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Chapter 13
Buildings: Heating and Cooling

Lukas Kranzl, Marcus Hummel, Wolfgang Loibl, Andreas Miiller,
Irene Schicker, Agne Toleikyte, Gabriel Bachner, and Birgit Bednar-Fried]

Abstract While energy savings in buildings i1s among the key prerequisites for a
low-carbon [uture, our ability to maintain temperatures in buildings within a
specific comfort range, and thus our demand for heating and cooling energy. are
also highly sensitive to climate change, We guantily two main impact chaimns: (1) a
higher temperature in winter leads to a reduction of heating energy demand and
(2) a higher temperature in summer leads to an increase in demand for cooling, The
demand for cooling energy depends largely on the future uptake ol air conditioning
in the building sector and 15 subject 10 considerable uncertainty. On quantifying
these two impacts for the example of Austria [or the period around 2050 a net
saving of about 230 million euros per year is found, triggering shightly positive

i ffects on welfare and GDP. The result 1s ||LL1L‘|H|IH_‘-_' on the dew L'LH[‘IHL'III ol energy

prices and in particular by the ratio of electricity to fuel price in the heating sector
he results show that, in absolute terms, the energy reduction in heating is much
higher than the increased energy demand for cooling for the time horizon and the

geographical location investigated. This stems from the lact that energy demand for
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ir conditioning in Austria in 2008 was only 0,45 % of the final energy demand

for heating. The impacts and costs resulting from a strong increase in electricity

loads in summer are investigated in Chap. 14 (Electricity)

13.1 Introduction

One ol the crucial purposes of buildings 1s to protect people againsi weather
conditions and ensure a comfortable indoor climate. Construction systems and
technologies are designed 1o meet specific climatic conditions and indoor require-
ments. Ceteris paribus, a change in climatic conditions not only affects indoaor

climate, it also has an impact on the suitability of prevailing building configura

tions. While some building occupants adapt autonomously, e.g. by changing
heating mode or behaviour or by investing in additional cooling devices, several
individuals may not have the means to do so.' This can result in loss of comfort,
productivity, or even worse, loss ol health. The latter possibility is discussed in
Chap. 11 (Human Health). Climate change may affect the functionality ol buildings
n \\,"-l‘fl“ wiys l]‘ll.‘ 1o a i\i!ﬁ'hl.'l |-I'I_'t{l|L'IIL} Hj.l_"|I'L'TlII_' evenlts .IIIII I|.||II|J| disasters III

Austria, singular and local storms follow no specific pattern or frequency. Usually

they are short evenis concentrated in the eastern lowlands and in valleys and

typically damage only a few objects. Only hurricanes (wind speed 118 km/h)

are large to continental-scale events which may result in large damage to settle-
ments or forests, During the last 10 years, seven ol such continental scale events
with wind \I1L'L‘||~- between 100 and 200 km/h have been observed. However, the
impact on roofs due to the higher magnitude and frequency of storms is nol
quantified in this work since the respective climate scenarios do not provide reliable
predictions. How climate change affects buildings in particular the direct impact of
floods and storm damage. is addressed in Chap. 18 (Catastrophe)

I'his chapter concentrates on climate induced effects on heating and cooling
Owing to the volume of |1II\|tiII\f_'\ CXPOSE d and the expec ted regularity of events, the
general annual costs associated with the resulting changes in heating are signilicant
Ihis 1s why climate change impact has the potential for releasing large changes in
this impact field and making it highly relevant for our analysis

Section 13.2 describes climatic and non-climatic factors which have an impacl
on heating and cooling of buildings in the next decades. Section 13.3 starts with a
discussion on past and current climate exposure and describes the impact chains in
the sector. Section 13.4 provides the approach and results of our evaluation. Finally,

in Sect. 13.5 we derive conclusions

On the relation between indoor comfort and control strategies see ¢.g. Roberts (2008)
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13.2 Dimensions of Sensitivity to Climate Change

'he energy demand of buildings for space heiting and cooling is determined by the
nature of building compenents, solar and internal appliance gains, and the differ
ence between indoor and outdoor temperature. A change in outdoor temperature

may lead to a change in energy demand for heating and cooling

13.2.1 Climatic Factors

We have divided the main factors into two impact chains

(1) Impact on energy demand for heating: temperature change (heating degree
days) and solar radiation. Other actors such as wind speed have some rele-

vance, but are omitted here.

regy demand for cooling and ventilation: temperature change

2) Impact on ene

(cooling degree days). While changes in solar radiation (due to a possible
change in cloud cover), and changes in wind and in humidity would play a
role (for heating and for cooling), the impact of climate change impact is rather
small and uncertain (Bednar et al. 2013). In this present analysis they have thus
been ignored. In contrast, the expected length, severity and Irequency ol heal
waves are likely to have a distinct impact on the market penetration ol cooling

devices and thus have to be considered.

13.2.2 Non-Climatic Factors

Buildings are among the most durable goods in our society, As a result, changes

within the building sector tend to occur at a slower pace than changes taking place

in other economic sectors (e.g. tourism, industry eic.). Given that the building
sector accounts for about 40 % of European greenhouse gas emissions (EPBD
recast 2010), it is of no surprise that this has become a focus in the energy and
climate policy. Improving the energy efficiency of building envelopes. heating and
cooling systems etc. offers high potential for reducing GHG emissions i fossil
energy sources are used. Efficiency targets for new and old buildings have been
established all over the world at both the national and regional level. Apart from the
demands of climate policy. other reasons for increasing building energy efliciency
include the need to reduce fuel poverty and the desire 1o increase energy securily
{as a result of rsing energy prices) All of these factors drive the change towards
improving the thermal quality of the building stock.

Other major drivers behind changes in the structure of the building stock

include: population growth, changes in family structures and related household

size, GDP growth, comfort requirements in terms of dwelling size per capita and ]
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indoor temperature levels, the impact of spatial planning on building structure, and
the mix of different type of buildings. Particularly economic development plays a
crucial role in the overall development of residential and non-residential areas and
thus in the market penetration ol air conditioning (AC) devices (Isaac and van
Vuuren 2009)

I'he Austrian population in 2010 was 8.38 million. The baseline scenario (based
on Statistik Austria projections, see Chap, 6—S8P) let expect for 2030 around 9.0
million, while in 2050 the number i1s expected 1o reach 9.5 million people. The
relative increase in the number of households is higher, rising from a current figure
ol 3.6 million households (in 2010) to 4.05 million in 2030 and 10 4.31 million in
2050, Currently, no specific figures are available on the expected future number ol
butldings. However, higures do exist with respect to the gross Hoor area ol residen
tial and non-residential structures (excluding industrial facilities). The figures for
our reference scenario are: 570 km~ gross floor area in 2010, expected to grow to
690 km~ by 2030, and to 730 km™ by 2050, which is an increase of 120 km~ and
160 km* respectively

A more wealthy society also increases the demand for additional floor space
leading to higher personal comlort, by raising individual fat size. All this increases
the demand Tor energy- hrst [or heating, and perhaps in Tuture, more and more for
uulllll_'_‘

Currently, in Austria space heating is much more relevant than cooling: At the
moment energy consumplion for space cooling amounts to only 0.4-0.5 % ol the
energy consumption for space heating (see Miiller and Kranzl 2013), Thus, in the
case of Austria, cooling 1s a relatvely new subject as in former years 11 was not a
distinet requirement for securing indoor thermal comlort. However, increasing
temperatures and growing heat island elffects in urban environments as a result of
densification and less nocturnal L\“Ilill.:j (see ("|1_|]1_ | 7—Cities) are |_'\_|)L'LI|_'|_| to
increase future demand for the active cooling of flats, Moreover, under typical
chimatic conditions in Austria thermal building insulation may lead to higher
cooling loads unless specific measures for the reduction ol cooling energy needs
are laken (e.g. shading devices)

In Austria, a considerable effort 1s currently being made to further improve
thermal building quality in new and renovated buildings and to increase the extent
of renovation activities, National targets for zero-energy-buildings (for the period
up to 2020) were established in 2012 (OIB 2012). However, the current rale of
renovation is in the range of about | %, and thus still remains lar below expectations
and official targets (Miller and Kranzl 2013; Bundesministerium [iir Wirtschafi
2010).

Based on extrapolation of “Energieszenarien his 2050 Warmebedar! der Kleinverbraucher™ on

the reference scenario
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13.2.3 Identification of Potential Large-Damage
Combinations

Factor interplay in the assessment ol potential climate change damage in the
butlding sector has both positive and negative effects. On the one hand. a benefit
may arise due to an expected reduction in the demand lor heating energy. On the
other hand, an adverse mmpact may be expected due to increasing demand for
cooling energy or due to rising costs associated with storm damage to roofing
(where the latter is not addressed specifically in this chapter). These effects have
been discussed e.g. in Aguiar et al. (2002), Cartalis et al. (2001). Olonscheck
et al. (2011) or Kranzl et al. (2010}, however only partly with respect 1o related
cosls

In terms of absolute energy levels, the extent to which benefits materialize
depends on the strength of the following: (1) uptake of energy efficiency measures
in the building sector, (2) whether temperature increases in summer are stronger
than those in winter. Regarding the first point, one must remember that in more
efficient butldings the heating period is shorter than in less efficient buildings (see
e.g. Zangheri et al. 2014). Thus, more efficient buildings are better able to make use
ol higher winter temperatures (Kranzl et al. 2010; Bednar et al. 2013). On the other
hand, the lower the efficiency of buildings, the higher the difference in benefits
between the baseline and mid-range climate scenario, since the absolute energy
demand level is higher in the case of a low efficient building stock. Of course, this
should only be understood as a ceteris paribus condition and must not be understood
as an argument for lower elficiency standards in the building sector

Regarding the adverse impact ol climate change in the form ol increased cooling
loads, the following factors lead to increased costs (when acting in combination
due the hl_‘_‘ll E_I(_“_"H_'L' al non |||||_'\||Il.\._ the iln[l_u_l of such factors is [1_||liL|]i_||'|:‘
problematic): (1) Higher temperature increases in summer than in winter, (2) longer,
more [requent and more severe heat waves, leading to a higher uptake of air
conditioning, (3) greater urban heat 1sland effects due to expansion and densifica
tion of urban areas (see Chap. [7—Clities), (4) limitations on reductions in appli
ance internal loads (e.g. no improvement in appliance efficiencies) and higher
demand Tor electric appliances in buildings and (5) lack of measures for combatting
gains in solar radiation e.g. by shading, Other factors relating to damage caused by
adverse changes in cooling peak loads in the electricity system are discussed in the

Chap. 14 (Electricity)

13.3 Exposure to Climatic Stimuli and Impacts to Date

13.3.1 Past and Current Climatic Exposure and Physical
Impacts

Both for heating and cooling the past years have already shown increasing cooling

degree days and decreasing heating degree days, Regarding the impact on heating
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1

corresponding data i1s given in Sect. 13.3.3. The impact of climate change on
cooling energy demand in recent years in particular is under discussion. Only rather
lew estimates are available for Austria concerning cooling energy demand in
buildings (Haas et al. 2007; Prettenthaler and Gobiet 2008:; Zoll 2010; Miiller and
Kranzl 2013) which show slightly different results in the range of about 250
500 GWh/yr for the time [rame around 2005-2010. Official energy statistics do
not provide separate data for cooling energy demand (Statistik Austria 2011). Thus,
there 15 no clear evidence on how energy demand for cooling in Austria has
developed in recent years. More information in this respect is available for other
countries, in particular for more southern countries with higher cooling load
requirements (Toleikyte et al. 2012). E.g. Giannakopoulos and Psiloglou (2006)
show the historical data concerning variations in energy consumption, temperature
and the gross national product (GNP) for the case ol Greece. They argue that all
these parameters show a clear upward trend in the period 1993-2001. The maxi-
mum daily energy consumption was 38 GWh in 1993 while in summer 2001 it had
reached 58 GWh. While it 1s not clear which factors exactly triggered this devel
opment, the study shows that there is a declining trend for HDD (heating degree
days) and an increasing trend for CDD (cooling degree days) in the investigated
period. Beccali et al. (2007) indicate that summer electricity consumption in the
building sector in ltaly has grown steadily due to the growing demand for cooling
Moral-Carcedo and Vicens-Otero (2005) get similar results for the case of Spain
from a correlation analysis of electricity peak loads, temperature and cooling
energy demand

Summing up, based on the literature one can say that it is not always possible to
clearly separate the effects of increased demand for cooling energy (i) due to
climate change and the impact of corresponding autonomous adaptation, and
(1) due to changes in behaviour reflecting a higher demand for personal comforl
and thus changes in lifestyle. Notwithstanding this, there is still sufficient evidence
that cooling energy demand has increased at least in some southern countries, One
indication of the increase in demand for cooling energy in Austria—or at least for
an increase in the amount of attention being paid to cooling energy demand—can be
witnessed in the development of the respective official standards, The relevant 201 |
tandard (OIB 201 1) requires that the overheating ol residential buildings during
summer has 1o be avoided (see ONORM B 8110-3)

13.3.2 Impact Chains in the Socioeconomic System

Fable 13.1 lists the identified impact chains for the impact field Buildings: heating
and cooling which are triggered by temperature increases

In order to determine the quantitative impact of changing temperature levels in
climate scenarios on heating and cooling energy demand, we applied the model
Invert/EE-Lab according to the work done in the ACRP project PRESENCE
(Kranzl et a

2013b). Invert/EE-Lab is a dynamic bottom-up simulation tool used
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Fable 13.1 Impact chains “buildings: heating and cooling

Climate change Quantfied in
parameter Impact chain the model
Increase in lempera » Reduced heating energy demand — [change in final Yes

ture in winter” demand lor energy|

Increase in tempera » Higher cooling energy demand and stronger growth of  Yes

lure In summer atr conditioning in buildings — |change in final demand

tor energy and for AC units)
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occupants

According to Pel

iture 1in winter, Howeve

ukhov and Semenov {2010} climate change could also lead 10 lower tremper

r, this 1s not the case in the climate scenario taken into accountl in our

research

to develop scenarios (price scenarios, insulation scenarios, different consumer

behaviours, climate change impact, etc.) and their respective impact on future

trends of renewable as well as conventional energy sources at a national and

regional level. The basic idea is 1o model building stock, heating, cooling and hol
waler systems at a highly disaggregated level in order to calculate related energy
needs and energy supplies, 1o determine reinvestment cycles and new investment in
building components and technologies, and to simulate the decisions of various
agents (Le. owner types) with respect to investment decisions in a specific building
segment. Rebound effects of renovation activities are covered in terms of higher
effective indoor lemperature after butlding renovation. More details are avatllable
e.g. 1 Miller et al. (2010), Kranzl et al. (2010), Miiller (2012), Kranzl
et al. (2013a)

I'he building stock has been subdivided according to climatic regions, Energy
demand was calculated on a static, monthly basis to derive hourly load profiles

based on COIN climate scenarios (Kranzl et al, 2013h), Based on the Chap. 6 (SSP),

Invert/EE-Lab to
estimate the uptake of renovation measures and investments on an annual basis.

a reference scenario has been developed and applied in the mode

13.3.3 Economic Impacts Up to Now

For the evaluation of economic impacts of climate change up 10 now, we ¢ ompared
the heating and cooling expenses in a climate base period (1980-2010) with the
expenses under current climate (HDD bias corrected value of 2010). For this

purpose we considered the building stock in the structure of the year 2010 including

the stock of heating systems of this year
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In 2010, the energy consumption for space heating and hot water in Austria was
380 PJ, adjusted to mean climate” (Miiller and Kranzl 2013; Statistik Austria 2011),
I'he U)IIL‘\guilldiII_L' expenses for |I|_‘;|I|Hj_' cnergy amounted to about 7,2 billion Euros
(retail prices including taxes). Cooling energy demand is estimated to be around
400 GWh, ((Miiller and Kranzl 2013) with related corresponding energy expenses
of 70 million euros. Assuming a constant climate for the reference period
[980-2010 and with energy prices according to the assumptions in this study
(Chap. 6—85P). heating energy expenses would have been about 11 million
Curos |1|_L‘h\‘i and u‘l‘\lllg CNergy expenses 5 million euros lower, These data relate
to an overall GDP of about 300 hillion Euros in the year 2011, In the past lew years
the market penetration of cooling devices has risen strongly. However, it remains
unclear to what extent this is due to climate change and 1o what extent it is due to a

peneral trend towards ||1j_‘|)\.'| levels ol comfort

13.4 Future Exposure to and Impacts of Climate Change

13.4.1 Mid-Range Climatic Scenario for Heating
and Cooling

In order to consider regional differences in climate and climate change. a set of
different climatic regions was delined, based on Schicker and Formavyer (2012)
Semi-synthetic climate data (SSCDj sets based on observations and regional cli
mate model (RCM) simulations of the A1B scenario were created. For the analyses
in this chapter, MPI-REMO A1B climate data were used as proxy for the COIN
A1B data in order to allow the use of substantial previous modelling results ( Kranz!
et al. 2014)," Compared to other RCM projections (RCM-ALADIN driven by the
ARPEGE GCM), these results show a rather large increase in winter lemperatures
and small increase in summer temperatures. These data serve as input for a building
energy model. Due to topography and other differences in climatic conditions in
Austria it was decided that a set of various climatic clusters needed to be defined,
On the one hand, these clusters are bused on the INCA climatology (Haiden
et al. 2011) of temperature and radiation conditions in January and July. On the
other hand, a more robust clustering was applied using a 30 year data set (197]-
2000) from the Austrian Central Institute for Meteorology and Geodynamics
(ZAMG)

For the two months January and June, temperature and radiation classes were
defined:

Climate adjustment has been carried out for the year 2010 according to the mid-range climate

scenario of Chap. 5 (Climate)

"We are aware that the RCP scenarios derived for the IPCC ARS would be more up-1o dai

However, at the time when the analyses in this chapter started, these results were not yet available

13 Buildines: Heating a

« June: lemperature

and radiation < 23

« January: temperatu

and radiation > 50

Not all possible ¢lu
clusters are available.
SSCD program (Hein
conditions lor a repre
tion, dilfuse radiation
input, Additionally, m
a SSCD year

For future climatic
RCM simulations an
present and near futus
19 chimatic cluster w
mean monthly values
;Lihk‘nl (8] 1|1\_' observe
future SSCD

We used hourly d:
heating and cooling de
by a static monthly

described in Bednar e

13.4.2 High anc
and Cool

According 1o the spe
scendarios were laken
and cooling. Table 1
indicators, The value
decrease of heating di
climate scenario 15 |
quantitative assessme
for the mid-range sce
opment for the differ
Besides these elle
could also lead to a
extreme periods can

beyond the pure cool

A map ol the [ITRA L
Fig. 13,1




L. Kranzl et o

ier in Austria was
stik Austria 2011)
in7 ,\ |'li[lul\| uros
ated 1o be around
g energy expenses
relerence period
ons in this study
gbout 11 million
. These data relate
the past few years,
wever, Il remains

xtent it s due to a

Change

: change. a set ol

r (2012).

Formavye
and regional cli
. For the analyses
xy for the COIN
ng results (Kranzl
JIN driven by the
nier lemperatures
iput for a building
atic conditions in
ded (o be defined
natoloey (Haiden
and July. On the
ir data set (1971

ind Geodvnamics

ifion clusses were

i€ mid-range climate

be more up-to date

ere not vet available,

13 Buildings: Heating and Cooling 243

* June: temperature < 18 "C, 18 “( temperiture < 22 "C, and temperature > 22 °C
and radiation < 230 W/m~ and radiation > 230 W/m".

* January: temperature < 15 °C and temperature > 15 “C. radiation < 50 W/m

and radiation S0 W/m

Not all possible cluster combinations are present in Austria. In total, 19 climatic
clusters are available.” These were taken into account for the further analysis. The
SSCD program (Heindl et al. 1990) was used to caleulate the semi synthetic hourly
conditions for a representative year, It requires data on temperature., elobal radia-
tion, diffuse radiation, wind speed, and relative humidity on an hourly basis as
input. Additionally, mean monthly values of each parameler are needed 1o generale
a SSCD year

For future climatic conditions based on the three bias-corrected and localised
RCM simulations and on three time slices (1981-2010 E OBS/past, 201 1-2040
present and near future, 20362063 future), grid cells corresponding 1o each of the
19 climatic cluster were used. Differences between the simulated and observed
mean monthly values of the parameters were calculated for every time slice and
added to the observed monthly values which could then be used as data in tl
future SSCD

1€

We used hourly data for temperature and solar radiation in order to determine
heating and cooling demand load profile, The annual energy demand was calculated
by a static monthly approach implemented in the model Invert/EE-Lab. as
described in Bednar et al. (2013), Miiller et al, (2010} and Kranz! et al. (2013h)

13.4.2 High and Low Range Climatic scenarios for Heating
and Cooling

According to the specification in Chap. 5 (Climate), high- and low-range climatic
scenartos were taken into account to assess the cost ranege of inaction for heating
and cooling. Table 13.2 shows the heating and cooling degree days as exemplary
indicators. The values indicate a substantial increase of cooling degree davs and
decrease of heating degree days in the hottest climate scenario, whereas the coldest
climate scenario is relatively near to the mid range climate scenario, For the
quantitatve assessment ol the range of cost of inaction, the data described ahove
for the mid-range scenario were up- and downscaled with HDD and CDD devel-
opment for the different climate regions described above.

Besides these effects of increasing CDD, heat waves and extreme heat periods
could also lead to a substantial increase in air conditioning unit sales. Thus. such
extreme periods can have an impact on the buildings’ energy demand which goes

bevond the pure cooling energy need during this period.

A map of these clusters is presented in {he supplementary materials (Supplementary Material
Fig, 13.1)
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13.4.3 Specific Method(s) of Valuation and Their

Implementation

'he Tollowing steps were carried out to assess the costs of the two impact chains e The costs of inac!

space heating and space cooling:

Development of a reference scenario as well as scenarios with diminishing and
enhancing heating and cooling energy demand. First. these scenarios are calcu-
lated ignoring the impact of climate change, and then taking climate change into
account. This includes the uptake of renovation measures and changes in the mix
ol heating and cooling technologies. This step wis carried out using the model
Invert/EE-Lab (see above). Input data regarding energy prices.” growth and the
regional distribution of population and building stock was based on Chap. 6
(SSP). Factors such as building codes and support instruments were determined
according to the reference scenario assumptions, i.e. slow progress in building
codes etc. was assumed, reflecting the requirements of the European Energy
Performance ol Buildings Directive (recast) but not beyond. The scenarios are
based on Kranzl et al. (2013b),

For the cost evaluation, the costing method “change in final demand” was
selected (Chap Economic Framework). This method is primarily based on
private, residential buildings. For private. non-residential buildings the change
ol heating and cooling systems and related energy demand may be understood as
a change in the system of production. In the case of public buildings, the change

in heating and cooling systems and related energy demand would reflect a

change in public final demand. Due to constraints in data availability and
uncertainty, we decided to use the costing method “change in final demand”
for all building types. A change in costs occurs for heating and cooling energy
demand as well as for investment in heating and cooling systems. However, we

decided not to take into account the change in the investment in heating systems,

In fact, energy prices may also be affected by climate change. This is discussed in Chap. 14
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assuming that installers would continue to design heating systems for the same
design outdoor temperature, although this temperature occurs less often 1n a
warmer climate than in a climate where no climate change occurs. Thus, the
scenarios were evaluated in terms ol costs ol energy carriers for heating and
cooling (C,,), calculated on the basis of energy prices (p,,) and energy demand
(Qep) for all energy carriers (en) as well as regarding required investment costs

for cooling and ventilation units (C,,y ). derived from the specific costs of

]
|

cooling systems (c,.) and the installed capacity (P,.) in the different building

categories (bca).

» The costs of inaction are calculated by taking the difference between the costs in

the climate change scenario and those in the baseline scenario (i.e. no climate

change)

+ To gain input lor the macro-model and 1o assess feedback from other sectors the

effects have been divided into the following sectors, corresponding to the related

macro-economic seclors:

Costs for biomass fuels
Costs for heating oil and coal
Costs for natural gas, electricity and district heating

Costs for air conditioning and ventilation devices

13.4.4 Range of Sectoral Socio-Economic Pathway
Parameters Co-Determining Climate Impact

I'he possible pathways involved have an impact on the building sector’s future
exposure and sensitivity with respect to climate change. Sectoral exposure 1s mainly
linked to the growth of the building stock and the location of buildings in various
regions with different climate change signals. Sensitivity is mainly a function of the
thermal quality of buildings, the energy efficiency of heating and cooling systems
and their energy characteristics in summer, and also of required comlort levels and
behaviour, technology, energy carrier mix, and energy price levels

In the cost assessment, some—but not all—of the socio-economic factors
described above were taken into account. Relevant factors for these socio-economic
ranges are documented in more detail in the supplementary material to this chapter

Some of these factors, which are listed there were taken into account in the

quantitative assessment, like summer indoor temperature, improving thermal
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quality by building renovation or energy carrier mix for heating, Other factors, like

growth and regional distribution of building stock, development ol electric appli
ances and related internal loads, number of buildings with AC and on-site PV were
not considered in the assessment ol cost ranges 1IN SOCIO-2CONOMIC SCENArios

I'he methodological approach used in considering the various scenarios is

documented in the description of the monetary evaluation

13.4.5 Monetary Evaluation of Impacts

Direct Sector Impacts (Costs and Benefits) in the Absence
of Feedback Effects from Other Sectors

I'he baseline development of energy demand for space heating and hot water
preparation (reference scenario) results in a decline by about 40 % till the 20505

I'he reduction in practice will of course depend on how strictly policies are applied

For example. there is considerable room for leeway with respect to the thermal

msulation ol buildings. In general, this scenario seems roughly in line with the

£

renewiable energy targets for 2020 described in the European renewable energ
directive. Some doubt remains since the national renewable energy action plans
(BMWEF] 2010) do not distinguish between space heating and process heat. The
same holds for the climate mitigation and energy efficiency targets (Table 13.3)

his 1s related 1o energy expenses for biomass in the range ol about 0.6 billion
Euros, for coal and o1l of 2 billion Euros and for natural gas, electricity and district
heating of about 3.7 billion Euros in the base year and 2030, respectively

The climate change signal reduces the final ene

£) demand for space |1L‘<L|ill‘:" h\
about 5.8 TWh/yr in 2050. In order to calculate the economic benefits of this
reduction in energy demand two steps were carried out: first the energy demand
reduction was derived by energy carrier, and second, lor each energy carmier the

prices prevailing in 2050 (based on reference SSP assumptions) were applied.

lFable 13.3 Baseline scenario final eneregy demand by energy carner for space heating an hot
wiler preparation (reference scenario with constant climate, GWh)

GWh 2010 2020 20030) M()4() ._‘Ilﬂl
Coal 930 191 y] 7S 1 36
Ol 22,121 16,256 8218 1726 1351
Natural eas Y7 RGY 6,02 4 (R () (160 16,922
District heating 17417 19,233 200,909 (0,315 18,608
Electricity R.118 5.603 1. 852 } 512 1 382
Biomass 19.470 ). 800) 21.348 200,678 200,004
Ambient Enerey 1.313 2. 493 1819 03 5.714
Solar thermal Energy 1.276 2080 1.486 1.499 5 [R2
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Without any discounting of the costs of inaction, this results in about 383 million
euros/year in the 2050:

Comparing baseline (no climate change) and mid-range climate change hnal
energy demand for spuce cooling reveals an additional electricity demand [o
cooling of 470 GWh,/vr, and additional 120 million euros/vear in 2050 (taking
i

into accounl retail electricity prices from above and assuming no discounting ol

costs ol maction), Moreover, additional investments in air conditioning ol about

25 million CUTOS/year are also expec ted in 2050, One of the key uncertainties in this
field relates to the marke! penetration of air conditioning in the building stock. Our
approach here was to link the penetration of air conditioning to indoor temperatust
assuming the absence of an active cooling system: the higher the indoor tempera
ture and the more [requent high temperature levels occur in certain building types
and certain regions, the more like |7\ becomes the mstallation ol an active AC system
(Miiller et al. 2014),

While the low-range climate scenario does not deviate strongly from the
mid-range scenarios, it becomes clear that the high-range scenario leads to a strong
increase ol the elfects—both benefits in terms ol reduced heating energy demand
and costs in terms ol increased cooling energy demand. A few aspects ol
dimimishing and enhancing elfects ol socio-economic development (summer com
lort requirements, energy elficie NCy measurés) were also taken into account, For
cooling, the consideration of high-range climate scenarios and enhancing socio
economic development leads 1o more than doubling of costs. However, it should be
taken into account that there are still a lot of factors which have not been taken into
account in this analysis (see discussion of uncertainties in Sect. 13.4.7; Figs, 13.1

and 13.2: Tables 13.4 and 13.5)

13.4.5.2 Macroeconomic Effects

Concerning heating and cooling those impact chains which are tnggering changes
of energy demand” of private households, the government as well as industry
(intermediate demand) are mmplemented in the macroeconomic model (see
Sect. 13.3.2 for a detailed description of the impact chains and Supplementary
Material Table 13.4 for a summary of how the effects are implemented into the
macroeconomic model). All macroeconomic effects are calculated for 2030 (rep
resentative for the period 2016-2045) and for 2050 (representative for the period

2036-2065) and effects are expressed for the climate change impact (CC mid-range)

scenarios relative to the baseline without climate change in the same respective

period (2030 and 205(0)).

The tull list of socio-economic factors is shown in the supplementary materials (Supplementary
Material Tables 13.1 and 13.2.)

The “rebound effect in the macroeconomic assessment, Some a

rebound-effect are cover in Invert/EE-Lab (increased effective indoor temper

after building renovation
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When combining heating and cooling effects which are triggered by climate

change, the absolute reduction in heating is stro

ger than the increase for cooling
(measured in expenditures). Hence, expenditures for energy (i.e. demand) is lower

in the climate chan

scenario compared to the baseline, Table 13,6 gives an
overview ol selected winners and losers after lI]]|1!u.'|||u;||l;gl|||;| of the L|u;gm|1|m1
impact chains regarding final and intermediate demand changes. All numbers show
absolute changes between the climate change and the baseline scenario. given in

million euros. The sectoral effect on gross output value is decomposed into two
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Fable 13.4 Average annual economic impacts for heating in Austria

Climate change

Projected future benefits Low Mid High
(M€ p.a.) range ranoe ranee
0 2016-2045 Socioeconomi Diminishing 217 216 601
development Reference 205 (K 168
) 2036-2065 Diminishing 203 104 619
Reference 105 100 RO9
I'able 13.5 Average annual economic impacts for cooling in Austria

Clhimate changg

Projected future costs Low Mid High
(M€ p.a.) range range range
@ 2016-2045 S0CI0eCOnomi Diminishing 69 (U 749
development Referenct 67 70 80
Enhancing Q2 Q2 104
¢ 2036-2063 Diminishing 153 153 218
Reference 152 156 222
Enhancing 153 143

additive components, namely intermediate demand and value added (equivalently
value added is obtained by subtracting all intermediate inputs from gross output
value). The change of value added is giving information on how much the sectoral
contribution to GDP is changing

Starting with the sectoral losers (in terms of value added), we see that those
sectors which are supplying energy carriers” have a lower value added in the
climate change scenario, as demand is lower. The Energy sector is hit hardest
(=39 million euros on average per year in 2030 and —79 million euros in 2050),
lollowed by Forestry (—14 million euros and —33 million euros) and Coke and
Petroleum products (=1 million euros and —1 million euros, respectively). As
demand is lower, less output is necessary and therefore also intermediate demand
as well as output value is lower in the climate change scenario for those sectors.

|\).=\‘}__’;Htiillg' sectoral winners (in terms of value added), we see that the Trade
sector 1s on top, as there more demand for air conditioners is leading to higher
output (as well as price). Next to that, there are also positive effects on other sectors,
as privale households can expand their consumption for other goods and services
than heating and cooling. Therefore consumption for Real Estate, Accommodation

(including a part of tourism) as well as Rest of Services is higher in the climate

Sector “Energy"” is providing electricity, gas and district heat; sector “"Coke and Petroleum

Products™ is providing coke and fuel oil; sectors “Forestry” and “Trade™ are praviding hiomas

sector “Trade™ is providing air conditioners
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Table 13.6 Sectoral and total effects of quantihed chimate change impacts tor heating and

-wv!ii:j' averaee annual effects relative to baseline (tor 8l riods 20162045 and 2036-20065)

O 20162045 O 2036-2065
Gross Inter Gross Gross Ciross
outpul mediat value output Inter vilue
value demand added vilue mediate | added
Gaining sectors +139 +57 +81 +285 +119 +166
I'rade +313 LS 20 L& 122 13
Real estate +26 +8 +18 +55 k1 +3R
Accommuodation +14 +4) L300 F11 +10
Rest of services + 1141 2 X 21 +5 +16
All other gaining +56 +20 +27 +123 +0 +59
seclors
Losing sectors 260 203 58 532 414 118
Energy (9 170 10 15 g a
Forestry 0 16 14 ! 13
Coke and petro ] | Y Y] |
leum products
All other losing 14 Y | 6 Il 5
ectors
Fotal effect (all 122 146 +24 246 2058 +48
sectors)
GDP at producer +0.01 % 001 9

price

Norte: Baseline scenano = reference socioecconomic deve In|1rn-\-|n without clhimaie change: climate
change scenano = reference soctoeconomic development and mid-range climate change quanti

fied climate impact chain: final and intermediate demand changes

change scenario, leading to more value added in those sectors, Compared to the
baseline scenario, the overall effect concerning sectoral winners is a higher value
added in the amount of +8 1 million euros in 2030 and of +166 million euros in 2050
(on average per year). Note that the positive effects are accompanied by higher
prices, which amplifies the demand driven quantity effect

Summing up across all sectors, value added in 2030 is by 24 million euros higher
in the climate change scenario due to the implemented climate impact chains
regarding heating and cooling effects, The effect is stronger in 2050, where gross
value added is higher by 48 million euros (compared to the baseline scenario in
2030 and 2050 respectively)

By summing up sectoral effects on value added and correcting lor indirect taxes

minus subsidies, we obtain the effect on GDP. The impact chains regarding final

and intermediate demand L'lllll}'&'\ lead to effects on GDP ol 427 million euros

(+0.01 %) on average per vear in 2030 and of +54 million euros in 2050 (+0,01 %)
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(relative to the baseline scenario in 2030 and 2050). Regarding welfare—measured
as the quantty ol consumed goods and services in the climate change scenario al
baseline prices—the effects are stronger (+86 million euros in 2030 and +125
million euros in 2050) because the climate change induced decrease in demand
lor energy does not decrease welliare since in the climate change scenario the same
utility out of h!.‘.tllll;_‘ and \_\Itlllll_‘_‘ can be achieved but less \_‘\l!k‘lll‘llllll_' 18 needed
Linemployment is on average slightly lower in the climate changes scenario, This is
Iriggered by the overall positive trend and expansion of production

In the climate change scenario government revenues are slightly higher com
pared to the baseline scenario: namely by +12 million euros on average per year in

2030 and by +24 million euros in 2050. Compared to the baseline which lies al

149,044 million euros 1n 2030 and at 206,390 million euros the chimate change

I revenues are mainly

impacts are about +0.01 % in 2030 and 2050, The highe
covered by higher labour tax revenues as well as value added tax (triggered by more
consumption). As revenues are rising, also expenditures do (as we assume equality
between revenues and expenditures): Unemployment benefits are lower as employ

ment 1s rising, but other transters 1o private households are rising, as government
does not expand its consumption due to climute change. but 1s giving additional
tax revenues back to the households as transfers (see Supplementary Material

l'able 13.5 for more details about the effects on public budgets)

13.4.6 Qualitative Impacts (Non-monetised)

Although we assumed a rising share of air conditioning with increased temperature
levels, in our scenario there is still a substantial part of the building stock without
AC. Occupants ol such buildings can expect a significant loss of comfort during
periods of high temperatures. While this loss ol comfort implies a significant
additional welfare loss, it could not be quantified, Therefore, both the data on
air-conditioning and those on the overall health implications were cross-checked
and confirmed by the authors of the Chap. Il (Human Health). However, there 1s
still the additional aspect ol comlort loss which has no direct health ITIIP‘]\_LI“IHI but
definitely leads to welfare loss, Dealing with them was not subject of the present
study. So, we explicitly want to emphasize thal these costs are not included in the

quantitative data presented.

13.4.7 Sector-Specific Uncertainties

The estimations ol costs and  benefits presented here involve substantial

uncertaimnes
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* Poor data availability regarding the current diffusion of AC. In addition. the
development trends concerning the diffusion of air conditioning units in resi
dential and non-residential buildings are far from clear. Factors such as comfort
requirements, economic development. length, frequency and severity of heal
waves are all subject to considerable uncertainty. The approach taken here links

indoor temperature levels in buildings directly to the diffusion of air condition-

ing. However, the empirical evidence lor this link remains rather pooT

* Autonomous adaptation in the form of shading devices and reduction of cooling
loads. We assumed that autonomous adaptation mainly refers 1o maladaptation
in the Torm ol a higher share and operation of air conditioning. However. the
uptake of shading devices and other efficiency measures for reducing cooling
loads is also a possible form of an autonomous. uncoordinated adaptation
\L'\IH'IH\‘

* The heat island effect was not quantified in our study. This indicates that we are \
probably underestimating the future cooling energy demand and load. Further
related aspects are investigated in Chap. 17 (Cities).

'he overall net monetary result is strongly influenced by the level ol energy
prices. Since the reduced costs for heating energy demand (which is mainl
non-electrical energy) are offsel 10 some extent by the increased costs for
cooling energy demand, the ratio of electricity price to [uel prices has a signif
icant impact on magnitudes when assessing the net effect

* When interpreting the results we should be aware that the COIN mid-ranee
climate scenario is among those scenarios in the A1B family with relatively low
summer temperature levels. So, the results of the mid-range climale scenario are
probably underestimating the effects of cooling energy need. related costs and

comfort losses

13.4.8 Relevance for Other Sectors

Energy demand for cooling is mainly covered by electricity. The results in ¢ ‘hap. 14
(Electricity) indicate that the impact on peak electricity loads in summer could
become highly significant. The feedback loop from potential higher elec tricity peak
prices in summer on costs for cooling energy demand was not considered since real
lime pricing 1s not very common up 10 now.

As lar

as cooling energy demand is not covered by passive or active technolo
gies, higher indoor temperature results and may impact human health. This is
covered in Chap. 11 (Human Health) of this book
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13.5 Summary and Conclusions Regarding Climate Costs

for Heating and Cooling

Based on the analyses performed for this study we conclude that the change in
heating energy demand and cooling energy demand, together with the additional
investments required in cooling devices, represent the main areas through which the
impact of climate change on the investigated sector will be felt. We quantified these
effects in our analysis. The overall final energy demand lor space cooling in Austria

in 2008 was only about 0.4-0.5 % of the energy demand for space heating. Thus. the

climate-induced decrease in energy demand [or heating strongly outweig
increase in energy demand for cooling and related investment requirements. This is
true even though the price of electricity is much more significant in the cooling
sector than in the fuel mix applied in the heating sector. There 1s thus a climate
induced net benefit (i.e. lower net costs for heating and cooling) of about 120 million
euros/year in 2030, and of 226 million euros/year in 2050. This does not take mto
account the additional costs which may result from the need to increase plant
capacity to meet higher peak electricity demand for cooling in summer, This 1s
further investigated in Chap. 14 (Electricity), Regarding the macroeconomic con
sequences of climate change concerning heating and cooling positive effects on
welfare are emerging as the same level of utility can be achieved with less
expenditures. The effects on GDP are also slightly positive and unemployment 15
marginally lower

The analysis ol climate and socio-economic ranges indicate that both effects

(reduced heating energy expenses and increased cooling energy expenses) could

strongly mmcrease in hotter climale scenarios

Several impacts could not be quantified in the present study. This includes [or
example changes in comfort levels

High efforts in energy efficiency improvement in the building sector are one of
the key prerequisites for ambitious climate mitigation targets. Due to the very long
lead times in the building sector, there 15 an urgent need to adopt elfective policies
creating the regulatory and economic framework for a low-carbon building stock in
2050, This has to be accompanied by adaptation measures in order to reduce not
only heating energy demand but also address cooling energy demand. In particular

nergy demand (e.g. shading, night

considering passive measures 1o reduce cooling
cooling) in building codes 1s of high relevance

I'he results in this book are derived for the case of Austria. To which extent the
||'\L||l\ can be II.!H\M'I'FL'II 18] uli]u |n'j_'||1|]\_ \I'|.|i|1|j\ |||,'|1L'1111\ on the following
conditions; (1) The relation and absolute level of heating and cooling energy
demand should be comparable. At least, this is the case in Western and central
EU countries. (2) The results are strongly driven by the energy price level. Thus, in
regions with strongly different energy prices and in particular w ith different relation
of fuel and electricity prices, the results would deviate correspondingly. (3) The
results depend also on the energy policy targets and framework which can be

assumed for the development in the next decades. Thus, these conditions should
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be considered as comparable. Last but not least, in countries with a significantly
higher current share of air conditioning devices in the building stock, the uncer
tainty regarding the future market penetration of these units would be much lowe

I II[I\_ |||L l_UIrL_’\I)lIHIiIlll‘_' T”L_‘HHN_IIFI(?‘_'-]L._II dl\l)l'lh[L}l Llllllll ._ITII_l \llllllll_l I)\_' ._IlI.II]l!_'Il
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