
Implementation of Hybrid Systems Described by

DEV&DESS in the QSS Based Simulator PowerDEVS

Franz Preyser1, Irene Hafner2, Matthias Rößler2

1Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Haupstraße 8-10, 1040 Vienna, Austria
2Simulation Services, dwh GmbH, Neustiftgasse 57-59, 1070 Vienna, Austria

franz.preyser@tuwien.ac.at

In this article, a method for implementing hybrid models, formulated as DEV&DESS, in the QSS based

simulator PowerDEVS is presented. PowerDEVS is actually a pure DEVS simulator. However, it is

specialised for simulating continuous Models (DESS) using QSS (Quantized State System) to translate

them into discrete event models (DEVS). Therefore, it is perfectly suited for the simulation of hybrid

models (DEV&DESS). When designing and simulating coupled DEVS models though, very soon a lot

of difficulties occur caused by concurrent events and feedback loops. Hence, first some concepts are

introduced of how to implement an atomic DEVS in a way that avoids those difficulties. Afterwards, an

approach of how to implement an atomic DEV&DESS is introduced which makes use of those concepts.

1 Introduction

The factor ‘costs for energy consumption’ is gaining

more and more importance in terms of production pro-

cess optimization. Since most of the time energy in-

tense processes in a production line are of continuous

nature a demand is rising for being able to formulate

those continuous aspects in addition to the usual dis-

crete logistical aspects in one simulateable model [9].

See [11] for preceding work on this issue.

Herbert Praehofer introduced DEV&DESS (Discrete

Event & Differential Equation System Specification)

[10] for the formal description of hybrid systems.

DEV&DESS is based on the two formalisms DEVS

and DESS invented by Bernard Zeigler [13] for the

description of discrete event systems and continuous

systems, respectively.

However, as digital computers work in a purely

discrete way, DESS models and therefore also

DEV&DESS models have to be discretised somehow

before they can be simulated on a digital computer.

The usual method is to apply an ODE solver onto

the differential equations describing the continuous

model. A rather new alternative is called QSS (Quan-

tized State System) [8] which is already mentioned

in [13] as it transforms the continuous model (DESS)

into an discrete event one (DEVS). Ernesto Kofman

introduced a set of advancements to QSS [3], [4], [5],

[6], [7] which have been implemented in PowerDEVS

[1]. PowerDEVS is a DEVS simulator that supports

graphical block orientated model description compa-

rable to Simulink or Dymola.

Although PowerDEVS is specially designed for im-

plementing continuous models in an discrete event

manner, so far there has been no way to directly imple-

ment a DEV&DESS. A formal method of how to em-

bed DEV&DESS in DEVS is presented in [12]. Based

on this work, a generic PowerDEVS DEV&DESS

block is developed.

However, creating and simulating coupled DEVS

models turns out to be quite difficult. This mainly

is owed to the various numbers of possible scenar-

ios of concurrent events that may occur during sim-

ulation and that have to be considered when defining

the DEVS of each single block involved. To relieve

the modeller of these difficulties, a new PowerDEVS

Atomic DEVS block is introduced, based on the DEVS

extension Parallel DEVS (P-DEVS, see [2]). The

183



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

thereby developed methods for concurrency treat-

ment are then also utilized for the mentioned generic

DEV&DESS block, called Atomic DEV&DESS.

1.1 DEVS

DEVS denotes a formalism for describing systems

that allow changes only at discrete points in time

called events. An atomic DEVS is specified by the

following 7-tuple.

< X ,Y,S,δext ,δint ,λ , ta >

where

X . . . set of possible inputs(e.g. Rn)

Y . . . set of possible outputs(e.g. R+×N×R
m)

S . . . set of possible states(=state space)

Q = {(s,e)|s ∈ S,e ∈ [0, ta(s)]}

δext : Q×X → S . . . external state transition function

δint : S → S . . . internal state transition function

λ : S → Y . . . output function

ta : S → R
+
0 ∪∞ . . . time advance function

Figure 1 illustrates a DEVS graphically. It basically

consists of an inner state s that can be altered by the

external and internal state transition functions which

are evaluated each time an external or an internal event

occurs. External events are triggered by arriving in-

put messages x, whereas internal events are triggered

when the current state s has not change for the dura-

tion of ta(s). On each internal event, right before δint

is called, the output function λ is evaluated which may

result in an output message y.

s ∈ S
e ∈ [0, ta(s)]x ∈ X y ∈ Y

s := δext(s, e, x) s := δint(s)

y := λ(s)

DEVS

e > ta(s)

tlastEv := t

e = t− tlastEv

tlastEv := t

Figure 1: Graphical illustration of an atomic DEVS.

As an atomic DEVS has input and output ports, it

can be coupled with other atomic DEVS resulting in

a coupled DEVS whose behaviour again can be de-

scribed by an atomic DEVS (see closure under cou-

pling property in [13]). Figure 2 illustrates some pos-

atomic
atomic

atomic

atomic

b

non-atomic

atomic

non-atomic

atomic

Figure 2: Coupling scheme of DEVS blocks.

sible coupling schemes of atomic and coupled DEVS.

Two types of DEVS can be distinguished:

Definition 1.1 Mealy Type DEVS

A DEVS is called Mealy Type DEVS or of Type

Mealy, if there exists an internal state s and an exter-

nal input x in such a way that ta(δext(s,x)) = 0. Thus,

a model described by a mealy type DEVS may produce

an output as immediate response to an input.

Definition 1.2 Moore Type DEVS

A DEVS is called Moore Type DEVS or of Type

Moore, if it is not of type mealy.

1.2 DEV&DESS

DEV&DESS formalism is a composition of DEVS

and DESS and therefore capable of describing hybrid

systems. An atomic DEV&DESS can be described by

the following 11-tuple:

<Xdiscr,Xcont ,Y discr,Y cont ,S,δext ,Cint ,δint ,λ
discr, f ,λ cont >

where

Xdiscr,Y discr . . . set of discrete inputs and outputs

Xcont ,Y cont . . . set of continuous inputs and outputs

S = Sdiscr ×Scont . . . set of states(=state space)

Q = {(sdiscr,scont ,e) |sdiscr ∈ Sdiscr,scont ∈ Scont ,e ∈ R
+
0 }

δext : Q×Xcont ×Xdiscr → S . . .external transition fct.

δint : Q×Xcont → S . . . internal transition function

λ
discr : Q×Xcont → Y discr . . .discrete output function

λ
cont : Q×Xcont → Y cont . . .continuous output function

f : Q×Xcont → Scont . . . rate of change function

Cint : Q×Xcont →{true, f alse} . . . event condition fct.

184



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

As it can be seen, apart from ta, each component of an

atomic DEVS is recurring in an atomic DEV&DESS.

Additionally there are the right side of the ODE f

and the continuous output function λ cont describing

the DESS part. The state event condition function Cint

though, is new. It is responsible for triggering inter-

nal events in the DEV&DESS and therefore replaces

ta. However, Cint does not only trigger time events,

but also state events, i.e. events caused by the inter-

nal state q reaching some specific value. Neverthe-

less, both time and state events result in an execution

of δint .

Figure 3 shows a graphical illustration of an atomic

DEV&DESS. As well as DEVS also DEV&DESS

is closed under coupling. However, continuous out-

put ports cannot be coupled arbitrary to discrete input

ports, but only if their output value is guaranteed to

be piecewise constant. See [13] for more details about

that and about DEVS and DEV&DESS in general.

2 DEVS Simulation in

PowerDEVS

In PowerDEVS a DEVS of an atomic block con-

sists of the specification of the six C++ func-

tions: ✐♥✐t✭t✱♣❛r❛♠❡t❡rs✮, t❛✭t✮, ❞✐♥t✭t✮,

❞❡①t✭①✱t✮, ❧❛♠❜❞❛✭t✮ and ❡①✐t✭✮. These func-

tions are member functions of a C++ class describing

the block. Thus, state variables, block parameters and

auxiliary variables are defined as member variables of

that class making them accessible in all the member

functions.

These member functions are called by the Pow-

erDEVS simulation engine whenever their execu-

tion is necessary to calculate the models dynamic

behaviour. The function ✐♥✐t✭t✱♣❛r❛♠❡t❡rs✮ is

called right before the actual simulation is started and

can be used to initialise the system’s state and to read

block parameter values that have been entered by the

modeller using PowerDEVS graphical user interface

and the block’s Parameters Dialogue. The function

❡①✐t✭✮ is called after the simulation is finished and

thus, can be used for example to free allocated mem-

ory.

The other methods represent the corresponding func-

tions of the DEVS formalism. In case of an internal

event they are executed in the following order:

1. call of ❧❛♠❜❞❛✭t✮

2. ❡ ❂ t ✲ t❧

3. call of ❞✐♥t✭t✮

4. t❧ ❂ t

5. call of t❛✭t✮: t♥ ❂ t ✰ t❛✭t✮

where t❧ denotes the time of the last event, and t♥ the

time of the next event in the corresponding DEVS.

In case of an external event they are executed in the

following order:

1. ❡ ❂ t ✲ t❧

2. call of ❞❡①t✭①✱ t✮

3. t❧ ❂ t

4. call of t❛✭t✮: t♥ ❂ t ✰ t❛✭t✮

In coupled DEVS the so-called Select function, a

kind of priority ranking of the involved blocks, selects

which DEVS is allowed to execute its internal transi-

tion function first, when several of them are scheduled

simultaneously. In PowerDEVS the Select function is

implemented as a list in which all blocks occurring in

a coupling are sorted descending according their pri-

ority in case of concurrent internal events. However,

if a block produces an output message, the external

transition function at the receiving block is always ex-

ecuted immediately, independent of its priority.

3 Problems with DEVS and Solu-

tion Approaches

3.1 Problem Identification

The definition of an atomic DEVS behaving exactly

as intended in every possible situation of concurrent

input messages at different input ports turns out to

be quite challenging. The Select function regulating

the resolution of such concurrencies is part of the cou-

pling but nevertheless influences the behaviour of an

atomic DEVS in such situations and therefore, it is

hard to consider when formulating the atomic DEVS.

For example, if an atomic DEVS with the current in-

ternal state s receives the input messages x1 at its input

185



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

Figure 3: Graphical illustration of an atomic DEV&DESS.

port one and x2 at its input port two at the same instant

of simulation time, it depends on the Select function

whether its new state calculates as δext(δext(s,x2),x1)
or as δext(δext(s,x1),x2). Even more, if the block is of

type Mealy, it may depend on the Select function if

an output message is produced in reaction to the input

messages or not.

Therefore, to define a DEVS in a rigorous way, it is

necessary to consider each possible set of concurrent

input messages and moreover, every possible treat-

ment order.

3.2 Parallel DEVS Approach

The DEVS extension Parallel DEVS counters the

problems mentioned in section 3.1 by collecting all

input messages in so called bags before treating them

all at once in one single call of δext . If at the same time

also an internal event is triggered, a so called conflu-

ent transition function δcon f : Q × X → S is applied

instead of δext .

The idea is to first calculate λ of each immanent

block, i.e. of each block experiencing an internal tran-

sition at the current simulation time, before calculat-

ing δint or δcon f of any of them. However, due to

blocks of type Mealy and due to feedbacks in the cou-

pling it may be necessary to recalculate λ if the set

of arrived input messages of the corresponding block

has changed after its former calculation. Therefore,

the determination of a stable set of input messages for

each block is an iterative process. It even is possible

that finally the stable set of input messages is empty

although having not been empty in former iteration

which makes it necessary to undo the state changes

that may have been accomplished by a call of δext .

If a coupled model contains an algebraic loop, it may

not be possible to determine a stable set of input mes-

sages for each block in a finite number of iterations.

Such models are called illegitimate.

3.3 DEVS Approach in PowerDEVS

As in Parallel DEVS the execution of λ is decoupled

from the succeeding execution of the corresponding

δ function, P-DEVS works with a simulation engine

different to the one used for DEVS. PowerDEVS does

not support Parallel DEVS simulation. Nevertheless,

it is possible to implement P-DEVS functionality in

PowerDEVS.

For this purpose, three mechanisms have to be in-

stalled. The first one addresses the gathering of con-

current input messages in a set x (bold letters denote

sets). In order to do that the internal state of the DEVS

is extended by an input buffer representing x and the

external transition function only is allowed to change

the input buffer (by storing arriving messages with

their arrival time in it). The actual state change caused

by the external event is shifted into the internal tran-

sition which is executed every time the input buffer

has been modified. Thus, it is made sure that all input

messages coming from blocks with higher priority are

gathered in x before they are treated. However, due

to feedback couplings it cannot be avoided that some

input messages origin from blocks with lower priority.

This problem is addressed by the second mechanism.

The second mechanism consists of a backing up of

186



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

the state s of the DEVS every time the first event

at the current simulation time is triggered. In Pow-

erDEVS this can be identified by t❧❁t. The δ func-

tions (δint , δext , δcon f ) are then using the backup sold

instead of s to calculate a new state. Therefore, if x is

changed after one of the δ functions has already been

evaluated it simply is re-evaluated: s = δ (sold ,x). As

every calculation of δ is preceded by a calculation of

λ though, it may occur that formerly output messages

have been produced at output ports where finally no

output messages are to be sent. However, these output

messages have already altered the set x of its receiving

blocks. These alterations have to be withdrawn some-

how. This is what the third mechanism is dedicated

to.

Like x also the set of output messages y is iteratively

changing and hopefully finally stabilising. Thus, also

for the output messages an output buffer is installed as

part of the state of the DEVS. Each calculated output

message is stored in it at the corresponding output port

with its time of last change and with an ’already sent -

flag’. So if λ is recalculated and there exists an entry

in the output buffer that has been already sent at the

current simulation time but is not marked to be resent

(as it is not included in the result of λ anymore) a re-

trieve message is sent instead informing the receiving

block to ignore the formerly received message and to

recalculate its own λ and δ function.

4 Atomic PDEVS Block

The created Atomic PDEVS PowerDEVS library

block is intended to overcome the problems men-

tioned in section 3.1 by implementing the three mech-

anisms discussed in section 3.3. In the following, its

working principle is expressed in form of a description

of the content of the C++ functions corresponding to

δext , ta, λ , and δint . Of course, a complete description

of each detail that need to be considered when pro-

gramming the Atomic DEVS block would go beyond

the scope of this article.

1. ❞❡①t✭x✱t✮✿

• If t❧❁t set sold = s, σn = σ − e,

σn,old = σn and ❢❧❛❣❂✬♥✬ but if

additionally σn = 0 set ❢❧❛❣❂✬✐✬.

• If x is a retrieve message, remove the

corresponding entry from x, set σ = 0

and if x = /0 set ❢❧❛❣❂✬♥✬.

Else, if x differs from the last reception at

the same port in value or in arrival time,

modify x accordingly and set σ = 0 and

update ❢❧❛❣: ✬♥✬7→✬❡✬, ✬✐✬7→✬❝✬.

2. t❛✭t✮:

Return σ .

3. ❧❛♠❜❞❛✭t✮:

• If t❧❁t set sold = s and ❢❧❛❣❂✬✐✬

• If there is no pending output message,

calculate y = λ (sold ,x), and add retrieve

messages to y.

• If there are pending output messages left in

y, output one of them.

4. ❞✐♥t✭t✮:

If there are no pending output messages and no

newly arrived input messages:

• if ❢❧❛❣❂✬✐✬ calc. [s,σn] = δint(sold).

• if ❢❧❛❣❂✬❡✬ calc. [s,σn] = δext(sold ,x).

• if ❢❧❛❣❂✬❝✬ calc. [s,σn] = δcon f (sold ,x).

• if ❢❧❛❣❂✬♥✬ set [s,σn] = [sold ,σn,old ].

• set σ = σn.

The variable ❢❧❛❣ is used to identify the type of event

and therefore, which particular δ function is to be used

for calculating the new state. The message retrieving

mechanism though, only works if all blocks involved

in a coupling implement it.

5 Atomic DEV&DESS Block

Based on the Atomic PDEVS block, an Atomic

DEV&DESS PowerDEVS library block is developed.

5.1 Structure

The structure of the DEV&DESS embedded in Pow-

erDEVS is depicted in Figure 4. The idea is to di-

vide a DEV&DESS into a continuous (DESS) part

that can be implemented graphically as block diagram

and into a discrete part that can be implemented as

atomic PDEVS block. For this purpose the function

Cint is also divided into two parts: one for detecting

state events (Cse
int ) and one for scheduling time events

187



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

f(sc, sd, e, xc)

Cse

int(s
c, sd, e, xc)

b

b

b

∫

r

sc

scold

sdold

sd

λcont

xc

xd

xse

sc

yd

yxc

sd

ysc

yr

DEVS: main block

DESS

b b

b

Figure 4: Graphical illustration of the construction of a DEV&DESS in PowerDEVS.

(Cte
int ). The first one is a component of the continu-

ous part and the second one is included in the atomic

PDEVS definition.

The continuous part consists of λ cont , f , an integrator∫
, and of Cint . The discrete part, responsible for the

implementation of δext , δint , λ discr, and Cte
int is realized

as one single DEVS referred to as main block. The

priority list of the coupling in Figure 4 is as follows:

f ,
∫

, Cse
int , ♠❛✐♥ ❜❧♦❝❦, λ cont .

5.2 QSS Signals

All continuous signals in DEV&DESS are described

as QSS signals in PowerDEVS. That is, they are de-

scribed as piecewise polynomial functions with jump

discontinuities at the merging points of two polynomi-

als which are smaller than a requested constant called

quantum q. The polynomials represent the Taylor

polynomials of the continuous signal with the expan-

sion point at the discontinuities. Every time the differ-

ence between the current Taylor polynomial and the

continuous signal or between Taylor polynomial and a

Taylor approximation of higher order becomes equal

to q, the expansion point is advanced in time and the

coefficients of the new polynomial are sent as DEVS

message. In this way, a continuous signal can be de-

scribed in a discrete event manner. As in DESS piece-

wise continuous signals are allowed, jump discontinu-

ities bigger than q may appear as well. Anyway, they

are not caused by the signal discretisation but have al-

ready existed before.

5.3 State Events

Using QSS, state events, triggered by the continuous

state reaching a specific value, simply can be calcu-

lated as the points in time when the current polyno-

mial signal representation reaches the specified value.

Thus, state events are transformed into time events.

All the signal lines in Figure 4 may transmit vectorial

signals. However, in PowerDEVS vectorial signals

are not sent at once but index by index resulting in

temporally non-valid signals during the time after the

first changed index is sent and before the last changed

index is sent. This in turn may lead to state events

wrongly indicated by Cse
int .

188



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

Further there is the case in which a state transition in

the main block leads to a state that immediately trig-

gers a state event. This case is declared to be prohib-

ited. That is, the DEV&DESS is not allowed to define

state transitions leading immediately to a state event.

5.4 Main Block

As the main block calculates δext and δint it has to ad-

minister the entire state of the system consisting of a

discrete part sd and of a continuous part sc. However,

in between two state transitions in the main block sc

may change due to Taylor polynomial expansion point

advancement triggered by the integrator. Therefore,

the third input port of the main block is coupled to the

integrator’s output port. The input buffer of that port

is simultaneously used as storage for the continuous

state sc itself. The same holds for sd and the output

buffer of the second output port. The fourth input port

of the main block receives the result of the calculation

of Cse
int and thus, input messages at this port trigger in-

ternal transitions.

f , Cse
int , and λ cont depend on the continuous input sig-

nal xc. However, they are not coupled directly to it

but indirectly through the main block. This is to not

forward each single, maybe even only temporary in-

dex change in xc immediately to the continuous part.

Instead the whole new xc is forwarded just before the

main block calculates one of the δ functions as it has

to evaluate Cse
int before to being able to decide which

one.

In the following, the working principle of the main

block is expressed in form of a description of the con-

tent of the C++ functions corresponding to δext , ta, λ ,

and δint .

1. ❞❡①t✭x✱t✮✿

If t❧❁t set sold = s, σn = σ − e, σn,old = σn,

♣❤❛s❡❂✬❣✬ and ❢❧❛❣❂✬♥✬,

if additionally σn = 0 set ❢❧❛❣❂✬✐✬.

If input at port:

• xd : add/remove x to/from xd.

update ❢❧❛❣:

if x = /0 ✬❡✬7→✬♥✬, ✬❝✬7→✬✐✬

otherwise, ✬♥✬7→✬❡✬, ✬✐✬7→✬❝✬

• xc: add/remove x to/from xc.

• sc: add change in sc to ysc.

if ♣❤❛s❡❂✬❣✬, apply change in sc to sc
old

• xse: add x to xse

If any input buffer changed, set σ = 0.

2. t❛✭t✮:

Return σ .

3. ❧❛♠❜❞❛✭t✮:

If t❧❁t set sold = s, σn = σ − e, σn,old = σn,

♣❤❛s❡❂✬❧✬ and ❢❧❛❣❂✬✐✬

if ♣❤❛s❡❂

’g’ Set ♣❤❛s❡❂✬❝✬.

’c’ If xc changed, or s 6= sold , forward xc to

yxc, set sd = sd
old and yr = sc

old .

Further set ♣❤❛s❡❂✬r✬.

Else set ♣❤❛s❡❂✬❈✬.

’r’ If there is a pending output left in y,

set xse = /0 and output next message.

Else, set ♣❤❛s❡❂✬❈✬.

’C’ If xse 6= /0, update ❢❧❛❣: ✬♥✬7→✬■✬,

✬❡✬7→✬❈✬

♣❤❛s❡❂✬❧✬

’l’ if ❢❧❛❣❂✬✐✬⑤✬■✬:

calc. [sd ,sc,σn] = δ (sd
old ,s

c
old ,e,x

c),
and yd = λ discr(sd

old ,s
c
old ,e,x

c).
if ❢❧❛❣❂✬❡✬:

calc. [sd ,sc,σn] = δ (sd
old ,s

c
old ,e,x

c,xd),
and yd = λ discr(sd

old ,s
c
old ,e,x

c).
if ❢❧❛❣❂✬❝✬⑤✬❈✬:

calc. [sd ,sc,σn] = δ (sd
old ,s

c
old ,e,x

c,xd),
and yd = λ discr(sd

old ,s
c
old ,e,x

c).
Add retrieve messages to yd.

Add each change in sc to yr.

Set ♣❤❛s❡❂✬♦✬.

’o’ if unsent element of yr left, send it.

Else, if sc changed, update ysc.

Else, if unsent element of yd left, send it.

Else, if unsent change of sd left, send it.

Else, if unsent element of ysc left, send it.

4. ❞✐♥t✭t✮:

If now pending output is left and there are no

new input messages at input ports xd and xc,

set σ = σn.

As the new state is part of the output of the main block

the order in which λ and δ are calculated is reversed

here. This is why δ is now calculated in the C++ func-

tion ❧❛♠❜❞❛ instead of in ❞✐♥t.

Since each time before δ and λ are calculated, Cse
int has

to be evaluated, there are several different phases in

189



■♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ ❍②❜r✐❞ ❙②st❡♠s ❉❡s❝r✐❜❡❞ ❜② ❉❊❱✫❉❊❙❙ ✐♥ t❤❡ ◗❙❙ ❇❛s❡❞ ❙✐♠✉❧❛t♦r P♦✇❡r❉❊❱❙

❧❛♠❜❞❛ to be distinguished. This is what the variable

♣❤❛s❡ is for.

Although the description above is quite elaborate, it

still does not cover every detail of the complete source

code of the Atomic DEV&DESS block. However, the

basic principles are included.

6 Conclusion

With the ever growing computational power of mod-

ern computers also the possibilities to simulate more

and more extensive and complex models increase.

However, when including more and more details into

a model, very soon a point is reached where pure dis-

crete or pure continuous models do not suffice any-

more. Production process models which include en-

ergy consumption behaviour provide an example for

this trend. As a consequence the formulation and sim-

ulation of hybrid models is demanded. Concerning

the formulation, DEV&DESS seems to be quite pow-

erful. So far though, it lacks a simulator able to rig-

orously implement and simulate a DEV&DESS. An

approach to implement DEV&DESS in PowerDEVS

has been demonstrated in this paper. As the correct

definition of coupled DEVS models is quite challeng-

ing, additionally a way of how to implement models in

PowerDEVS similar to Parallel DEVS has been intro-

duced. However, profound theoretical investigations

and a formal proof of the correctness of the presented

approaches are works that still needs to be done.

References

[1] F. Bergero and E. Kofman. PowerDEVS. A Tool

for Hybrid System Modeling and Real Time

Simulation. Simulation: Transactions of the So-

ciety for Modeling and Simulation International,

87(1–2):113–132, 2011.

[2] Alex Chung Hen Chow and Bernard P. Zeigler.

Parallel devs: a parallel, hierarchical, modular,

modeling formalism. In Winter Simulation Con-

ference’94, pages 716–722, 1994.

[3] E. Kofman. A Second Order Approximation for

DEVS Simulation of Continuous Systems. Sim-

ulation: Transactions of the Society for Model-

ing and Simulation International, 78(2):76–89,

2002.

[4] E. Kofman. Quantized-State Control. A Method

for Discrete Event Control of Continuous Sys-

tems. Latin American Applied Research,

33(4):399–406, 2003.

[5] E. Kofman. Discrete Event Simulation of Hybrid

Systems. SIAM Journal on Scientific Computing,

25(5):1771–1797, 2004.

[6] E. Kofman. A Third Order Discrete Event

Simulation Method for Continuous System Sim-

ulation. Latin American Applied Research,

36(2):101–108, 2006.

[7] E. Kofman. Relative Error Control in Quantiza-

tion Based Integration. Latin American Applied

Research, 39(3):231–238, 2009.

[8] E. Kofman and S. Junco. Quantized State Sys-

tems. A DEVS Approach for Continuous System

Simulation. Transactions of SCS, 18(3):123–

132, 2001.

[9] N. Popper, I. Hafner, M. Rössler, F. Preyser,

B. Heinzl, P. Smolek, and I. Leobner. A General

Concept for Description of Production Plants

with a Concept of Cubes. Simulation Notes Eu-

rope, 24(2):105–114, 2014.

[10] H. Praehofer. Systems Theoretic Formalisms for

Combined Discrete-Continuous System Simula-

tion. International Journal of General Systems,

19(3):219–240, 1991.

[11] A. Schmidt and T. Pawletta. Hybride model-

lierung fertigungstechnischer prozessketten mit

energieaspekten in einer ereignisdiskreten sim-

ulationsumgebung. In ASIM 2014 – 22.

Symposium Simulationstechnik, Berlin, 03.-

05.09.2014, pages 109–116. ARGESIM/ASIM,

2014.

[12] B.P. Zeigler. Embedding dev&dess in devs. In

DEVS Integrative M&S Symposium (DEVS’06).

[13] B.P. Zeigler, H. Praehofer, and T.G. Kim. Theory

of Modeling and Simulation: Integrating Dis-

crete Event and Continuous Complex Dynamic

Systems. Academic Press, 2000.

190


