the
(Q,D) version, which performs very poorly on its own, acts as a length normalization factor for
the (D,Q) version, therefore contributing to the improved result.

For more insight on the differences between the runs, we additionally compared all our com-
binations by calculating their pairwise Pearson rank correlation (Figure 5.1). This complements
the evaluation based on P@20, because it informs us on whether different methods tend to rank
pairs of documents in the same way or in different ways even within the top 20. As it is shown
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Figure 5.1: Pearson Correlations between all 8 combinations of approaches and the Solr base-
line. The numbers refer to the ID of the runs in Table 5.2

in the results, the average correlation between runs using SimGreedy is larger than those that
using SimAgg. This means that regardless of the training method and the number of dimensions
for word representation, using SimGreedy produces more similar results. We also observed very
high correlations between the same models with 200 and 600 dimensions which demonstrates
that increasing the dimensionality does not affect results.

While Wikipedia provides a general knowledge about different topics, it is interesting to
study the effectiveness of using the MediaEval corpus for representing the words instead of an
external resource. Therefore, we trained the Word2Vec and Random Indexing models on the
MediaEval corpus. As the previous experiments show the ineffectiveness of dimensionality, we
trained the models only with 200 dimensions.

The results in Table 5.3 show an overall lower performance. Exceptionally, we observed a
significantly better performance when using Random Indexing in combination with SimAgg—
as good as the best result achieved by the previous experiment. As the default definition of
Random Indexing uses the whole document as the context window, while Word2Vec uses a
context window of 5, we also trained Random Indexing with the context window of 5 (RI-
Window). As it is shown in Table 5.3, similar to Word2Vec, RI-Window does not improve the
performance. It is therefore reasonable to assume that the difference is due to the amount of
information considered in creating the vector of each term.

This observation leads to the hypothesis that, as additional information proved useful in the
construction of the terms, it should also prove useful in the construction of the queries them-
selves. Therefore, in the following, we expand the topic names with the first sentence of their
corresponding Wikipedia page. As it is shown in Table 5.4, in comparison to previous exper-
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Table 5.3: Models are trained on MediaEval corpus

Representation Dim SimAgg SimGreedy
RI 200 †0.795 0.776

W2V 200 0.767 0.758
RI-Window 200 0.753 0.759

Table 5.4: Results using query expansion

Corpus Repres. Dim SimAgg SimGreedy
Wiki RI 200 0.768 †0.794
Wiki W2V 200 0.756 †0.786

MediaEval RI 200 †0.795 †0.788
MediaEval W2V 200 †0.780 †0.792

Table 5.5: MediaEval2014 Results using query expansion

Corpus Repres. Dim SimAgg SimGreedy
Wiki RI 200 0.795 0.833
Wiki W2V 200 0.788 0.813

MediaEval RI 200 0.840 0.820
MediaEval W2V 200 0.831 0.848

iments, the performance does not change significantly except the results related to SimGreedy
in combination to MediaEval corpus. We conclude that using SimGreedy with query expansion
provides a stable method with good performance regardless of the word representation method
or training corpus.

In order to compare the results with the participating systems in the task, we repeated the
experiment on test dataset 2014. As it is shown in Table 5.5, using SimGreedy and Word2Vec
trained on the MediaEval corpus, we achieve the state-of-the-art result of 0.848 for P@20 be-
tween 41 runs including even the ones which used image features but not external resources [18,
43].

Optimization

Although SimGreedy shows stable and better performance in comparison to SimAgg, based on
the time complexity discussion in Section 4.2, it has a much longer execution time. We observed
that SimGreedy is approximately 40 times slower than SimAgg so that SimGreedy generally has
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Figure 5.2: Average performance of the Hybrid Search Engines approach with best value at
around 49%

the calculation time of about 110 to 130 minutes while it takes about 3 minutes for SimAgg for
all the topics. We therefore apply the two techniques discussed in Section 4.3 in order to achieve
better execution time.

Hybrid Search Engines

As discussed in Section 4.3, this approach consists of two phases with different retrieval algo-
rithms. In the first phase, we applied the SimAgg method to obtain a first ranking of the results.
As the second phase, we used n percent of the top documents ranked by the first phase and
re-ranked them using SimGreedy. For each combination of different parameters (training data,
dimensionality, training method), we found an extremely similar behavior for all the values of
n from the 1 to 100, which we summarize in Figure 5.2. In order to find the best value for n as
the cutting point, we identified the highest precision value that is not significantly different from
the best one (i.e. when n is 100 percent). This corresponds to n = 49. Giving the second phase
(SimGreedy) is about 40 times slower than the first (SimAgg), using this approach improves the
execution time to almost two times (48 percent) while the performance remains the same.

Approximate Nearest Neighborhood Index

In this approach, we first created an Approximate Nearest Neighbor Index (ANN-Index) data
structure—denoted as semantic index—for each document, using the scikit-learn library3. Be-
cause of the large dimension of the vectors (> 30), we chose Ball-Tree data structure (Sec-
tion 2.4) with leaf size of 30. We then used the semantic indexes to calculate the SimGreedy
algorithm as it is described in Section 4.3. We run the experiment using vector representations

3
http://scikit-learn.org/stable/
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Table 5.6: Execution time in hours for the standard, Hybrid, and Approximate Nearest Neighbor
Index (ANN-Index) approaches of SimGreedy. Models are trained on Wikipedia corpus with
200 dimensions. There is no statistical significant difference between the achieved results of the
evaluation metric (P@20).

Repres. Algorithm Indexing Time I/O Query Time Overall P@20

W2V
SimGreedy -

0:16
1:50 2:06 0.795

SimGreedy + Hybrid - 0:50 1:06 0.772
SimGreedy + ANN-Index 0:28 0:17 1:01 0.782

RI
SimGreedy -

0:14
2:07 2:24 0.788

SimGreedy + Hybrid - 1:00 1:14 0.770
SimGreedy + ANN-Index 0:21 0:19 0:54 0.782

with 200 dimensions trained on Wikipedia corpus using both Word2Vec and Random Indexing
methods.

Table 5.6 shows the results compared with the original SimGreedy as well as the Hybrid
algorithm. The I/O time consists of reading the documents, fetching the corresponding vector
representations of the words and writing the final results which is common between all the
approaches. Although the ANN-Index approach has the overhead of indexing time, its query
time is significantly less than the original SimGreedy and also Hybrid approach. We therefore
see an improvement of approximately two times in the overall execution time in comparison
to the original SimGreedy method. In spite of the time optimization, there is no significant
difference between the evaluation results of the methods.

It should also be noted that since in the MediaEval task, each topic has its own set of docu-
ments, the semantic index of each document is used only one time by its topic. Considering this
fact, in particular, the ANN-Index method will benefit strongly from the index, as this is created
once and used multiple times.

5.3 Patent Retrieval

The evaluation on patent retrieval domain is conducted using CLEF-IP Claims to Passage Task
2013 [47] test collection. The task models the Prior-Art search (Section 3.3) by evaluating the
ability of an IR system in retrieving relevant documents and text passages regarding to a set of
claims. The data set consists of patent documents published by European Patent Office (EPO)
and World Intellectual Property Organization (WIPO). The patents are in English while a portion
of the EPO documents are also provided in German and French. The collection contains almost
1.5 million patents published before 2002, stored into approximately 3.5 million XML files. The
simplified structure of a sample XML patent document is shown below:

< p a t e n t�document>
< b i b l i o g r a p h i c �d a t a > . . . < / b i b l i o g r a p h i c �d a t a >
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< a b s t r a c t > . . . < / a b s t r a c t >
< d e s c r i p t i o n > . . . < / d e s c r i p t i o n >
< c l a i m s > . . . < / c l a i m s >

< / p a t e n t�document>

The focus of textual retrieval is on the abstract, description, and claims parts, while the
bibliographic section mostly contains administrative data.

The task provides 150 training and 149 test topics. Each set consists of topics in English,
German, and French languages (each language 50 topics). The task evaluates the results in
two ways: document-level and passage-level. In document-level, the system should return docu-
ments which were considered relevant regarding to a set of claims, while passage-level evaluates
the most relevant passages within these documents. The official evaluation metric for document-
level is Patent Retrieval Evaluation Score (PRES) [31] at 20 and 100 cutoffs. PRES rewards sys-
tems that return relevant documents earlier in the retrieval list. For passage-level, an adoption
of Mean Average Precision (MAP), annotated as MAP(D), is introduced by the organizers. The
detail of the computation of the metric is described in Piroi et al [48].

We indexed the patent collection using Solr by assuming each passage as a Solr document.
We removed HTML tags and tokenized the words using the StandardTokenizer. We then trained
the Word2Vec model on the text corpus with 400 dimensions. Similar to the previous experi-
ments, we used CBOW architecture with context windows of 5 words, subsampling at t = 1e�5,
and filtering the words with frequency less than five.

Since the patent documents are much longer than the previous experiments, fetching the
vector representations as well as computing document-to-document similarity for SimGreedy
method is a much more expensive and time-consuming process. By running the process for more
than one month with 10 threads, we eventually obtained the results of 8 topics (topic number 1,
2, 5, 6, 10, 11, 12, and 13) out of overall 50 English topics. We therefore measured SimAgg for
these 8 topics and defined baseline as the result of the Solr search engine. The evaluation results
on document- and passage-level are shown in Table 5.7

The results show an overall better performance of SimAgg especially in passage-level task.
As the results per topics are depicted in Figure 5.3, SimAgg outperforms the other methods in all
the topics of passage-level (right) and also has a higher or similar result to Solr in document-level
(left) task.

Despite the better performance of semantic-based methods by using SimAgg, SimGreedy
shows much weaker results. We investigated the reason by focusing on the second topic in which
SimGreedy has a bigger difference in comparison to the other two approaches. Table 5.8 shows
the cleaned text of the second topic (top) as well as three high-ranked passages in SimGreedy
results (middle). In all the examples, although the similarity between the topic and the passages
(SimGreedy(Q,D)) is low, the value of the other direction (SimGreedy(D,Q)) is close to the 1
(maximum similarity value). Therefore, the final aggregation between these two values leads
to a high similarity in comparison to the other passages. The common characteristic between
the mentioned examples is that they are generally the title or keywords sections of the patents
and therefore they are short and less informative. Also, these sections usually use general or
buzz words of a domain which are repeated many times in the topic. Therefore, as SimGreedy
finds all these terms of the passage in the topic, considers the passage as highly related. In order
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Table 5.7: Evaluation results of 8/50 topics of CLEF-IP Claims to Passage Task 2013 [47]. The
models are created by applying Word2Vec on CLEF-IP text corpus with 400 dimensions. Evalu-
ation measures for document- and passage- level are PRES [31] and MAP(D) [48] respectively.

Topics Document Level (PRES) Passage Level (MAP(D))
Solr SimAgg SimGreedy Solr SimAgg SimGreedy

PSG-1 0.499 0.481 0.000 0.062 0.479 0.000
PSG-2 0.183 0.619 0.000 0.333 0.347 0.000
PSG-5 0.910 0.989 0.496 0.034 0.271 0.063
PSG-6 0.951 0.985 0.973 0.088 0.267 0.189
PSG-10 0.000 0.000 0.000 0.000 0.000 0.000
PSG-11 0.478 0.489 0.250 0.104 0.162 0.151
PSG-12 0.281 0.000 0.000 0.017 0.000 0.000
PSG-13 0.652 0.656 0.333 0.140 0.219 0.208
Avg 0.494 0.527 0.257 0.097 0.218 0.076

Figure 5.3: Comparison of evaluation results of Solr, SimAgg, and SimGreedy per topic for
document-level (left) and passage-level (right)

to compare the algorithms, we also show the highest ranked passage of the SimAgg method in
Table 5.8-bottom. The result of SimAgg seems much more related to the topic in comparison
to SimGreedy while not in the set of passages and documents considered related by the task.
The reason that the passage is not in the related documents could be due to the fact that in the
CLEP-IP task, the provided relevant documents only cover a portion of all similar documents.
In other words, there could be an apparently related document which is not suggested as relevant
by the task.

We also repeated the experiment with SimGreedy(Q,D) and SimGreedy(D,Q) and observe
much worse results. We therefore hypothesize that although SimGreedy acts as a normalization
factor on SimGreedy(Q,D) and SimGreedy(D,Q), the aggregation still skews the results when
one text is shorter and less informative than the other one.
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Table 5.8: Cleaned text of the second topic (top), three examples of high ranked passages by the
SimGreedy method (middle), as well as the top ranked passage of the SimAgg method (bottom).
(Q,D) and (D,Q) stand for SimGreedy(Q,D) and SimGreedy(D,Q) respectively

Topic 2
method regenerating oxidation catalyser exhaust gases internal combustion engine which
method exhaust gases internal combustion engine directed through oxidation catalyser dur-
ing normal operation engine which method oxidation catalyser regenerated desired moment
bringing reducing gas contact catalyser characterized during regeneration amount engine
exhaust gas flowing through catalyser reduced stopping engine method according claim
characterized heat accumulated catalyser during normal use used regeneration method ac-
cording claim characterized temperature oxidation catalyser measured 12 temperature data
read control apparatus 11 under control which importing reducing gas exhaust gases termi-
nated temperature oxidation catalyser falls certain set value method according claim char-
acterized reducing gas produced separate arrangement producing reducing gas

SimGreedy
XPath in Doc. Text (Q,D) (D,Q) SimGreedy
/description/p[1] method apparatus control combustion engine

combustion engine
0.430 0.999 0.715

/description/p[2] control method apparatus internal combustion 0.421 1.000 0.710
/description/p[1] exhaust gas control device internal combus-

tion
0.441 0.968 0.705

SimAgg
fig 29 shows another embodiment invention recently exhaust regulation well fuel consump-
tion regulation strengthened meet these regulations important achieve maximum limit clean-
ing performance catalyser 11 purpose therefore temperature sensor 61 mounted upstream
side catalyser 11 engine turbocharger controlled gain maximum cleaning efficiency catal-
yser basis temperature exhaust gases flowing catalyser fig 30 shows relationship between
inlet temperature cleaning efficiency catalyser 11 generally catalyser used optimum tem-
perature range cleaning exhaust gases cleaning efficiency will lower temperature high lower
optimum temperature configuration present embodiment necessary effectively transmit heat
energy exhaust gases catalyser case small quantity exhaust gases low exhaust gas tempera-
ture when exhaust gases pass through turbine 32 heat exhaust gases deprived turbine hous-
ing impeller temperature therefore will drop before exhaust gases arrive catalyser bypass
control valve 34 opened introduce exhaust gases catalyser passing through turbine 32 pre-
vent wasteful heat dissipation turbine thereby enabling rise of catalyser temperature other
hand exhaust gas temperature rises increase engine load possibility temperature catalyser 11
exceeds optimum temperature range bypass control valve closed exhaust gases pass through
turbine 32 enabling absorption heat exhaust gases turbine thereby control catalyser temper-
ature possible control amount exhaust gases which flow turbine 32 catalyser 11 controlling
bypass valve previously stated also keep catalyser temperature within range high cleaning
efficiency
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CHAPTER 6
Conclusion and Future Work

Regarding to the achieved results, in this chapter, we summarize the observations and conclude
the study. We also explain some possible future research directions as well as ideas for further
development of the studied methods.

6.1 Conclusion

We explored the use of semantic similarity in social as well as patent domains by applying
Word2Vec and Random Indexing together with two similarity methods, denoted as SimGreedy
and SimAgg. We first checked the sanity of the methods by the SemEval2014 Task 10 and
then ran a wide range of experiments on the MediaEval Retrieving Diverse Social Images Task
2013/2014. Beside achieving state-of-the-art results on both data sets, we observe that the simi-
larity method has more effect on the results rather than the number of dimensions or word rep-
resentation training methods. Specifically, SimGreedy shows stable and also better performance
on both the data sets.

We then focused on two optimization techniques: Hybrid Search Engines and Approximate
Nearest Neighbor Index (ANN-Index). Both methods reduced in half the processing time of
the SimGreedy method while keeping precision within the boundary of statistically insignificant
difference. Although the mentioned techniques similarly optimize the processing time, they
show different characteristics in practice. While the Hybrid approach needs pre-knowledge on
the performance of the other search methods for setting the parameters, the ANN-Index method
can easily be applied on new domains with no need of parameter tuning. In addition, in the
ANN-Index approach, despite the overhead time of creating semantic-based data structures, the
query time is significantly better which is a great benefit in real-time use-cases.

As the final experiment, we studied the effect of semantic methods on CLEF-IP Claims to
Passage Task 2013. We obtained valuable insight about the limitations and effectiveness of the
methods in this domain:
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• SimAgg outperforms a best practice on a content-based search engine (Solr), specially on
passage-level retrieval.

• Due to the strict aggregation method of the SimGreedy, it get skewed when one passage
is short and consists of very common words of the domain.

We observe a significant difference between the performance of the semantic similarity
methods in different domains. The studied domains are considerably different regarding to the
content of the information provided by the terms in each document. In the social image retrieval
domain, as each term provides notable amount of information, the SimGreedy method shows su-
perior performance by finding relevant terms of the documents. In contrary, documents in patent
domain consist of many general terms that are only meaningful when combined together. For
instance, instead of ‘camera’, we would find statements like ‘image shooting apparatus’ [40].
These terms cause bias in SimGreedy, as it increases the similarity value when they are matched
between the documents. In contrast to SimGreedy, SimAgg aggregates all the terms and there-
fore has a stronger normalizing effect. Although in social image retrieval domain, this approach
does not show any particular benefit, it outperforms the baseline in patent retrieval domain. We
hypothesize that this advantage is due to the conceptual representation of the documents rather
than only use of term-frequencies, while it is also not biased by individual terms. We therefore
conclude that while, similar to general methods in information retrieval, semantic-based simi-
larity methods also strongly rely on the information content provided by the terms, selecting the
appropriate similarity method can enhance the retrieval results.

6.2 Future Work

In future work, regarding to the social media domain, we want to integrate the semantics of
the facets (e.g. text, image, etc.) based on its representing context into the payload feature of
Lucene framework. The payload feature gives control of score-boosting on term level and is
one of the latest additions to Lucene. Specifically, payloads were introduced to allow boosting
individual terms based on additional meta information about these terms to further diversify the
significance of these terms in the scoring process of a search engine. We will apply the payload
feature semantically as part of the concept index. The concept index stores unique concept labels
and associates them with documents and facets. For text facets, the payload will represent the
probability of a term being conceptually similar to its context (e.g., document, window of the
terms, etc.). For image facets, the payload will represent the probability of a visual concept that
has been learned from an image (e.g. from a visual classifier).

As mentioned before, despite the effectiveness of SimGreedy in the social media domain,
it shows very weak performance in the patent domain. Based on the observations in this work,
one research path is the study of variant length normalization techniques in order to adapt it
more to the information retrieval field. Another issue of SimGreedy is that, for each term in the
source document, it only finds the highest similar term in the destination and ignores the others
with less or an equal similarity value. Another research path is therefore the study of alternative
similarity measures that match terms with groups of related terms.
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Exploring new optimization techniques are key for semantic indexing to address the large-
scale content resources. Studying heuristic parameter tuning methods as well as new approxi-
mation data structures can facilitate the retrieval process, especially on the patent domain. As
a bottleneck for the introduced optimization methods, they both focus on optimization of the
similarity calculation of query to one document. Inspiring from Vector Space Model, we work
on new optimized semantic-based techniques which measure the position of a query regarding
to all the documents and returns similarity values of all of them in one round.

In addition to the studied domains, exploring the use of semantic similarity in the area of
Expert Retrieval is also highly interesting. The objective of this domain is retrieving the experts
represented by a set of documents. Our initial experiments in this paper [50] shows that as the
terms in each expertise overlap the same concepts, the search for experts can be enhanced by
using the conceptual meanings of the representing terms.
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APPENDIX A
Figures and Diagrams

Figure A.1: Process of applying ESA-based semantic similarity using Wikipedia articles. The
picture is obtained from Gabrilovich et al. [17]
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Figure A.2: Execution time of three semantic representation approaches: LSA, RI, and LSA
with reduced RI matrix. The picture is obtained from Sellberg et al. [54]

Figure A.3: Performance of three semantic representation approaches: LSA, RI, LSA with re-
duced RI matrix, as well as standard Vector Space Model. The picture is obtained from Sellberg
et al. [54]
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Figure A.4: Vector representation of countries and capitals using the Word2Vec model projected
to two-dimensional space by PCA. The picture is obtained from Mikolov et al. [39]
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Figure A.5: Example of the first page of US patent application 836630 obtained from Google
Patent data source
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APPENDIX B
Programming Codes

input : A dictionary Dic of size d, a compound term term of length l, minimum and
maximum size of the terms minSize, maxSize

output: A list of decomposed terms tokens

1 i 0;
2 while i  l �minSize do
3 longestMatchToken null;
4 for j  minSize to maxSize do
5 if i+ j > l then break;
6 if SUBSTRING(term ,i ,j) contains in Dic then
7 we only consider the longest match;
8 if longestMatchToken is not null then
9 if LENGTH(longestMatchToken) < j then

10 longestMatchToken SUBSTRING(term ,i, j);

11 else
12 longestMatchToken SUBSTRING(term ,i, j);

13 if longestMatchToken is not null then
14 if LENGTH(longestMatchToken) ! = l then
15 tokens.ADD(longestMatchToken);

16 i i+ LENGTH(longestMatchToken);
17 else
18 i i+ 1;

19 return longestMatchToken;
Algorithm B.1: Greedy-based decompounding algorithm
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