
I N F S Y S
R E S E A R C H

R E P O R T

Institut für Informationssysteme

AB Wissensbasierte Systeme

Technische Universität Wien

Favoritenstraße 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405

Fax: +43-1-58801-18493

sek@kr.tuwien.ac.at

www.kr.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ARBEITSBEREICH WISSENSBASIERTE SYSTEME

DATA REPAIR OF INCONSISTENT

NONMONOTONIC DESCRIPTION LOGIC

PROGRAMS

THOMAS EITER MICHAEL FINK DARIA STEPANOVA

INFSYS RESEARCH REPORT 15-03

JUNE 2015

INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 15-03, JUNE 2015

DATA REPAIR OF INCONSISTENT NONMONOTONIC DESCRIPTION

LOGIC PROGRAMS

Thomas Eiter1 Michael Fink1 Daria Stepanova1

Abstract. Combining Description Logic (DL) ontologies and nonmonotonic rules has gained in-
creasing attention in the past decade, due to the growing range of applications of DLs. A well-
known proposal for such a combination are non-monotonic DL-programs, which support rule-based
reasoning on top of DL ontologies in a loose coupling, using a well-defined query interface. How-
ever, inconsistency may easily arise as a result of the interaction of the rules and the ontology,
such that no answer set (i.e., model) of a DL-program exists; this makes the program useless. To
overcome this problem, we present a framework for repairing inconsistencies in DL-programs by
exchanging formulas of an ontology formulated in DL-LiteA, which is a prominent DL that al-
lows for tractable reasoning. Viewing the data part of the ontology as a source of inconsistency,
we define program repairs and repair answer sets based on them. We analyze the complexity of
the notion, and we extend an algorithm for evaluating DL-programs to compute repair answer sets,
under optional selection of preferred repairs that satisfy additional constraints. The algorithm in-
duces a generalized ontology repair problem, in which the entailment respectively non-entailment
of queries to the ontology, subject to possible updates, must be achieved by a data change. While
this problem is intractable in general, we identify several tractable classes of preferred repairs that
are useful in practice. For the class of deletion repairs among them, we optimize the algorithm by
reducing query evaluation to constraint matching, based on the novel concept of support set, which
roughly speaking is a portion of the data from which entailment of an ontology query follows. Our
repair approach is implemented within an answer set program system, using a declarative method
for repair computation. An experimental evaluation on a suite of benchmark problems shows the
effectiveness of our approach and promising results, both regarding performance and quality of the
obtained repairs. While we concentrate on DL-LiteA ontologies, our notions extend to other DLs,
for which more general computation approaches may be used.

1Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria;
email: {eiter,fink,dasha}@kr.tuwien.ac.at.

Acknowledgements: This work has been supported by the Austrian Science Fund (FWF) project P24090.

Publication Information: This article is a revised and significantly extended version of the papers [33] and
[35] published at IJCAI 2013 and ECAI 2014 respectively.

Copyright c© 2015 by the authors

2 INFSYS RR 15-03

Contents

1 Introduction 4

2 Preliminaries 6
2.1 Description Logic Knowledge Bases . 6
2.2 DL-programs . 8

3 Repair Semantics 10
3.1 Complexity of RAS existence for DL-programs over DL-LiteA DL 11
3.2 Selection Functions . 12
3.3 Ontology Repair Problem . 14
3.4 Complexity Results for ORP . 15
3.5 Tractable ORP Cases . 15

3.5.1 Bounded δ±-change . 16
3.5.2 Deletion repair . 17
3.5.3 Deletion δ+ . 17
3.5.4 Addition under bounded opposite polarity . 18
3.5.5 Applicability of independent selections . 18

3.6 Domain-based Restrictions on Repairs . 19

4 Computation 20
4.1 DL-program Evaluation . 21
4.2 Naive Algorithm for Repair Computation . 22
4.3 Support Sets . 24
4.4 Nonground Support Sets . 26
4.5 Determining Nonground Support Sets . 27
4.6 Optimized Algorithm for Repair Computation . 27

5 Implementation 29
5.1 Architecture Overview . 29
5.2 Implementation Details . 29

6 Evaluation 32
6.1 Platform Description . 33
6.2 Evaluation Workflow . 34
6.3 Benchmarks . 34

6.3.1 Family benchmark . 35
6.3.2 Network benchmark . 37
6.3.3 Taxi benchmark . 39
6.3.4 LUBM benchmark . 42

7 Discussion 43
7.1 Further Work . 43
7.2 Related Work . 44

INFSYS RR 15-03 3

8 Conclusion 46
8.1 Outlook . 46

A Supplement to Section 2 52
A.1 HEX-programs . 52
A.2 From HEX-programs to DL-programs . 54

B Proofs of Section 3 55

C Proofs for Section 4 64

D Proofs for Section 5 68

4 INFSYS RR 15-03

1 Introduction

Description Logics (DLs) [4], which emerged from semantic networks with the goal to equip respective
formalisms with a clear formal semantics based on logic, nowadays play a dominant role among formalisms
for Knowledge Representation and Reasoning (KRR). As such, DLs are geared towards describing domains
in terms of concepts that map to sets of domain objects and their relations, as well as roles that capture re-
lationships among domain objects. This makes DLs well-suited for representing ontologies formally and to
reason about them, which has a central role in the Semantic Web vision [9]; indeed, DLs provide the formal
underpinning of the Web Ontology Language (OWL), a recommended standard for expressing ontological
knowledge on the web. Fueled by the success in this area, DLs have been successfully deployed to many
other contexts and applications, among them reasoning about actions [6], data integration and ontology
based data access [20, 19], spatial reasoning [69], runtime verification and program analysis [2],[53], and
many others.

Most DL ontologies are fragments of classical first-order logic, and as such lack sufficient expressive-
ness for the requirements of certain problems; for instance, they cannot model closed-world reasoning,
nor can they express nonmonotonicity; these features are often essential in practical application scenarios.
Furthermore, DLs do not offer rules, which are popular in practical knowledge representation and serve a
complementary aspect: while DLs are focused on specifying and reasoning about conceptual knowledge,
logic rules serve well for reasoning about individuals; furthermore they target issues associated with non-
monotonic inference as well as non-determinism. To overcome these shortcomings, several extensions of
DLs have been developed, e.g. [79, 5, 26, 27, 65, 15, 23, 52, 47, 14] and various notions of hybrid knowledge
bases (KBs) have been proposed to get the best out of the DL and rules worlds by combining them (see [66]
and references therein). Among them, Nonmonotonic Description Logic (DL-)programs [37] are the most
prominent approach for a loose coupling between the rules and the ontology via so-called DL-atoms, which
serve as query interfaces to the ontology that support information hiding and the use of legacy software (i.e.,
ontology reasoners). The possibility to add information from the rules part prior to query evaluation allows
for adaptive combinations.

Example 1. Consider the DL-program Π in Figure 1, which captures information about children of a pri-
mary school and their parents in simplistic form. It is given as a pair Π = 〈O,P〉 of an ontology O and
a set of rules P . The ontology O contains a taxonomy T of concepts (i.e., classes) in (1)-(3) and factual
data (i.e., assertions) A about some individuals in (4)-(6). Intuitively, T states that every child has a parent,
adopted child is a child, and male and female are disjoint. The rules P contain some further facts (7), (8)
and proper rules: (9) determines fathers from the ontology, upon feeding information to it; (10) checks,
informally, against them for local parent information (ischildof) the constraint that a child has for sure at
most one father, unless it is adopted (where⊥ stands for falsity); finally (11)-(12) single out contact persons
for children, which by default are the parents; for adopted children, fathers from the ontology are omitted
if some other contact exists. The rules and the ontology interact via DL-atoms, which are the expressions
starting with “DL”; e.g., DL[Male] boy ; Male](X) informally selects all individuals c, such that Male(c)
is provable from O after temporarily adding for boys the assertions that they are male in the ontology.

The semantics of DL-programs was given in the seminal paper [37] in terms of answer sets, as a gener-
alization of the answer set semantics of nonmonotonic logic programs [46]. In this way, DL-programs are
an extension of answer set programming (ASP) [18] in which the user can evaluate in the rules queries over
an ontology via DL-atoms. Notably, DL-atoms enable a bidirectional information flow between the rules
and the ontology, which may even be cyclic; this makes DL-programs quite expressive, and allows one to

INFSYS RR 15-03 5

O =


(1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(X,Y)← DL[Male] boy ; Male](Y),DL[; hasParent](X,Y);

(10) ⊥ ← not DL[; Adopted](X), Y1 6= Y2, hasfather(X,Y1),
ischildof (X,Y2),not DL[Child] boy ; ¬Male](Y2);

(11) contact(X,Y)← DL[; hasParent](X,Y),not omit(X,Y);

(12) omit(X,Y)← DL[; Adopted](X), Y 6= Z, hasfather(X,Y), contact(X,Z)


Figure 1: DL-program Π over a family ontology

formulate advanced reasoning applications on ontologies, such as extended closed-world or terminological
default reasoning [37].

On the other hand, the information flow can lead to inconsistency, i.e., that no answer set of the DL-
program exists, even if the ontology and rules are perfectly consistent when considered separately; this
happens in the example above, where the DL-program has no answer set. An inconsistent DL-program
yields no information and is of no use for constructive problem solving; it may be viewed as broken and
in need of an appropriate management of this situation. Systems for evaluating DL-programs, among them
dlvhex1 and DReW,2 however can not resolve inconsistencies easily; this is clearly a drawback for their
deployment to applications.

Adequate treatment of inconsistent information is a ubiquitous challenge faced by many KR formalisms
in various settings. The issue has been extensively studied in various fields, e.g. diagnosis [72], nonmono-
tonic reasoning [17, 75], belief revision [1, 42], knowledge base updates [28], databases (see [10] for an
overview) and many others (e.g., [11, 67, 62, 25]). Although a large number of “inconsistency-tolerant”
approaches exist (see Section 7 for a discussion), most of them are applicable only to formalisms that are
based on a single underlying logic. DL-programs in turn constitute a hybrid formalism, and existing ap-
proaches can not be readily applied for such a setting; thus, suitable methods for inconsistency handling in
DL-programs are needed.

In this work, we address this need and develop techniques for repairing inconsistent DL-programs. Our
main contributions can be summarized as follows.

(1) We formalize repairing DL-programs and introduce the notions of repair and repair answer set. They
are based on changes of the assertions in the ontology that enable answer sets. As it turns out, repair
answer sets do not have higher complexity than ordinary answer sets (more precisely, weak and FLP
answer sets) if queries in DL-atoms are evaluable in polynomial time; to ensure this, we concentrate
on the prominent description logic DL-LiteA from the DL-Lite family [21]. Furthermore, we model
repair preference by functions σ that select preferred repairs from a set of candidate repairs. As
selecting most preferred repairs in a repair ordering may be a source of complexity, [54], we focus
on selections σ that allow to filter preferred repairs independent of other repairs (which is relevant in
practice).

1www.kr.tuwien.ac.at/research/systems/dlvhex
2www.kr.tuwien.ac.at/research/systems/drew

6 INFSYS RR 15-03

(2) The task of repair computation involves a generalized ontology repair problem (ORP), which arises
from a candidate answer set and the DL-atoms of the program. It consists of two sets D1 and D2

containing entailment and non-entailment queries to the ontology, respectively, under temporary as-
sertions induced by the answer set candidate, and asks for an ABox satisfying these sets. Importantly,
if a selection function σ is independent, the σ-selected ABoxes also yield, modulo a conditional check
on the rules part, the σ-selected repairs of the program. Unsurprisingly, the ORP problem is intractable
(NP-complete) for DL-LiteA in general, and NP-hard even in elementary ontology settings, due to
the temporary assertions. However, we identify several tractable cases of σ-selections that are useful
in practice.

(3) To optimize repair answer set computation, we introduce support sets as means to shortcut the ontol-
ogy access for query evaluation. Informally, a support set of a DL-atom is a portion of the data in
the ontology and the answer set from which the entailment of the query in the DL-atom follows; by
a simple ontology enhancement, this data can be described entirely in terms of data in the ontology.
Furthermore, support sets lift faithfully to the nonground level, i.e., can be schematically described,
and the latter can for DL-LiteA ontologies not only be efficiently computed, but are also small; this
provides the basis for scalability in exploitation.

(4) Utilizing support sets, we devise an algorithm for the effective computation of deletion repairs of DL-
programs under weak and flp-answer set semantics, and we discuss potential generalizations. The al-
gorithm is implemented within the dlvhex answer set solving framework, using a declarative approach
for support set evaluation. Furthermore, we report results of an extensive experimental evaluation of
the implementation on a suite of benchmarks that gather scenarios of different characteristics. The
results provide evidence for the effectiveness of the method and scalability with respect to intuitively
increasing inconsistency in the data.

Organization. The remainder of this article is organized as follows. Section 2 provides necessary pre-
liminaries on DL-programs. In Section 3, the notions of repair and repair answer sets are introduced and
a detailed analysis of their computational complexity is presented. Section 4 elaborates on support sets as
optimization means and algorithms for deletion repair computation of DL-programs over DL-LiteA ontolo-
gies based on them. In Section 5 the structure of the prototype and the implementation details are given, and
in Section 6 the evaluation results are presented and analyzed. A comprehensive discussion of further and
related work is given in Section 7, followed by concluding remarks and an outlook in Section 8. In order
not to distract from the flow of reading, longer proofs have been moved to the Appendix.

2 Preliminaries

In this section, we recall basic notions of Description Logics, where we focus on DL-LiteA [21], and DL-
programs [37]; for more background on description logics, see [4].

2.1 Description Logic Knowledge Bases

We consider Description Logic (DL) knowledge bases (KBs) over a signature ΣO = 〈I,C,R〉 with a set I
of individuals (constants), a set C of concept names (unary predicates), and a set R of role names (binary
predicates) as usual.

INFSYS RR 15-03 7

A DL knowledge base (or ontology) is a pair O = 〈T ,A〉 of a TBox T and an ABox A, which are finite
sets of formulas capturing taxonomic resp. factual knowledge, whose form depends on the underlying DL.
In abuse of notation, we also write O = T ∪ A viewing O as a set of formulas.
Syntax. In DL-LiteA, concepts C, denoting sets of objects, and rolesR, denoting binary relations between
objects, obey the following syntax, where A ∈ C is an atomic concept and P ∈ R an atomic role:

C → A | ∃R, D → C | ¬C, R→ P | P−, S → R | ¬R.

DL-LiteA TBox axioms are then of the form:

C v D, R v S, (func R)

Axioms where D = C resp. S = R are positive inclusion axioms and where D = ¬C resp. S = ¬R are
disjointness axioms; (func R) is a functionality axiom. An assertion is a formula A(c) or P (c, d) where
A ∈ C, P ∈ R, and c, d ∈ I (called positive) or its negation, i.e., ¬A(c) resp. ¬P (c, d) (negative).3An
example of a DL-LiteA ontology is given in Figure 1.
Semantics. The semantics of DL ontologies O is based on first-order interpretations [21].

Definition 2 (interpretation). An interpretation is a pair I = 〈∆I , ·I〉 of a non-empty domain ∆I and an
interpretation function ·I that assigns to each individual c ∈ I an object cI ∈ ∆I , to each concept name C
a subset CI of ∆I , and to each role name R a binary relation RI over ∆I .

An interpretation I extends inductively to non-atomic concepts C and roles R according to the concept
resp. role constructors; as for DL-LiteA, (∃R)I = {o1 | 〈o1, o2〉 ∈ RI} and (¬C)I = ∆I\CI , and
R−
I

= {〈o1, o2〉 | 〈o2, o1〉 ∈ RI} and (¬R)I = ∆I ×∆I \RI . Based on this satisfaction of formulas in
I |= ω is defined as follows.

Definition 3 (satisfaction). Satisfaction of an axiom respectively assertion w.r.t. an interpretation I is as
follows:

• I |= C v D, if CI ⊆ DI ;
• I |= R v S, if RI ⊆ SI ;
• I |= funct(R), if (o1, o2) ∈ RI and (o1, o3) ∈ RI implies o2 = o3 for all o1, o2, o3 ∈ ∆I ;
• I |= C(a), if aI ∈ CI and I |= ¬C(a), if aI ∈ ∆I\CI ;
• I |= P (a, b), if (aI , bI) ∈ P I and I |= ¬P (a, b), if (aI , bI) ∈ ∆I×∆I\P I .

Furthermore, I satisfies a set of formulas Γ, denoted I |= Γ, if I |= α for each α ∈ Γ.

A TBox T , ABox A respectively ontology O is satisfiable (or consistent), if some interpretation I
satisfies it. We call A consistent with T , if T ∪ A is consistent.

Example 4 (cont’d). The ontology O in Figure 1 is consistent, since there exists a satisfying interpretation
I = 〈∆I , ·I〉, defined by setting ∆I = {john, pat}, MaleI = {john, pat}, hasParentI = {(john, pat)}
and ChildI = FemaleI = ∅. The ontology O′ = O ∪ {Female(pat)} does not have any model, and thus
inconsistent.

It has been shown that in DL-LiteA inconsistency arises by few assertions [21].
3Negative assertions ¬F (~t) are easily compiled to positive ones using a fresh concept resp. role name F¬ and F¬(~t), F¬ v ¬F .

8 INFSYS RR 15-03

Proposition 5 (cf. [21]). In DL-LiteA, for a given TBox T every ⊆-minimal ABox A such that T ∪ A is
inconsistent fulfills |A| ≤ 2.

Throughout the paper, we consider ontologies in DL-LiteA under the unique names assumption, i.e.,
o1
I 6= o2

I whenever o1 6= o2 holds in any interpretation.

2.2 DL-programs

A DL-program Π = 〈O,P〉 is given as a pair of a DL ontology O and a set P of DL-rules, which extend
rules in non-monotonic logic programs with special DL-atoms. They are formed over a signature ΣΠ =
〈C,P, I,C,R〉, where ΣP = 〈C,P〉 is a signature of the rule part P with C being a finite set of constant
symbols, and P a finite set of predicate symbols (called lp predicates) of arities ≥ 0, and ΣO = 〈I,C,R〉
is a DL signature. The set P is disjoint with C,R. For simplicity, we assume here C = I.

Syntax. A (disjunctive) DL-program Π = 〈O,P〉 consists of a DL ontology O and a finite set P of
DL-rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm (1)

where not is negation as failure (NAF)4 and each ai, 0 ≤ i ≤ n, is a first-order atom p(~t) with predicate
p ∈ P (called ordinary or lp-atom) and each bi, 1 ≤ i ≤ m, is either an lp-atom or a DL-atom;

if n = 0, the rule is a constraint, and if n ≤ 1, it is normal. The notions of a head and a body of a rule are
naturally inherited from normal logic programs, i.e. for a DL-rule r of the form (1), H(r) = {a1, . . . , an}
is called the head of r, and B(r) = {b1, . . . , bk,not bk+1, . . . ,not bm} is called the body of r.

A DL-atom a(~t) is of the form

DL[λ; Q](~t), (2)

where

(a) λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0 is the input list and for each i, 1 ≤ i ≤ m, Si ∈ C ∪ R,
opi ∈ {], −∪, −∩} is an update operator, and pi ∈ P is an input predicate of the same arity as Si;
intuitively, opi =] (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi, while opi = −∩
constrains Si to pi;

(b) Q(~t) is a DL-query, which has one of the forms (i) C(t), where C is a concept and t is a term;
(ii) R(t1, t2), where R is a role and t1, t2 are terms; (iii) Q is an inclusion axiom and ~t = ε; (iv) Q is
a disjointness axiom and ~t = ε; or (v) ¬Q′(~t) where Q′(~t) is from (i)-(iv). We omit (~t) for ~t= ε.

Example 6 (cont’d). Consider a ground version DL[Male] boy ; Male](pat) of the DL-atom in the rule
(9) of Π in Figure 1. It has a DL-query Male(pat); its list λ = Male] boy contains an input predicate boy
which extends the ontology predicate Male via an update operator].

Semantics. The semantics of a DL-program Π = 〈O,P〉 is in terms of its grounding gr(Π) = 〈O, gr(P)〉
over C, i.e., gr(P) contains all ground instances of rules r in P over C. In the remainder, by default we
assume that Π is ground.

A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground atoms, where HBΠ is the Herbrand base
w.r.t. C and P (i.e. all ground atoms over C and P); I satisfies an lp- or DL-atom a, if

4Strong negation ¬a can be added resp. emulated as usual [37].

INFSYS RR 15-03 9

(i) a ∈ I , if a is an lp-atom, and

(ii) 〈T ,A ∪ λI(a)〉 |= Q(c) where O = 〈T ,A〉, if a is a DL-atom of form (2), where

λI(a) =
m⋃
i=1

Ai(I) (3)

and

– Ai(I) = {Si(~t) | pi(~t) ∈ I}, for opi =];

– Ai(I) = {¬Si(~t) | pi(~t) ∈ I}, for opi = −∪;

– Ai(I) = {¬Si(~t) | pi(~t) ∈ HBΠ \ I}, for opi = −∩.

Satisfaction of a DL-rule r resp. set P of rules by I is then as usual, where I satisfies not bj , if I does
not satisfy bj ; I satisfies Π, if it satisfies each r ∈ P . We denote that I satisfies (is a model of) an object ω
(atom, rule, etc.) with I |=Oω. A model I of ω is minimal, if no model I ′ of ω exists such that I ′ ⊂ I .

Example 7 (cont’d). The interpretation I = {ischildof(john, alex), boy(john)} satisfies the DL-atom
o = DL[Child] boy; ¬Male](john), asO∪λI(o) |= ¬Male(john). Furthermore, I 6|=ODL[; Adopted](john),
since the input list of DL[; Adopted](john) is empty and O 6|= Adopted(john).

Answer Sets. Various semantics for DL-programs extend the answer sets semantics of (disjunctive) logic
programs [46] to DL-programs, e.g. [37, 59, 81, 76]. We concentrate here on weak answer sets [37], in which
DL-atoms are treated like atoms under NAF, and flp answer sets [38], which obey a stronger foundedness
condition. Both are like answers sets of ordinary logic programs defined as interpretations that are minimal
models of a program reduct, which intuitively captures that assumption-based application of the rules on an
interpretation can reconstruct the latter.

Definition 8 (weak answer sets). Let Π = 〈O,P〉 be a DL-program. The weak reduct of P relative to O
and to an interpretation I ⊆ HBΠ, denoted by PI,Oweak is the ordinary positive program obtained from gr(P)
by deleting

• all DL-rules r such that either I 6|=O a for some DL-atom a ∈ B+(r), or I |=O l for some l ∈ B−(r);
and

• from every remaining DL-rule r all the DL-atoms in B+(r) and all the literals in B−(r).

A weak answer set of Π is any interpretation I ⊆ HBΠ that is a minimal model of PI,Oweak. By
AS weak (Π) we denote the set of all weak answer sets of Π.

Note that PI,Oweak is an ordinary ground positive program without DL-atoms and default-negated literals,
which has the least (unique minimal) model if each rule in P is definite (i.e., n = 1 in (1)).

Example 9. Let O be as in Figure 1 and let the rule set P be as follows:

P =


(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male] boy ; Male](pat),DL[; hasParent](john, pat);

(10) contact(john, pat)← DL[; hasParent](john, pat),not omit(john, pat);

(11) omit(john, pat)← DL[; Adopted](john), hasfather(john, pat), contact(john, alex)



10 INFSYS RR 15-03

Consider I = {ischild(john, alex), boy(john), contact(john, pat), hasfather(john, pat)}. The weak -
reduct PI,Oweak contains the following rules: The weak -reduct PI,Oweak contains the following rules:

PI,Oweak =


(7) ischildof (john, alex); (8) boy(john);

(9′) hasfather(john, pat);

(10′) contact(john, pat)

 .

The interpretation I is a weak -answer set of Π, since I is a minimal model of PI,Oweak. In fact, AS weak (Π) =
{I} holds.

The flp-answer set semantics is defined as follows.

Definition 10 (flp answer sets). Let Π = 〈O,P〉 be a DL-program. The flp-reduct of P relative to O and
an interpretation I ⊆ HBΠ is the set of rules PI,Oflp = {rI,Oflp | r ∈ P} where rI,Oflp = r, if the body of r is

satisfied, i.e., I |=O bi, for all bi, 1 ≤ i ≤ k and I 6|=O bj , for all k < j ≤ m; otherwise, rI,Oflp is void.

An flp-answer set of Π is any interpretation I ⊆ HBΠ that is a minimal model of PI,Oflp . By AS flp(Π)
we denote the set of all FLP answer sets of Π.

Example 11. Reconsider Π = 〈O,P〉 and I from Example 9. The reduct PI,Oflp contains all rules of P apart

from (11). It is not difficult to verify that I is a minimal model of PI,Oflp , and hence an flp-answer set of Π;
in fact AS flp(Π) = {I}.

In general, all flp answer sets of a DL-program Π are weak answer sets, but not vice versa; in between
are the strong answer sets [37] (i.e., all FLP answer sets are strong answer sets that in turn are weak answer
sets) which coincide with the flp-answer sets in many cases, in particular if the constraint operator −∩ does
not occur in Π. For more information, see [37, 81].

3 Repair Semantics

The powerful formalism of DL-programs permits a bidirectional information flow between the rule part and
the ontology, which makes it attractive for various application scenarios. This information flow, however,
can have unforeseen effects and cause that a DL-program has no answer set; we call such DL-programs
inconsistent.

Example 12 (cont’d). The DL-program Π from Figure 1 does not have any weak nor flp answer set, and
thus is inconsistent. The inconsistency arises in this program as john , who is not provably adopted, has pat
as father by the ontology, and by the local information possibly also alex ; this causes the constraint (10) to
be violated.

Absence of answer sets makes a DL-program unusable, which calls for a remedy to this problem. As
mentioned earlier, there are two principled approaches: to tolerate inconsistency, in the sense that reasoning
does not trivialize, or to repair the program, i.e., change formulas in it to obtain consistency. As regards
DL-programs (and likewise similar hybrid formalisms), previous works [71, 40] focused on inconsistency
tolerance, by suppressing or weakening information that leads to inconsistency in model building.

In this section, we consider DL-program repair from a theoretical perspective by introducing a repair
semantics and analyzing its computational complexity. In our setting, we assume that the rule part P , which

INFSYS RR 15-03 11

ASx(Π) | RASx(Π) 6= ∅? normal Π disjunctive Π

x = weak NP |NP ΣP
2 |ΣP

2

x = flp ΣP
2 |ΣP

2 ΣP
2 |ΣP

2

Table 1: Complexity of deciding weak and flp answer set existence for ground DL-programs over DL-LiteA
(completeness results)

is on top of the ontology O = 〈T ,A〉, is reliable and that the cause for inconsistency is in the latter. Thus
when searching for a repair, modifications should only be applied to O. In principle, the TBox T and the
ABox A of the ontology could be subject to change; however, as usually the TBox is well-developed and
a suitable TBox change is less clear in general (the more by an external user), we confine to change only
the ABox. For example, in the DL-program Π in Example 12 it would be sufficient to delete the assertion
hasParent(john, pat) from the ABox to obtain a (weak respectively flp) answer set.

From a general perspective, our goal is, given a possibly inconsistent DL-program, to find an ABox
A′ such that replacing the ABox A by A′ makes the DL-program consistent. The answer sets of such a
“repaired” DL-program are then referred to as repair answer sets of the program.

Formally, they are defined as follows.

Definition 13 (x-repairs and x-repair answer sets). Given a DL-program Π = 〈O,P〉,O= 〈T ,A〉, an ABox
A′ is an x-repair of Π, where x ∈ {flp,weak}, if

(i) O′= 〈T ,A′〉 is consistent, and
(ii) Π′ = 〈O′,P〉 has some x-answer set.

By repx(Π) we denote the set of all x-repairs of Π.

An interpretation I is an x-repair answer set of Π, if I ∈ ASx(Π′), where Π′ = 〈O′,P〉, O′= 〈T ,A′〉, and
A′ ∈ repx(Π). By RASx(Π) we denote the set of all x-repair answer sets of Π.

Furthermore, by repIx(Π) = {A′ ∈ repx(Π) | I ∈ ASx(Π′),Π′ = 〈O′,P〉,O′ = 〈T ,A′〉} we denote the
set of all ABoxes A′ under which I becomes an x-answer set of Π.

Example 14 (cont’d). Reconsider Π in Example 9. The interpretation I1 = {boy(john), ischildof (john, alex)}
is an flp-repair answer set with flp-repair A′1 = {Male(john),Male(pat)}. Another flp-repair for I1 is
A′2 = {hasParent(john, pat),Female(pat),Male(john)}. The interpretation I1 is also a weak -repair
answer set with the weak -repairs A′1 and A′2.

3.1 Complexity of RAS existence for DL-programs over DL-LiteA DL

We now look at the problem of deciding whether a given DL-program Π = 〈O,P〉 has an x-(repair) answer
set for x ∈ {flp, weak}. Table 1 compactly summarizes our complexity results for this problem for O in
DL-LiteA.

Before formally addressing the complexity of repair answer sets, we first state the following proposition:

Proposition 15. Given any I ⊆ HBΠ,O in DL-LiteA, and a DL-atom a = DL[λ; Q](~t), deciding I |=O a
is feasible in polynomial time.

12 INFSYS RR 15-03

Proof. Deciding whether I |=O a is equivalent to checking O ∪ λI(a) |= Q(~t). As instance checking is
known to be polynomial [21] in DL-LiteA, the result immediately follows.

We are now ready to formally prove basic complexity results for checking the existence of repair answer
sets for a DL-program.

Theorem 16. Given a ground DL-program Π = 〈O,P〉withO in DL-LiteA deciding whether RASx(Π) 6=
∅ is

(i) NP-complete for normal Π and x = weak;
(ii) ΣP

2 -complete for arbitrary Π and x ∈ {weak,flp};
(iii) ΣP

2 -complete for normal Π and x = flp.

We remark that the problem in (i) remains NP-hard even if Π consists of a stratified DL-program in the
sense of [37] that has additional constraints, cf. [78]. In (ii), the ΣP

2 -hardness is inherited from the complex-
ity of answer sets of ordinary disjunctive logic programs. In (iii), the complexity drops to NP-completeness
if the update operator −∩ is excluded, as then the flp- and the strong answer sets of such DL-programs are
guaranteed to coincide and deciding strong answer set existence is co-NP-complete [36]. Furthermore,
all results extend to the setting where independent selection functions for determining preferred solutions,
which are introduced in the next section, of polynomial time complexity are available.

3.2 Selection Functions

Clearly, not all repairs are equally useful or interesting for a certain scenario. For instance, repairs that have
no common assertions with the original ABox might be unwanted; repairs that introduce assertions that are
not in the initial ABox; repairs that would cause non-minimal change etc. Formally, we model preferred
repairs using a selection function:

Definition 17 (selection function). A selection function is a mapping σ : 2AB×AB → 2AB, where AB is
the set of all ABoxes, that assigns every pair (S,A) of a set S of ABoxes and an ABoxA a set σ(S,A) ⊆ S
of preferred (or selected) ABoxes.

This notion captures a variety of selection principles, including minimal repairs according to some
preference relation, or some global selection property. We then define:

Definition 18 ((σ, x)-repairs and (σ, x)-repair answer sets). Given Π = 〈O,P〉,O= 〈T ,A〉, and a selection
σ, we call rep(σ,x)(Π) = σ(repx(Π),A) the (σ, x)-repairs of Π. An interpretation I ⊆ HBΠ is a (σ, x)-
repair answer set of Π, if repI(σ,x)(Π) 6= ∅, where repI(σ,x)(Π) = rep(σ,x)(Π) ∩ repIx(Π); by RAS (σ,x)(Π)
we denote the set of all such repair answer sets.

Example 19. Consider a DL-program Π = 〈O,P〉, where O = A = {Child(john)} and P is as follows:

P =


(1) male(john);

(2) pupil(john)← DL[; studiesAt](john, sch80);

(3) boy(john)← DL[Child] boy ; Child](john),male(john);

(4) ⊥ ← boy(john),not pupil(john)

 .

The interpretation I = {male(john), pupil(john), boy(john)} is a (σ,weak)-repair answer set of Π with a
possible (σ,weak)-repairA′ = {studiesAt(john, sch80)}, i.e. I ∈ RAS (σ,weak)(Π) andA′ ∈ repI(σ,weak)(Π),

INFSYS RR 15-03 13

where σ chooses repairs A′, such that the set difference between A and A′ contains at most 2 assertions.
Indeed, we have that PI,O

′

weak = {male(john); pupil(john); boy(john)}, and clearly I is its minimal model.
Moreover, I ∈ RAS (σ,flp)(Π), and A′′ = {studiesAt(john, sch80), Child(john)} ∈ repIσ,flp(Π) is

an (σ,flp)-repair of Π. To verify this, observe that the reduct PI,O
′′

flp contains the rules (1)-(3), and I is a

minimal model of 〈A′′,PI,O
′′

flp 〉, where O′′ = 〈∅,A′′〉. Note that while A′′ ∈ repI(σ,weak)(Π), we have that

A′ 6∈ repI(σ,flp)(Π). More specifically, I is not a minimal model of 〈O′,PI,O
′

flp 〉, where PI,O
′

flp = PI,O
′′

flp and

O′ = 〈∅,A′〉, since there is a smaller model I ′ = I \ {boy(john)}, which satisfies all rules of PI,O
′

flp .
The repairA′1 = {Male(john),Male(pat)} from Example 14 is in repI1σ1,x(Π) for I1 = {ischildof (john, alex),

boy(john)}, where x ∈ {weak ,flp} and σ1 selects deletion repairs, i.e. subsets of A. Furthermore, the
ABoxA′2 = {hasParent(john, pat),Male(john), Female(pat)} is in repI1σ2,x(Π), where x ∈ {weak ,flp},
and σ2 selects repairsA′, which differ fromA only on assertions over gender predicates Male,Female , and
|A| = |A′|. Consequently, I1 ∈ RAS (σ1,x)(Π) and I2 ∈ RAS (σ2,x)(Π) for x ∈ {weak ,flp}.

In general, even polynomially computable selections σ may incur intractability, like e.g. selecting
ABoxes A′ with set-minimal change to A, or with smallest Dalal (Hamming) distance (see e.g. [54]) Nat-
urally, we aim at selections that are useful in practice and have benign computational properties, which are
pragmatic specifically for our problem.

Definition 20 (independent selection). A selection σ : 2AB×AB → 2AB is independent, if σ(S,A) =
σ(S′,A) ∪ σ(S \ S′,A) whenever S′ ⊆ S.

Example 21. All selection functions considered in Example 19 are independent. The selection function σ,
which seeks for repairs A′ that contain minimal number of changes in assertions over Adopted predicate
w.r.t. A is not independent, since to find the preferred σ-repair one needs to compute all repair candidates
first, and then choose the best one among them.

Independence allows us to decide whether a given repair A′ ∈ S is selected by σ without looking
at other repairs, and composition works here easily. This makes the introduced property valuable, since
independent selection functions of different kind can be conveniently combined without a major increase in
the complexity. Formally,

Proposition 22. If selection functions σ1 and σ2 are independent, then their composition σ1 ◦ σ2 is also
independent.

Proof. We show that whenever S′ ⊆ S it holds that σ1(σ2(S,A),A) = σ1(σ2(S′,A),A) ∪ σ1(σ2(S \
S′,A),A). By independence of σ2 we have σ2(S,A) = σ2(S′,A) ∪ σ2(S \ S′,A). Hence, σ2(S′,A) ⊆
σ2(S,A), and thus by independence of σ1 we get σ1(σ2(S,A), A) = σ1(σ2(S′,A),A) ∪ σ1(σ2(S,A) \
σ2(S′,A),A). As σ2(S,A) \ σ2(S′,A) = σ2(S \ S′,A), the result follows.

Clearly, set-minimal change and smallest Dalal distance are not independent, as to decide whether A′ ∈
σ(S,A) one has to compareA′ with all other ABoxes from S. On the other hand, selecting all ABoxes such
that A′ ⊆ A, is obviously independent. The latter, and several other independent selections that are useful
in practice, will be considered in the next section.

Independence leads to the following beneficial property.

Proposition 23. For every Π and selection σ, if σ is independent, then repI(σ,x)(Π) ⊆ rep(σ,x)(Π), for every
I ⊆ HBΠ.

14 INFSYS RR 15-03

Proof. By definition rep(σ,x)(Π) = σ(repx(Π),A) and repI(σ,x)(Π) = σ(repIx(Π),A). Now as repIx(Π) ⊆
repx(Π) and σ is independent, we obtain σ(repx(Π),A) = σ(repIx(Π),A) ∪ σ(repx(Π)\repIx(Π),A),
from which the result is obtained.

Proposition 23 implies that if we can turn an interpretation I into an answer set of Π by a σ-selected
repair from the repairs which achieve this for I , then I is a σ-repair answer set of Π; that is, local selection
is enough for a global σ-repair answer set. This will be exploited later in this section.

3.3 Ontology Repair Problem

In this section we introduce the Ontology Repair Problem (ORP), which is an important subtask of repair
answer set computation. Intuitively, an ORP is a problem of identifying an ABox under which a simulta-
neous entailment and non-entailment of sets of queries under possible updates is guaranteed. Let us now
provide a formal definition for this repair problem.

Definition 24 (ontology repair problem (ORP)). An ontology repair problem (ORP) is a tripleR = 〈O, D1, D2〉
where O = 〈T ,A〉 is an ontology and Di = {〈U ij , Qij〉 | 1≤ j≤mi}, i = 1, 2, are sets of pairs where each
U ij is an ABox and each Qij is a DL-query. A repair (solution) forR is any ABox A′ such that

(i) the ontology O′ = 〈T ,A′〉 is consistent;

(ii) 〈T ,A′ ∪ U1
j 〉 |= Q1

j holds for 1 ≤ j ≤ m1;

(iii) 〈T ,A′ ∪ U2
j 〉 6|= Q2

j holds for 1 ≤ j ≤ m2.

For an illustration of ORPs, we resort to the ontology from Figure 1.

Example 25. ConsiderR = 〈O, D1, D2〉 with O as in Figure 1, and the following sets D1 and D2:

• D1 = {〈U1
1 , Q

1
1〉, 〈U1

2 , Q
1
2〉, 〈U1

3 , Q
1
3〉}, where

– U1
1 = {Male(john)}, Q1

1 = Male(pat);

– U1
2 = ∅, Q1

2 = hasParent(john, pat);

– U1
3 = {Child(john)}, Q1

2 = Male(alex);

• D2 = {〈U2
1 , Q

2
1〉}, where

– U2
1 = ∅, Q2

1 = Adopted(john).

One of the possible solutions to the described ORP is the ABoxA′ = {Male(alex), hasParent(john, pat),
Male(pat)}. Indeed, it is easy to verify that

• 〈T ,A′ ∪Male(john)〉 |= Male(pat), 〈T ,A′〉 |= hasParent(john, pat), 〈T ,A′ ∪ Child(john)〉 |=
Male(alex);

• 〈T ,A′〉 6|= Adopted(john).

We now analyze the complexity of the ORP problem in the general setting.

INFSYS RR 15-03 15

3.4 Complexity Results for ORP

Non-surprisingly, the Ontology Repair Problem is intractable in general; however, this holds already for
very simple ontologies, which we show in the next proposition.

Proposition 26. Deciding whether an ORPR = 〈〈T ,A〉, D1, D2〉 has some repairA′ is NP-complete, and
NP-hard even if T contains only positive concept inclusions and A= ∅.

In fact, even if both TBox and ABox are empty, then the problem still stays intractable, which is formally
proved in the following proposition.

Theorem 27. Deciding whether an ORPR=〈〈T ,A〉, D1, D2〉 has some repair is NP-hard even if O = ∅.

We note that ORP has two sources of NP-hardness, viz. the data part (as in the proof above), and the
taxonomy, which under σ-repairs may derive further assertions. Furthermore, each ORP can be encountered
in some DL-program setting; we show this on an example.

Example 28. Consider the ORPR= 〈O, D1, D2〉, whereD1 = {δ1},D2 = {δ2}, such that δ1 = 〈{C(c),¬D(c)},
¬E(c)〉, and δ2 = 〈{D(d), ¬S(d)}, C(d)〉. We introduce predicates pδ1C , p

δ1
D for δ1 and pδ2D , p

δ2
S for δ2 and

construct Π = 〈O,PI ∪ PDL〉, where

PI = {pδ1C (c); pδ1D (c); pδ2D (d); pδ2S (d)},

PDL =

{
⊥ ← not DL[C] pδ1C , D−∪p

δ1
D ; ¬E](c)︸ ︷︷ ︸

a1

(1) ⊥ ← DL[D] pδ2D , S−∪p
δ2
S ; C](d)︸ ︷︷ ︸

a2

} (2)
}
.

Then Π has a single repair answer set candidate, in which a1 must evaluate to true and a2 to false, respec-
tively. This gives rise toR; the rule (1) effects the pair δ1 in D1 and the rule (2) the pair δ2 in D2.

Generalizing the above example, for each R = 〈O, D1, D2〉 one can construct a DL-program Π =
〈O,P〉, such that the solutions ofR correspond to the repairs of Π as follows. A DL-atom aji is created for
every pair 〈U ji , Q

j
i 〉 ∈ Dj , such that the DL-query of aji isQji , and the input signature λji encodes the update

U ji : for every C(~t) ∈ U ji (resp. ¬C(~t)) the signature λji contains C] pi,jC (resp. C −∪ pi,jC). Furthermore,
for each such update the fact pi,jC (~t) is added to P . The rules of P ensure that all DL-atoms aji are true for
j = 1 and false for j = 2. That is, the logic program part P of Π contains

• a constraint ⊥ ← not a1
i1

, for every a1
i1

, and
• a constraint ⊥ ← a2

i2
, for every a2

i2
.

As there are no predicates in P apart from those occurring in facts, the only possible repair answer set
I of Π contains all facts of P . Therefore, the update λI(aji) of every aji corresponds exactly to U ji , and the
constraints of P guarantee the simultaneous entailment and non-entailment of sets of queries under possible
temporary updates encoded by the givenR.

3.5 Tractable ORP Cases

As Theorem 27 demonstrates, we obtain intractability results for ORP even if the ontology is empty. In what
follows we aim at finding tractable cases for the ORP problem given that O is in DL DL-LiteA.

16 INFSYS RR 15-03

If there are few DL-atoms in the ground DL-program Π, then the ORP becomes tractable. However,
in application settings Π is obtained by grounding a DL-program that has variables, which will lead to
many DL-atoms in Π. Therefore, the pairs D1 and D2 are hard to control in practice, and to gain tractabil-
ity for ORP, we consider restrictions on repairs and the ontology. We present four tractable cases of σ-
repairs with independent selection function σ, which are arguably useful in practice. In what follows, let
R= 〈O, D1, D2〉, where O= 〈T ,A〉.

3.5.1 Bounded δ±-change

A natural restriction that one could exploit is to bound the distance from the original ABox, i.e.

σδ±,k(S,A) = {A′ | |A′4A| ≤ k}, k ≥ 0, (4)

where A′4A = (A′ ∩ A) ∪ (A ∩ A′) is the symmetric difference of sets. Our tractability result for this
setting is as follows.

Proposition 29. Deciding whether an ORPR= 〈O, D1, D2〉 has a δ±, k-change repair, is feasible in poly-
nomial time for fixed k.

Proof. As the number m of possible ABox assertions is polynomial in the size of T and A, traversing all
O(
(
m
k

)
) possible A′ and checking the repair condition can be done in polynomial time.

We illustrate this repair type by the following example.

Example 30. For the DL-program from Figure 1 the ABox A′ = (A\{Male(pat)}) ∪ {Female(pat)} is a
possible δ±, k-change repair for k = 2. Another repair candidate isA′ = (A\{Male(pat)})∪{Male(mat)}
provided that mat is a constant from the ontology signature.

The δ±-change repairs are arguably useful in practice. The repairs that restore consistency by getting
rid of such deficiencies as typos and syntactical inaccuracies fall into this repair category. For instance, in
Example 30 the fact Male(pat) was in the ontology instead of Male(mat), as the letters p and m were con-
fused during the data engineering process. In such scenarios one can search for repairs by applying selective
changes to certain ontology assertions. These selective changes include modifications of the predicate or
constants occurring in the assertion, i.e. P (~t) could be changed to P (~t′) or P ′(~t).

To ensure tractability, the number of constants or predicates with which the initial facts can be modified
is bounded by k. Under this restriction, an ABox A with at most m assertions allowed for modification has
O(k2m) repair candidates; thus if both k and m are bounded by a constant, deciding whether a δ±-solution
for ORP exists is polynomial. The alternatives (i.e. constants and predicates) used for fixing initial facts
can be created by partitioning the elements of the ontology signature into subsets based on their syntactical
similarity (measured by some string distance, cf. [24], such as Hamming or Levenshtein distance [57]). For
example, the constants mat and pat differ just by a single letter and thus will be put to the same partition.
This way one naturally limits the number of possibilities for changing a certain fact.

Swapping constants in role assertions is another special setting with obvious practical applications.

Example 31. For instance, A′ = A\{hasParent(john, pat)} ∪ {hasParent(pat , john)} would be a plau-
sible repair for the DL-program Π from Figure 1.

INFSYS RR 15-03 17

3.5.2 Deletion repair

Another important restriction is to allow only to delete assertions from the original ABox i.e., use

σdel(S,A) = {A′ | A′ ⊆ A}. (5)

Example 32. For Π in Figure 1, each A′⊂A except for {Male(pat), hasParent(john, pat)} is a deletion
repair.

To achieve tractability, we exclude non-containment (6v) DL-queries, i.e., of the form ¬Q where Q is an
inclusion or a disjointness axiom, from P; let us call any ORP 6v-free, if no DL-query of this form occurs in
it. Under the reasonable (and necessary) assumption that the original ontology is consistent, we then obtain.

Theorem 33. Deciding whether a 6v-free ORP R= 〈O, D1, D2〉 with consistent O has a σdel-repair is
feasible in polynomial time.

Proof. The proof exploits the following property of 6v DL-queries.

Lemma 34. If 〈T ,A〉 is consistent, then 〈T ,A ∪ U ij〉 |= Qij iff 〈T ,A0 ∪ U ij〉 |= Qij for some A0⊆A with
|A0| ≤ 1.

That is, at most one assertion α from A is sufficient to derive the query. This follows from a respective
result for empty U ij and instance queries Qij (see Proposition 5).

Now if T ∪ U ij |= Qij , we can drop 〈U ij , Qij〉 from R if i=1, and stop if i = 2 as no repair exists.
Otherwise, we let the set Suppij of Qij contain all assertions α such that T ∪ {α} ∪ U ij |= Qij . Then, any
repairA′ must fulfillA′∩Supp1

j 6= ∅ for each j (i.e., be a hitting set), and must be disjoint with each Supp2
j′ .

Let then Sj := (Supp1
j ∩ A) \

⋃
j′ Supp2

j′ . A σdel-repair A′ exists iff each Sj is nonempty; the hitting sets
of the Sj are all the σdel-repairs. The construction of the Sj and the check can be done in polynomial time,
thus the overall problem is tractable. Note that, furthermore, the (possibly exponentially many) σdel-repairs
can be output in total polynomial time.

If non-containment queries are allowed in DL-atoms, computing deletion repairs remains NP-hard.

Theorem 35. Deciding whether an ORP R = 〈D1, D2,O〉 with a consistent O has some σdel repair
is NP-complete, and NP-hardness holds even if each 〈U2

j , Q
2
j 〉 ∈ D2 has U2

j = ∅ and either (i) each
〈U1

i , Q
1
i 〉 ∈ D2 has U1

i = ∅ (thus,R has only empty updates), or (ii) T = ∅.

3.5.3 Deletion δ+

This selection combines deletion and small change in a prioritized way. First one deletes assertions from
A (assumed to be consistent) according to some polynomial method µ (using domain knowledge etc.) until
some A0 = µ(O) ⊆ A results that satisfies Definition 24 (iii). If A0 is a repair, it is the result; otherwise,
one looks for a close repair with bounded δ+ change. That is

σdel,δ+(S,A) =

{
{µ(O)}, if µ(O) ∈ S
σδ+(S, µ(O)), if µ(O) 6∈ S.

(6)

18 INFSYS RR 15-03

Example 36. If µ(O) drops unreliable information about the gender of certain persons in Example 1 (e.g.
pat), A0={Male(john), hasParent(john, pat)} is a deletion repair. If the constraint

⊥ ← DL[; hasParent](X,Y),not DL[; Male](Y),not DL[; Female](Y)

(the gender of parents must be known) would be in P , then one would have to add Female(pat) to A0 to
obtain a deletion-δ+ repair.

Then one can try all possible combinations of k assertions that can be added to the ABox A′ such that
along with condition (iii), also (ii) and (i) of the repair definition hold. Observe that µ(O) is selected by an
independent selection function σdel, which chooses subsets of A. Furthermore, σδ+ is applied to µ(O), the
selection σδ+ chooses an ABox A′ ⊇ µ(O), such that A′ \ µ(O) contains not more then k assertions. The
selection σδ+ is independent by Proposition 22, as it is a composition of σdel and σδ+ both of which are
independent. As both σdel and σδ+ are realizable in polynomial time, the overall problem is tractable.

3.5.4 Addition under bounded opposite polarity

Repairs by unbounded additions become tractable, if few of them are positive resp. negative, i.e., the number
of assertions with opposite polarity is bounded (which by Theorem 27 is necessary). That is, if A+ (resp.,
A−) is the positive (negative) part of an ABox A, then

σbop,k(S,A) = {A′ ⊇ A | |A′+\A| ≤ k or |A′−\A| ≤ k}, k ≥ 0. (7)

The following result is instrumental.

Theorem 37. For a 6v-free ORPR = 〈O, D1, D2〉, where O = 〈T ,A〉 and T has no disjointness axioms 5

deciding whether some σbop-repair exists is polynomial.

3.5.5 Applicability of independent selections

Like for relational databases, our tractable cases fit real applications, e.g. in case of deletion repairs (ob-
serving that non-subsumption queries are insignificant for practical DL-programs) and scenarios akin to
key-constraint violations in databases. Restoring consistency by removing conflicting pieces of data is a
common approach in data management.

Composability of independent selections adds to their applicability. Moreover, they may be combined
with DB-style factorization and localization techniques (see [10] and references therein) and with local
search to compute closest repairs.

Bounding the number of changes, especially additions, is also compliant with practice, where too many
potential repairs suggest human intervention (cf. [10]). Finally, one may increase the bound in iterative
deepening (assuming that not many changes are needed).

5Disregarding axioms F¬ v ¬F to compile negative assertions.

INFSYS RR 15-03 19

3.6 Domain-based Restrictions on Repairs

In previous sections we have proposed several technical means for treating inconsistencies in DL-programs.
We have presented some repair forms that are practically usable and computationally effective, but until now
no domain knowledge has been incorporated into the DL-program repair process. It is natural, however, to
believe that the end users of DL-programs will wish to contribute to the repair by sharing their subject
expertise.

Qualitative and domain-dependent aspects of repairs are of crucial importance for their practicability.
These qualitative aspects formulated in terms of additional local restrictions put on repairs help to effectively
filter out the irrelevant repair candidates. For example, availability of meta information about the trustfulness
of certain ontology pieces may allow to adjust the repair process.

Example 38. Being aware of the unreliability of ontology facts about the individual john in Example 1
motivates one to consider the repair A′ = A\{hasParent(john, pat)} for the DL-program Π in the first
instance.

Knowing additionally that the set of Adopted children is very likely to be incomplete naturally adds
A′′ = A ∪ {Adopted(john)} to the set of repair possibilities.

Similarly the user might be willing to keep some information bits in the ontology unchanged.

Example 39. If in Example 38 one wants to avoid dropping the data about individuals belonging to the
concept Child but not known to be Adopted; then the repair A′ is no longer among the preferred options.

The guidelines on the operations that are allowed to be applied to the ontology could clearly influence
the repair process further.

Example 40. If in Example 38 additions to the ontology are strongly prohibited, then the repair A′′ is
automatically dropped from the set of leading candidates.

In some scenarios various dependencies among the data parts stored in the ontology might influence
the repair process. Deletion (resp. addition) of a certain fact might force further ontology changes to be
incorporated.

Example 41. Consider a variant of Example 1, in which eachAdopted child stored in the ontology is desired
to have a certain identification number (ID) assigned to it through the predicate hasID . This additional
constraint could be expressed by the TBox axiom Adopted v ∃hasID . However, this restriction might
not be a formal requirement, but rather a wish of the user, for whom it is more convenient to track adopted
children by their IDs. Thus the TBox axiom might not be in the ontology explicitly. In such a setting the
repair A′′ from Example 38 in which information about john’s adoption is added, is not among the best
repair candidates any longer, as together with this new information, the additional knowledge about the ID
of john should be available.

Similarly, if not only adopted children, but all persons are required to have an ID, and the latter is indeed
given in the original ontology, the repair A′ = A\{Male(pat)} ∪ {Male(mat)} from Example 30 forces
one to delete the ID of pat and add the ID of mat ; in case the latter is not known, the repair A′ becomes
undesired.

Integration of domain restrictions into repair computation process. The wide spectrum of potential
restrictions that could be applied to the repair candidates motivates one to consider various possible ways

20 INFSYS RR 15-03

of integrating additional domain knowledge into the repair computation process. Three global modes of
repairing inconsistent DL-programs seem reasonable in this context:

1) The first mode suggests the computation of repair candidates with some σ-selection function, fol-
lowed by a post-filtering of the candidates taking into account the domain knowledge. If some of the
protected ontology elements are no longer present in the repair candidate, and their reintroduction vi-
olates the repair conditions, then one proceeds with the analysis of a next repair candidate. Otherwise,
the desired repair is computed, and the computation process terminates.

2) The second mode assumes that the domain knowledge is encoded in the selection function and conse-
quently all identified repairs a priori satisfy the introduced domain-based requirements.

Example 42. Suppose we want to compute the δ± repairs with the desired property expressed in
Example 41, i.e. in the repairs for all Adopted children their ID should be known. Then our prob-
lem amounts to the problem of computing δ± repairs of the original DL-program extended by the
following rules that conveniently encode the additional requirement:

(1) assigned(X)← DL[; Adopted](X), DL[; ID](Y), DL[; hasID](X,Y);

(2) ⊥ ← DL[; Adopted](X), not assigned(X).

The repairs of the extended program correspond to the repairs of the original program post-filtered by
the respective domain-specific condition.

3) The third mode is the combination of the first two, where some domain conditions are incorporated
into the repair search process, but further post-filtering conditions can be checked.

4) The mode (2) can be extended to support prioritized repair computation. That is, first one aims at
finding the best repairs that fully satisfy the domain specific requirements, and then if such search
does not bring any results, the requirements are weakened accordingly or even dropped altogether.

Example 43. Recall the setting from Example 42. We first aim at repairs such that IDs of all adopted
children are known. Once some repair answer set of Π with rules (1) and (2) is found, the computation
terminates and the result is output. If no such I was identified, then one might be willing to relax the
repair condition by allowing at most k adopted children to lack IDs. For that the constraint (2) can
be changed to a rule (2′) having not assigned(X) in the head. Repair answer sets I of the resulting
program with at most k ground predicates over not assigned will satisfy the above requirement,
and consequently any repair A′ ∈ repIσ,x(Π) is guaranteed to be preferred, where σ is a δ±-change
selection function.

All of the discussed domain-specific repair preferences can be combined and ordered in various ways.
The techniques for their computation heavily depend on the application scenario, and in different concrete
settings could be adapted and extended.

4 Computation

In this section, we first recall the essentials of the evaluation algorithm for DL-programs as a special class
of so-called HEX-programs as in [30], and we then provide a naive and an optimized extension of that
algorithm for computing repairs.

INFSYS RR 15-03 21

4.1 DL-program Evaluation

The evaluation of a DL-program Π builds on a program rewriting Π̂, where DL-atoms a are replaced by
ordinary atoms (called replacement atoms) ea, and a guess on the truth value of the latter by choice rules
ea ∨ nea is added.

Example 44. Consider the following grounding of some rules from Figure 1:

P ′ =


(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male] boy ; Male](pat),DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted](john), hasfather(john, pat),
ischildof (john, alex),not DL[Child] boy ; ¬Male](alex)


The replacement program Π̂′ for Π′ = 〈O,P ′〉 comprises the following rules:

Π̂′ =



(7) ischildof (john, alex); (11) ea1(pat) ∨ nea1(pat);

(8) boy(john) (12) ea2(john,pat) ∨ nea2(john,pat);

(9) hasfather(john, pat)← ea1(pat), ea2(john,pat); (13) ea3(john) ∨ nea3(john);

(10) ⊥ ← not ea3(john), hasfather(john, pat), (14) ea4(alex) ∨ nea4(alex)

ischildof (john, alex),not ea4(alex);


Given an interpretation Î of the replacement program Π̂′, we use I|Π′ to denote its restriction to the

original language of Π′. A crucial notion is that of compatible set.

Definition 45 (compatible set). A compatible set of a (ground) DL-program Π = 〈O,P〉 is an interpretation
Î , such that (i) Î is an answer set of Π̂, and (ii) ea ∈ Î iff I|Π |=O a, for every a = DL[λ; Q](c) occurring
in Π.

Example 46. Consider an interpretation Î = {ischildof (john, alex), boy(john), hasfather(john, pat), ea1 , ea2 , ea3 ,
nea4} of Π̂′ from Example 44. This interpretation is not compatible for Π′ = 〈O,P ′〉, since ea3(john) ∈ Î ,
but it holds that I 6|=O DL[; Adopted](john), and thus (ii) of Definition 45 is not satisfied. However, the
interpretation Î is a compatible set for Π′′ = 〈O′,P ′〉 whereO′ = O∪{Adopted(john)}. Furthermore, the
restriction of Î to the language of Π′′ is Î|Π′′ = {ischildof (john, alex), hasfather(john, pat), boy(john)}.

Conversely, given an interpretation I of Π, we denote by Ic the interpretation of Π such that Ic coincides
with I on non-replacement atoms, and each replacement atom ea is in Ic (i.e. true) iff I |=O a for the
respective DL-atom a.

With these concepts in place, we are ready to describe the basic algorithm for evaluating a DL-program
Π = 〈O,P〉 adopted from [30]. First, Π̂ is evaluated by an ordinary ASP solver; for every answer set Î of
Π̂ in (b), the function CMP checks for compatibility, while xFND tests foundedness, i.e., whether Î|Π is a
⊆-minimal model of the reduct PI|Π,Ox . In case of x = weak , xFND just returns true, otherwise (x = flp)
it checks for disjointness with unfounded sets as defined in [30]. If both tests succeed, then Î|Π is output as
an answer set.

Example 47. Suppose we are interested in computing flp-answer sets of Π′′ from Example 46. In (a) among
AS (Π̂′′) the interpretation Î = {ischild(john, alex), boy(john), hasfather(john, pat), ea1 (pat), ea3 (john),nea4 (alex),

ea2(john,pat)} is identified. Both the compatibility and the foundedness check in (b) for Î succeed, and thus
Î|Π′′ is output as an flp-answer set of Π′′.

22 INFSYS RR 15-03

Algorithm 1: AnsSet : Compute ASx(Π)

Input: A DL-program Π, x ∈ {weak ,flp}
Output: ASx(Π)

(a) for Î ∈ AS (Π̂) do
(b) if CMP(Î ,Π) ∧ xFND(Î ,Π) then

output Î|Π
end

end

Algorithm 2: RepAns: Compute (σ, x)-repairs repÎ|Π(σ,x)(Π) of Π for x∈{weak ,flp}
Input: Π=〈O,P〉,O=〈T ,A〉, Î∈AS(Π̂), σ

Output: repÎ|Π
(σ,x)

(Π)

(a) forA′ ∈ ORP(Î,Π, σ) do
(b) if CMP(Î, 〈T ,A′,P〉) ∧ xFND(Î, 〈T ,A′,P〉) then

outputA′

end
end

An important link between the answer sets of Π and Π̂ is the following property.

Proposition 48. If I ∈ ASx(Π) then Ic ∈ ASx(Π̂).

While AnsSet is clearly sound, from this result its completeness follows, i.e. restricting the search to
ASx(Π̂) does not yield any loss of answer sets.

4.2 Naive Algorithm for Repair Computation

We next present a naive algorithm for computing deletion repair answer sets which extends the above DL-
program evaluation algorithm. First we aim at a procedure for computing (σ, x)-repairs given an indepen-
dent selection function σ. Then, we describe how its main subroutine can be used for an extension of AnsSet
that computes answer sets if they exist, and (σ, x)-repair answer sets otherwise.

A first key observation is that Proposition 48 generalizes to repair answer sets. More precisely:

Proposition 49. If I ∈ RASx(Π) then Ic ∈ AS (Π̂).

Proof. By definition of RASx(Π), we get that I ∈ AS (Π′), where Π′ = 〈O′,P〉, O′ = 〈T ,A′〉 and
A′ ∈ repx(Π). Since by Proposition 48 Ic ∈ AS (Π̂′) and Π̂ = Π̂′, the result immediately follows.

Thus, our approach is to traverse AS (Π̂) and check for each Î ∈ AS (Π̂) whether Î|Π is a (σ, x)-repair
answer set of Π. The latter proceeds in two steps, where the first step is to search for potential σ-repairs of
the ontology such that Definition 45 (ii) holds for Î , that is to find solutions of the corresponding ontology
repair problem.

The procedure RepAns (cf. Algorithm 2) calls the subroutine ORP(Î ,Π, σ) in (a) to compute σ-repairs
A′ of the corresponding ORP, constructed from the DL-atoms with their guessed values and the ontology.
Further on, RepAns re-uses the functions CMP and xFND in (b) to check whether Î is an answer set of Π̂′

and that it is founded w.r.t. Π′ = 〈O′,P〉,O′= 〈T ,A′〉. It thus computes the set of all ABoxes under which
Î becomes a (σ, x)-repair answer set. We demonstrate RepAns on an example.

INFSYS RR 15-03 23

Algorithm 3: RepAnsSet : Compute a set RAS (σ,x)(Π) of (σ, x)-repair AS of Π for x∈{weak ,flp}
Input: Π=〈O,P〉,O=〈T ,A〉, σ
Output: I ∈ RAS(σ,x)(Π)

for Î ∈ AS(Π̂) do
ifRepAns(Π,O, Î, σ) 6= ∅ then

output Î|Π
end

end

Example 50. Suppose that RepAns gets as input Π′, Î from Example 44, and σδ±,1 selection func-
tion computing δ± repairs. The corresponding ORP R is given by R = 〈O, D1, D2〉, where D1 =
{〈{Male(john)},Male(pat)〉,
〈∅, hasParent(john, pat)〉, 〈∅,Adopted〉} andD2 = {〈∅,¬Male(alex)〉}. The ABoxA′ = {Male(john),Male(pat),
hasParent(john, pat),Adopted(john)} is computed in (a) as the σδ±-repair for R. The checks in (b) suc-
ceed for the ABox A′, and it is output to the user.

Example 51. Let Π = 〈O,P〉 be a DL-program, where

O =

{
A v ¬C ; A(c); ¬E (c);
A v D ; D(c); C (c)

}
P =

{
p(c); r(c); q(c)← DL[C −∪ r; D](c);

⊥ ← DL[D] p,E −∪ r; ¬C](c)

}
.

We denote by a1 and a2 the DL-atoms DL[C −∪ r; D](c) and DL[D] p,E −∪ r; ¬C](c) respectively. Con-
sider the interpretation Î = {p(c), r(c), q(c), ea1 , nea2}, in which a1 is guessed true and a2 guessed
false. The corresponding ORP is given by R = 〈O, D1, D2〉, where D1 = {〈{¬C(c)};D(c)〉} and
D2 = {〈{D(c),¬E(c)};¬C(c)〉}. Let σ select the deletion repairs, than we get A′ = {D(c),C (c)}
as a possible output of the procedure ORP(Î ,Π , σ), for which the compatibility check verified by the
call CMP(Î , 〈T ,A′,P〉) is passed. If we are interested in (σ,weak) repairs then A′ is output by the al-
gorithm RepAns . Yet another foundedness test is needed to check whether A′ is a (σ,flp) repair. This
test is done in flp-FND(Î , 〈T ,A′,P〉), which checks whether I is a minimal model of the flp-reduct
PI,O

′

flp = {p(c); q(c); q(c) ← DL[C −∪ r; D](c)}. As the latter test succeeds, the ABox A′ is an flp

repair and thus it is in the output of RepAns(Π , Î , σdel).

Let now RepAnsSet (Algorithm 3) be the algorithm that iteratively calls RepAns for every Î ∈ AS (Π̂),
and outputs any Î , where the result of RepAns is nonempty, i.e. some repair A′ was computed. We then
have:

Theorem 52. RepAns and RepAnsSet are both sound and complete for rep(σ,x)(Π) and RAS (σ,x)(Π),
respectively, for every independent selection function σ.

A natural question is whether computing repair answer sets via compatible sets Î of Π makes repair
answer set checking for Î|Π easier than for arbitrary interpretations I . Unfortunately, this is not the case; we
thus obtain a strengthening of the results of Theorem 16.

Theorem 53. For ground Π = 〈O,P〉 and I ⊆ HBΠ, deciding whether I ∈ RASx(Π) is (i) NP-complete
for x= weak and (ii) Σp

2-complete for x= flp; hardness holds even if I = Î|Π for an answer set Î ∈ AS(Π̂)
(and, moreover, I is unique).

Intuitively, even if we know Î , we still need to guess a repair A′ that witnesses Î|Π. The verifica-
tion of the guess involves a foundedness test, which is co-NP-hard in case of x= flp; this results in Σp

2-
completeness.

24 INFSYS RR 15-03

Note that, for illustration, we kept the algorithms simple; several optimizations apply, some of which
we discuss below. For instance, to compute just some (σ, x)-repair answer set, we can modify RepAns to a
version that merely computes a first witnessing ABox A′. Moreover, caching ABoxes A′ and/or all answer
sets of the respective Π′ (which can be straight output as (σ, x)-repair answer sets of Π) further reduces the
search space.

4.3 Support Sets

The algorithms RepAns and RepAnsSet represent natural realizations of repair computation. However,
they turn out as too naive and do not scale for practical applications; each ORP derived from an answer set
Î of the replacement program Π̂ is solved from scratch, as no information about past ORPs is exploited.

We thus develop an alternative approach for computing repair answer sets based on the notion of support
set. Intuitively, a support set for a DL-atom d = DL[λ; Q](~t) is a portion of its input that, together with
ABox assertions, is sufficient to conclude that the query Q(~t) evaluates to true; i.e., given a subset I ′ ⊆ I
of an interpretation I and a set A′ ⊆ A of ABox assertions from the ontology, we can conclude that
I |=O Q(~t). Basically, our method precomputes support sets for each DL-atom at a nonground level.
During DL-program evaluation, for each candidate interpretation the ground instantiations of the support
sets are effectively obtained. The latter help to prune the answer set search space and also allow one to solve
ORPs by constraint matching.

Before formally introducing support sets, we introduce input assertions in order to simplify matters and
avoid dealing with I separately.

Definition 54 (input assertion). Given a DL-atom d = DL[λ; Q](~t) and P ◦ p ∈ λ, ◦ ∈ {], −∪}, we call
Pp(c) an input assertion for d, where Pp is a fresh ontology predicate and c ∈ C. By Ad we denote the set
of all such assertions.

For a TBox T and a DL-atom d, we let

Td = T ∪ {Pp v P | P] p ∈ λ} ∪ {Pp v ¬P | P −∪ p ∈ λ},

and for an interpretation I , we let

OId = Td ∪ A ∪ {Pp(~t) ∈ Ad | p(~t) ∈ I}.

We then have:

Lemma 55. For every O = 〈T ,A〉, DL-atom d = DL[λ; Q](~t) and interpretation I , it holds that I |=O d
iff I |=OId DL[ε; Q](~t) iff OId |= Q(~t).

Unlike (3), in OId there is a clear distinction between native assertions and input assertions of d w.r.t. I
(via facts Pp and axioms Pp v (¬)P), mirroring the lp-input of d. Using Lemma 55 we define support sets
using only ontology predicates as follows:

Definition 56 (ground support sets). Given a ground DL-atom d = DL[λ;Q](~t), a set S of assertions from
A ∪ Ad is a support set for d w.r.t. an ontology O = 〈T ,A〉, if Td ∪ S |= Q(~t). By SuppO(d) we denote
the set of all support sets S for d w.r.t. O.

Support sets can be grouped into families of support sets or simply support families. More formally,

INFSYS RR 15-03 25

Definition 57 (support family). Any collection S ⊆ SuppO(d) of support sets for a DL-atom d w.r.t. an
ontology O is a support family of d w.r.t. O.

Clearly, support sets as defined above may be subsumed by other support sets (e.g., {A(c), R(c, d)} by
{A(c)}) and removed. We concentrate on ⊆-minimal support sets S for a DL-atom d, i.e. for every S′ ⊂ S
it holds that S′ 6∈ SuppO(d). In general even ⊆-minimal support sets can be arbitrarily large and there can
be infinitely many (exponentially many for acyclic T) support sets. However, fortunately it turns out that
for DL-LiteA support sets are of a particular structure. In view of the property that in DL-LiteA a single
assertion is sufficient to derive a query [21] from a consistent ontology, we obtain that for DL-LiteA support
sets are at most of size 2. More formally,

Proposition 58. Every ⊆-minimal support set S for a DL-atom d = DL[λ; Q](~t) w.r.t. an ontology O =
〈T ,A〉 in DL-LiteA has either the form (i) S = {P (~c)}, such that Td∪S |= Q(~t), or (ii) S = {P (~c), P ′(~d)}
such that Td ∪ S is inconsistent.

Support sets are linked to interpretations by the following notion.

Definition 59 (coherence). A support set S of a DL-atom d is coherent with an interpretation I , if for each
Pp(~c) ∈ S it holds that p(c) ∈ I .

We illustrate the notion of coherence by the following example.

Example 60. The set {hasParent(john, pat)} is a support set for the DL-atom DL[; hasParent](john, pat)
w.r.t. O, and so is {Male(pat)} for the DL-atom a = DL[Male] boy ; Male](pat). Moreover, {Maleboy(pat)}
is in SuppO(a) but incoherent with minimal models of Π.

The evaluation of d w.r.t. I then reduces to the search for coherent support sets.

Proposition 61. Let d be a ground DL-atom, letO = 〈T ,A〉 be an ontology, and let I be an interpretation.
Then, I |=O d iff some S ∈ SuppO(d) exists s.t. S is coherent with I .

As a simple consequence, we get:

Corollary 62. Given a ground DL-atom d and an ontologyO, some interpretation I exists such that I |=O d
iff SuppO(d) 6= ∅.

Apart from the maximal number of assertions that participate in support sets for DL-atoms accessing
DL-LiteA ontologies, there is also a limit on the number of constants that can occur in such support sets.
In fact, in Definition 58 ~c ∪ ~d can involve at most 3 constants, which is formally stated in the following
proposition.

Proposition 63. let S be a ⊆-minimal support set of a ground DL-atom d w.r.t. a DL-LiteA ontology
O = 〈T ,A〉. Then S involves at most 3 constants.

When working with support sets for DL-atoms that access an DL-LiteA ontology, we can exploit the
above proposition and limit ourselves only to support sets of size 2 involving at most 3 constants.

26 INFSYS RR 15-03

4.4 Nonground Support Sets

Using support sets, we can completely eliminate the ontology access for the evaluation of DL-atoms. In a
naive approach, one precomputes all support sets for all ground DL-atoms with respect to relevant ABoxes,
and then uses them during the repair answer set computation. This does not scale in practice, since support
sets may be computed that are incoherent with all candidate repair answer sets.

An alternative is to fully interleave the support set computation with the search for repair answer sets.
Here we construct coherent ground support sets for each DL-atom and interpretation on the fly. As the input
to a DL-atom may change in different interpretations, its support sets must be recomputed, however, since
reuse may not be possible; effective optimizations are not immediate.

A better solution is to precompute support sets at a nonground level, that is, schematic support sets, prior
to repair computation. Furthermore, in that we may leave the concrete ABox open; the support sets for a
DL-atom instance are then easily obtained by syntactic matching. This leads to the following definition.

Definition 64 (nonground support sets). Let T be a TBox, and let d(~X) = DL[λ; Q](~X) be a nonground
DL-atom. Suppose that V is a set of distinct variables such that ~X ⊆ V , and that C is a set of constants. A
nonground support set for d w.r.t. T is a set S = {P1(~Y1), . . . , Pk(~Yk)} such that

(i) ~Y1, . . . , ~Yk ⊆ V and

(ii) for each substitution θ : V → C, the instance Sθ = {P1(~Y1θ), . . . , Pk(~Ykθ)} is a support set for
d(~Xθ) w.r.t. OC = 〈T ,AC〉, where AC is the set of all possible ABox assertions over C.

By SuppO(d) we denote the set of all nonground support sets for d.

HereAC takes care of any possible ABox, by considering the maximal ABox (sinceO⊆O′ implies that
SuppO(d)⊆SuppO′(d)). Now generalizing Propositions 58 and 63 we obtain the following characteriza-
tion for nonground support sets accessing DL-LiteA ontologies:

Proposition 65. Every ⊆-minimal nonground support set S for a DL-atom d w.r.t. an ontology O in
DL-LiteA has either the form (i) S = {P (~Y)} or (ii) S = {P (~Y), P ′(~Y ′)}, where ~Y ∪ ~Y ′ contains
at most 3 distinct variables.

Example 66 (cont’d). Certainly {hasParent(X,Y)} is a nonground support set for DL[; hasParent](X,Y),
and so are {Male(X)} and {Maleboy(X)} for the DL-atom d(X) = DL[Male] boy ; Male](X), but
d(X) has also {Maleboy(Y),Female(Y)} as a nonground support set.

Nonground support sets S for DL-LiteA are sound in the sense that each instance Sθ matching with
A ∪ Ad is a support set of the ground DL-atom dθ w.r.t. O = 〈T ,A〉. They are also complete, i.e., every
support set S of a ground DL-atom d w.r.t. O = 〈T ,A〉 results as such an instance, and thus can be
determined by syntactic matching.

If a sufficient portion of support sets is precomputed, then the ontology access can be fully avoided. We
call such a portion a complete support family.

Definition 67 (completeness). A family S ⊆ SuppO(d) of nonground support sets for a (non-ground)
DL-atom d(~X) w.r.t. a DL-LiteA ontology O is complete, if for every θ: ~X → C and S ∈ SuppO(d(~Xθ)),
some S′ ∈ S exists such that S = S′θ′, for some extension θ′ : V → C of θ to V , where V is a set of distinct
variables, such that ~X ⊆ V .

INFSYS RR 15-03 27

Example 68. Consider the DL-atom d = DL[Male] boy ; Male](X) from Figure 1. For computing a
complete family S of nonground support sets for d w.r.t. O, we may refer to Td = T ∪ {Maleboy vMale}.
The support family S = {S1, S2, S3, S4} is complete for d, where S1 = {Male(X)}, S2 = {Maleboy(X)},
S3 = {Maleboy(Y),¬Male(Y)}, S4 = {Maleboy(Y),Female(Y)}.

4.5 Determining Nonground Support Sets

Our technique for computing the nonground support sets for DL-atoms over DL-LiteA ontologies is based
on TBox classification, which is an important problem in Description Logics [4]: given a TBox T over a
signature Σo, the TBox classification Clf (T) determines all subsumption relations P v (¬)P ′ between
concepts and roles P, P ′ in Σo that are entailed by T . This can be exploited for our goal to compute
nonground support sets, more precisely a complete family S of such sets. For example, [56] studies it for
the OWL 2 QL profile and [51] discusses it for EL. Respective algorithms are thus suitable and also easily
adapted for the computation of (a complete family of) nonground support sets for a DL-atom d(~X) w.r.t. an
ontology O in DL-LiteA.

In principle, one can exploit Proposition 55 and resort to Td, i.e., compute the classification Clf (Td), and
determine nonground support sets of d(~X) minimal conflict sets [73]. To determine inconsistent support
sets, perfect rewriting [21] can be done over Pos(T), i.e., the TBox obtained from T by substituting all
negated concepts (roles) ¬C (¬R, ¬∃R, ¬∃R−) with positive replacements C (R, ∃R, ∃R−).

In practice (and as in our implementation), it can nonetheless be worthwhile to compute Clf (T) first,
as it is reusable for all DL-atoms. The additional axioms in Td, i.e., those of form Pp v (¬)P (induced by
update operators), are handled when determining the nonground support sets for a particular DL-atom from
Clf (T).

Example 69. Consider the DL-atom d = DL[Male] boy ; Male](X) from Example 1. For computing a
complete family S of nonground support sets for d w.r.t. O, we may refer to Td = T ∪ {Maleboy vMale}
and its classification Clf (Td). Here, S1 = {Male(X)} and S2 = {Maleboy(X)} are the only unary
nonground support sets of d. Further nonground support sets are obtained by computing minimal con-
flict sets, yielding {P (~Y),¬P (~Y)} for each P ∈ C ∪ R, as well as S3 = {Maleboy(Y),¬Male(Y)},
S4 = {Maleboy(Y),Female(Y)}, and S5 = {Male(Y), Female(Y)}. However, since we are interested in
completeness w.r.t. O and O is consistent, pairs not involving input assertions can be dropped (as they will
not have a match in A). Hence, S = {S1, S2, S3, S4} is a complete support family for d w.r.t. O.

4.6 Optimized Algorithm for Repair Computation

We are now ready to describe our optimized algorithm SupRAnsSet (see Algorithm 4), which avoids multi-
ple interface calls and merely needs to access the ontology once. Given a (ground) DL-program Π for input,
SupRAnsSet proceeds as follows.

We start (a) by computing a complete family S of nonground support sets for each DL-atom. Afterwards
the replacement program Π̂ is created and its answer sets are computed one by one. Once an answer set Î
of Π̂ is found (b), we first determine the sets of DL-atoms Dp (resp. Dn) that are guessed true (resp. false)
in Î . Next, for all ground DL-atoms in Dp ∪Dn, the function Gr(S, Î,A) instantiates S to relevant ground
support sets, i.e., that are coherent with Î and match with A ∪ Ad. We then check in (c) for atoms in Dp

(resp. Dn) without support (resp. input only support). If either is the case, we skip to (b), the next model
candidate, since no repair exists for the current one. Otherwise, in a loop (d) over atoms in Dp—except

28 INFSYS RR 15-03

Algorithm 4: SupRAnsSet : all deletion repair answer sets
Input: Π=〈T ,A,P〉
Output: flpRAS(Π)

(a) compute a complete set S of nongr. supp. sets for the DL-atoms in Π

(b) for Î ∈ AS(Π̂) do
Dp ← {d | ed ∈ Î}; Dn ∈ {d | ned ∈ Î}; SÎgr ← Gr(S, Î,A);

(c) if SÎgr(d) 6= ∅ for d ∈ Dp and every S ∈ SÎgr(d) for d ∈ Dn fulfills S ∩ A 6= ∅ then
(d) for all d ∈ Dp do
(e) if some S ∈ SÎgr(d) exists s.t. S ∩ A = ∅ then pick next d

else remove each S from SÎgr(d) s.t. S ∩ A ∩⋃
d′∈Dn SÎgr(d

′) 6= ∅
(f) if SÎgr(d) = ∅ then pick next Î

end
(g) A′ ← A \⋃d′∈Dn SÎgr(d

′);

(h) if flpFND(Î , 〈T ,A′,P〉) then output Î|Π
end

end

for those supported input only (e)—we remove support sets S that are conflicting w.r.t. Dn. Intuitively,
this is the case if S hinges on an assertion α ∈ A that also supports some atom d′ ∈ Dn (hence α needs
to be deleted; note that due to consistency of A, even inconsistent support of d′ leaves no choice). If this
operation leaves the atom from Dp under consideration without support (check at (f)), then no repair exists
and the next model candidate is considered. Otherwise (exiting the loop at (g)), a potential deletion repair
A′ is obtained from A by removing assertions that occur in any support set for some atom d′ ∈ Dn. An
eventual check (h) for foundedness (minimality) w.r.t. A′ determines whether a deletion repair answer set
has been found.

Example 70. Consider the DL-atoms a= DL[; hasParent](john, pat) and b= DL[Male] boy ; Male](pat)

from Example 1, and assume that {ea, neb}⊆ Î . Then, we get SÎgr(a)= {{hasParent(john, pat)}}, and we

reach the else part of Step (e) where nothing is removed from SÎgr(a), since SÎgr(b) = {{Male(pat)}} and

SÎgr(a)∩SÎgr(b) = ∅. Hence, at Step (g) we must drop Male(pat) fromA to make Î a deletion repair answer
set.

As we show, Algorithm SupRAnsSet correctly computes the deletion repair answer sets of the input
DL-program. For the completeness part, i.e., that all deletion repair answer sets are indeed produced, the
following proposition is crucial.

Proposition 71. Given a DL-program Π, let Î be an answer set of Π̂ such that I = Î|Π is an answer set of
Π = 〈T ,A,P〉. If Î is a compatible set for Π′ = 〈T ,A′,P〉 where A′ ⊇ A, then I is an answer set for
Π′ = 〈T ,A′,P〉.

Armed with this result, we establish the correctness result.

Theorem 72. SupRAnsSet is sound and complete w.r.t. computing deletion repair answer sets, i.e., given
a DL-program Π = 〈O,P〉 with DL-LiteA ontology O, SupRAnsSet(Π) correctly outputs all deletion
repair answer sets of Π.

In the next section, we turn to an implementation of Algorithm SupRAnsSet , where we discuss the key
implementation issues and present a declarative realization of support set handling in the steps (c)-(g).

INFSYS RR 15-03 29

5 Implementation

The repair answer set computation algorithms have been implemented as a part of the dlliteplugin plugin
of the dlvhex framework, thus providing means to effectively compute deletion repair answer sets for DL-
programs over DL-LiteA ontologies.

The dlvhex framework is a system for evaluating Answer Set Programs with external computations. The
system is written in C++ and open source available.6 Implementations of external source functions can be
conveniently provided as plugins, which distinguishes the dlvhex system from other ASP solvers. Wide
range of such plugins are already available, ranging from string manipulation functions to complex plugins
implementing Equilibrium-semantics of Multi-Context Systems.

The source code of the new plugin is available at https://github.com/hexhex/dlliteplugin. The dlliteplugin
uses the owlcpp7[58] library for ontology parsing and invokes the fact++8 system as a back-end for ontol-
ogy reasoning tasks. In the sequel, we present an overview of the dlliteplugin architecture and give some
implementation details.

5.1 Architecture Overview

The architecture of the dlliteplugin is shown in Figure 2, where arcs model both control and data flow of the
system. The DL-program at hand is described by the user in the files, storing the ontology part O and the
DL-rules part P of the DL-program Π respectively. After creating the replacement program Π̂, complete
nonground support families for DL-atoms in Π are determined within the dlliteplugin. The support sets in
these families are processed declaratively using rules Πsupp (explained in detail below). These rules are then
extended with the facts encoding ontology ABox and the program Π̂. The models of the obtained program
encode the repair answer sets and repairs of the original DL-program Π. For evaluating the declarative
program, the backend grounder and the solver of the dlvhex system are invoked. Finally, the repair answer
set candidates I of Π and their respective repairs A′ are extracted from the computed models. Each such
I is already a weak repair answer set of Π; in case of flp-repair answer sets, an additional flp-minimality
check is made.

5.2 Implementation Details

In order to take advantage of existing dlvhex data structures (e.g. for parsing) and optimization methods
(such as nogood learning, etc.), a declarative ASP approach was pursued to realize both construction of
complete support families and computation of repair answer sets and repairs over DL-LiteA ontologies.

First we describe our approach to computing the support families. The routine for computing support
families gets a DL-LiteA ontology and a nonground DL-atom as input. After parsing the ontology O using
the owlcpp library, its TBox classification is computed. The latter is done declaratively using the program
ProgTclass shown in Figure 3.

The program ProgTclass reifies concepts (roles, existential restrictions on roles), as well as positive
replacements of their negations. Facts express subsumptions in Pos(T) using sub predicate, role inverses
using inv, role functionalities with funct, and the duality of concepts (roles, etc.) and their opposites with
op. The rule (1) of ProgTclass transitively closes the subsumption relation, while (2) expresses contraposition

6https://github.com/hexhex
7http://owl-cpp.sourceforge.net
8https://code.google.com/p/factplusplus

30 INFSYS RR 15-03

DL-program Π

Ontology O

DL-rules P

Construction of Π̂

Support set

construction

Declarative
program constr.

AS solver

AS grounder

AS computation

RAS x-minimality
check

x-RAS

1

Figure 2: System architecture of the dlliteplugin for Repair Answer Set Computation

ProgTclass =



(1) sub(X ,Y)← sub(X ,Y), sub(Y ,Z);

(2) sub(Y ′,X ′)← sub(X ,Y), op(X ,X ′), op(Y ,Y ′);

(3) conf (X ,Y ′)← sub(X ,Y), op(Y ,Y ′);

(4) inv(X ′,X)← inv(X ,X ′);

(5) op(X ,Y)← op(Y ,X);

(6) confref (X)← conf (X ,Y), op(Y, Z), inv(X,Z);


Figure 3: Program ProgTclass for computing classification of T

for subsumption. The rules (3)-(5) mimic the construction of binary and unary conflict sets (based on the
theoretical results from [73]) that are then stored in the predicates conf and confref respectively. Since
the program ProgTclass is positive, it has a single answer set MTclass , from which the support family S for a
DL-atom d = DL[λ; Q](X) is conveniently extracted in the following way:

• for every sub(P,Q) ∈MTclass , where P is a positive ontology predicate, we add S = {P (~X)} to S;

• for every sub(P,Q) ∈ MTclass , where P is a replacement for an existential restriction ∃R, we add
S = {R(X,Y)} to S;

• for every conf(P, P ′) ∈ MTclass , we add S = {Pp(~Y), P ′(~Y)} to S, if Pp(~c) ∈ Ad for some c ∈ C
and there is no S′ ⊂ S such that S′ ∈ S;

• for every conf(P, P ′) ∈ MTclass , we add S = {Pp(~Y), P ′p(~Y)} to S, if Pp(~c), P ′p(~d) ∈ Ad for some
~c, ~d ∈ C and there is no S′ ⊂ S such that S′ ∈ S;

INFSYS RR 15-03 31

(1) ⊥ ← ea(~X),not Supa(~X); (3) Supa(~X)← r(Sa(~Y)),not S̄Aa (~Y);

(2) ⊥ ← nea(~X), Supa(~X); (4) S̄Aa (~Y)← nea(~X), r(Sa(~Y))

Figure 4: Rules of the program Πsupp

(1) man(pat)← ea1 ; (3) ea1 ∨ nea1 ;

(2) ⊥ ← ea2 ; (4) ea2 ∨ nea2 ;

(5) ⊥ ← ea1 ,not Supa1 ; (8) Supa1 ← r(S1a1
),not S̄1

A
a1

;

(6) ⊥ ← nea1 , Supa1 ; (9) S̄1
A
a1
← nea1 , r(S1a1

);

(7) Supa1 ← r(S2a1
),not S̄2

A
a1

; (10) S̄2
A
a1
← nea1 , r(S2a1

);

(11) ⊥ ← ea2 ,not Supa2 ; (13) Supa2 ← r(S1a2
),not S̄1

A
a1

(12) ⊥ ← nea2 , Supa2 ; (14) S̄1
A
a2
← nea2 , r(S1a2

);

Figure 5: Program Π̂ ∪Πsupp from Example 74

• for every confref(P) ∈MTclass , we add S = {Pp(Y, Y)} to S, if Pp(c, d) ∈ Ad for some c, d ∈ C;

• for every funct(P) ∈ MTclass , we add S = {Pp(Y, Z),Pp(Y, Z
′)} to S, if Pp(c, d) ∈ Ad for some

c, d ∈ C and there is no S′ ⊂ S such that S′ ∈ S.

From Proposition 58, the definition of complete support families and the results in [73], we obtain:

Proposition 73. The support family constructed from the model MTclass of ProgTclass is complete.

We now turn to determining the repair answer sets, for which we use also a declarative approach. More
specifically, for every nonground DL-atom a(~X) and its nonground support set Sa(~Y) with ~Y = ~X ~X ′,
the rules from Figure 4 are constructed. These form a program Πsupp, which is added to the replacement
program Π̂ to filter candidate deletion repair answer sets as done by the algorithm SupRAnsSet . Here
r(Sa(~Y)) is a suitable representation of a support set Sa(~Y) for a DL-atom a(~X) using predicates p(~X) for
input assertions Pp(~X), resp. pP (~X) (npP (~X)) for ABox assertions P (~X) (¬P (~X)). S̄Aa states that the
ABox part of Sa is marked for deletion if Sa ∩ A 6= ∅, otherwise it is void. Furthermore, Supa is a fresh
predicate not occurring in P , that says a has an applicable support set, i.e. its ABox part is either empty
or not marked for deletion. The resulting program intuitively prunes candidates Î (resp. encodes deletion
repair answer sets) according to the algorithm SupRAnsSet .
Example 74. Consider a simple program Π = 〈O,P〉, where

O = {Student(pat)},

P =

{
(1) man(pat)← DL[Male] man; Male](pat);
(2) ⊥ ← DL[; Student](pat)

}
.

The DL-atom a1 = DL[Male] man; Male](pat) has S1a1
= {Male(pat)} and S2a1

= {Maleman(pat)}
as its support sets, while the DL-atom a2 = DL[; Student](pat) has the support set S1a2

= {Student(pat)}.

32 INFSYS RR 15-03

The declarative program Π̂ ∪ Πsupp ∪ facts(A) contains a data part facts(A) = pStudent(pat) encoding the
ABox assertion Student(pat) using a fresh predicate pStudent(pat), and the rules Π̂ ∪ Πsupp shown in Fig-
ure 5, where

• r(S1a1
) = pMale(pat); S̄1

A
a1

= p̄Male(pat); r(S2a1
) = man(pat); S̄2

A
a1

= ∅; r(S1a2
) =

pStudent(pat); and S̄1
A
a2

= p̄Student(pat).

The rules (1)-(4) correspond to Π̂, the other rules form the program Πsupp encoding the support information
for the DL-atoms a1 in (5)-(10) and a2 in (11)-(14) respectively.

The correctness of the described declarative implementation is now formally stated.

Proposition 75. Let Π = 〈O,P〉 be a ground DL-program, where O is a DL-LiteA ontology, and let
a1, . . . , an be the DL-atoms of Π. Let, moreover, S1, . . . ,Sn be complete nonground support families for
a1, . . . , an w.r.t. O, and let Πsupp be the set of rules of the forms (r1)-(r4) constructed for every support set
from Si covering ai, 1 ≤ i ≤ n. Then

AS (Π̂ ∪Πsupp ∪ facts(A))|Π = RASweak (Π),

where facts(A) = {pP (~c) |P (~c) ∈ A} ∪ {npP (~c) | ¬P (~c) ∈ A} is the set of facts corresponding to the
assertions from A and AS (Π̂ ∪Πsupp ∪ facts(A))|Π = {I|Π | I ∈ AS (Π̂ ∪Πsupp ∪ facts(A))}.

Observe that our declarative implementation computes exactly the weak repair answer sets. Thus, in
some cases rarely met in practice [30] an additional minimality check is needed to ensure that the identified
weak repair answer set is also an flp-repair answer set. This happens in case of cyclic support, i.e. recursion
through a DL-atom that makes an atom true [37]. We illustrate this by the following example:

Example 76. Reconsider Π = 〈O,P〉 from Example 74. For the interpretation Î = {man(pat), ea1 , nea2 , Supa1

pStudent(pat), p̄Student(pat)} we have that (Π̂ ∪Πsupp)
Î
gl contains the rules (1)-(5), (7), (9), (10’), (11) and

(12), where (10’) is the rule ⊥ ← ea2 . It holds that Î is a minimal model of this reduct, thus an answer set
of Π̂ ∪ Πsupp. As p̄Student(pat) ∈ I the repair A′ = A \ {Student(pat)} is extracted from Î . Let us now
look at I|Π = {man(pat)}. Certainly, I|Π is a minimal model of the weak reduct

PI|Π,O
′

weak = {man(pat)},

where O′ = ∅, and therefore I|Π is a weak repair answer set of Π. However, I|Π is not an flp-repair answer
set of Π, since I ′ ⊂ I|Π exists, namely I ′ = ∅, which is a smaller model of the flp reduct

PI|Π,O
′

flp = {man(pat)← DL[Male] man; Male](pat)}.

6 Evaluation

For evaluating the developed deletion repair answer set computation algorithms based on complete support
families, we have built a benchmark suite, consisting of DL-programs over ontologies in DL-LiteA. The
assessment of our algorithms concerned the following aspects:

• Performance. We evaluated the performance of deletion repair answer set computation in comparison
to the standard answer set computation on various benchmarks including Family, Network, Taxi and
LUBM. For the Family benchmark we additionally varied the following parameters:

INFSYS RR 15-03 33

– size of the DL-program data part;

– size of the ontology TBox;

– number of rules in the DL-program.

• Exploiting DL-programs expressive power. We analyzed how various advanced expressive features
allowed in DL-programs like defaults, guesses and recursiveness, influence the repair answer set com-
putation running time (Network, LUBM benchmarks).

• Repair quality. The σ-selection functions that we introduced allow one to restrict the repair search
space to application-relevant repair candidates, thus ensuring a certain level of quality of the results.
We evaluated how the independent σ-selection functions, like bound on the number/type of assertions
eligible for deletion influence the overall algorithm runtime.

• Real world data. To demonstrate the applicability of the developed algorithms to the real world
scenarios, we conducted experiments on the DL-programs from the taxi-driver assignment problem
over the MyITS ontology9 designed for personalized route planning.

6.1 Platform Description

The repair answer set computation approach was evaluated on a Linux server with two 12-core AMD 6176
SE CPUs with 128GB RAM running the HTCondor load distribution system10, which is a specialized work-
load management system for compute-intensive tasks. We used the version 2.3.0 of the dlvhex system. For
each run the system usage was limited to two cores and 8GB RAM. The timeout was set to 300 seconds for
each instance. The experimental data are online available.11

Since to the best of our knowledge no other algorithms for repairing DL-programs are available, we had
to proceed with comparison of our approach to the standard answer set computation.

The list of systems for DL-programs evaluation includes the following:

• The DReW system 12[82] is designed for evaluating DL-programs by means of a rewriting to datalog.
A straightforward implementation of the repair computation was realized within the DReW system
with the naive guess of the repair ABox candidate, followed by a check of its suitability. However,
such implementation turned out to be ineffective even on small instances, since in general the search
space of the repairs is too big for its full exploitation, and guided search is vital to ensure scalability.
We have not performed a full comparison of our implementation with the DReW system, since in its
current version negative queries and the negative updates (operator −∪) are not supported.

• The dlplugin of the dlvhex13, which uses the RacerPro reasoner as a back-end for evaluation of the
calls to the ontology, is another candidate for comparison. However, since the dlliteplugin used for
standard answer set computation for DL-programs over lightweight ontologies scales better than the
former [32], we use the latter for comparison in our experiments.

9http://www.kr.tuwien.ac.at/research/projects/myits/
10http://research.cs.wisc.edu/htcondor
11http://www.kr.tuwien.ac.at/staff/dasha/thesis/experimental data.zip
12http://www.kr.tuwien.ac.at/research/systems/drew/
13https://github.com/hexhex/dlplugin

34 INFSYS RR 15-03

6.2 Evaluation Workflow

We now describe the general workflow of the experimental evaluation.

In the first step of the evaluation process we constructed benchmarks. This was nontrivial, since first
very few benchmarks already exist [82] and second it is difficult to synthesize random test instances whose
conflict space would effectively reflect realistic scenarios. We exploited the existing ontologies and aimed at
building rules and constraints on top of them in such a way that for some data parts the constructed programs
become inconsistent.

When the scenario was defined, we created shell scripts for instance generation with certain varying
parameters (e.g. data size, rules size, TBox size), specific for each benchmark. 14 We then ran the bench-
marks using the HTCondor system and finally extracted the results from the log files of the runs.

For each benchmark we present our experimental results in tables. The first column p in the tables
specifies the size of the instance (varied according to certain parameters specific for each benchmark), and
the number of generated instances in round brackets. For example, the value 10(20) in the first column
states that 20 instances with the size of the parameter equal to 10 were evaluated. The rest of the columns
vary from benchmark to benchmark. They represent configurations, in which the system was tested: AS
(RAS) stands for normal (repair) answer set computation. Restrictions on repairs are applied in some cases,
the meaning of which is separately clarified where tables are presented. The cells contain combinations
of numbers of the form t(m)[n], where t is the total average running time in seconds, m is the number of
timeouts and n is the number of (repair) answer sets computed.

6.3 Benchmarks

For the evaluation of the developed algorithms, we considered the following benchmarks.

(1.1) The Family benchmark describes a scenario, that is built from a version of Example 1 with ABoxes
A50 and A1000 containing 50 and 1000 children and information about their families;

(1.2) The Network benchmark comprises rules with recursiveness and guessing features over an ontology
containing data about availability of nodes and edges of a network. We considered a fragment of the
Vienna transport system with 161 nodes, and its part with 67 nodes, covering central area;

(1.3) The Taxi benchmark represents a driver-customer assignment problem over an ontology with ABoxes
A50 and A500 containing information about 50 and 500 customers respectively. Based on certain
conditions about the drivers, customers, their positions and intentions, the customers are assigned to
drivers for serving needs of customers;

(1.4) The LUBM benchmark is a set of rules with various expressiveness features built over the famous
LUBM ontology15 in its DL-LiteA form containing information about one university. The original
version of LUBM is in ALEHI(D) form. For creating the DL-LiteA version of LUBM we rewrote
if possible and removed otherwise the TBox axioms that do not fall into the DL DL-LiteA. For ABox
generation we used the dedicated Combo tool16.

14The scripts are available at https://github.com/hexhex/dlplugin/benchmarks.
15http://swat.cse.lehigh.edu/projects/lubm/
16http://code.google.com/p/combo-obda/

INFSYS RR 15-03 35

p
A50 A1000

AS
RAS

AS
RAS

no restr lim = 10 no restr lim = 20
10 (20) 0.14 (0)[0] 0.22 (0)[20] 1.73 (0)[20] 63.12 (0)[0] 37.03 (0)[20] 60.21 (0)[20]
20 (20) 0.14 (0)[0] 0.23 (0)[20] 2.10 (0)[19] 62.56 (0)[0] 38.56 (0)[20] 62.19 (0)[20]
30 (20) 0.14 (0)[0] 0.24 (0)[20] 2.33 (0)[18] 62.83 (0)[0] 40.03 (0)[20] 64.27 (0)[20]
40 (20) 0.14 (0)[0] 0.25 (0)[20] 2.88 (0)[11] 63.23 (0)[0] 41.81 (0)[20] 66.81 (0)[20]
50 (20) 0.14 (0)[0] 0.25 (0)[20] 3.93 (0) [1] 63.42 (0)[0] 43.86 (0)[20] 68.87 (0)[20]
60 (20) 0.15 (0)[0] 0.26 (0)[20] 3.93 (0) [2] 63.42 (0)[0] 45.87 (0)[20] 71.63 (0)[20]
70 (20) 0.14 (0)[0] 0.27 (0)[20] 4.00 (0) [0] 63.18 (0)[0] 47.83 (0)[20] 74.14 (0)[20]
80 (20) 0.15 (0)[0] 0.28 (0)[20] 4.08 (0) [0] 63.38 (0)[0] 49.71 (0)[20] 76.35 (0)[20]
90 (20) 0.15 (0)[0] 0.29 (0)[20] 4.48 (0) [0] 63.59 (0)[0] 52.18 (0)[20] 79.14 (0)[20]

100 (20) 0.14 (0)[0] 0.30 (0)[20] 4.42 (0) [0] 63.08 (0)[0] 54.14 (0)[20] 81.81 (0)[20]

Table 2: Family benchmark: data size variations, fixed P and T

p
T500 T5000

AS
RAS

AS
RAS

no restr lim = 10 no restr lim = 10
10 (20) 0.15 (0)[0] 0.32 (0)[20] 1.95 (0)[20] 0.28 (0)[0] 3.58 (0)[20] 6.03 (0)[20]
20 (20) 0.16 (0)[0] 0.47 (0)[20] 2.17 (0)[20] 0.48 (0)[0] 12.89 (0)[20] 15.96 (0)[20]
30 (20) 0.17 (0)[0] 0.68 (0)[20] 2.47 (0)[20] 0.75 (0)[0] 27.76 (0)[20] 31.42 (0)[20]
40 (20) 0.19 (0)[0] 0.93 (0)[20] 2.78 (0)[20] 1.10 (0)[0] 48.46 (0)[20] 53.24 (0)[20]
50 (20) 0.20 (0)[0] 1.25 (0)[20] 3.19 (0)[20] 1.51 (0)[0] 76.39 (0)[20] 81.54 (0)[20]
60 (20) 0.21 (0)[0] 1.58 (0)[20] 3.56 (0)[20] 1.99 (0)[0] 108.33 (0)[20] 114.71 (0)[20]
70 (20) 0.23 (0)[0] 2.09 (0)[20] 4.18 (0)[20] 2.56 (0)[0] 146.62 (0)[20] 152.91 (0)[20]
80 (20) 0.24 (0)[0] 2.54 (0)[20] 4.68 (0)[20] 3.17 (0)[0] 191.37 (0)[20] 198.72 (0)[20]
90 (20) 0.26 (0)[0] 3.06 (0)[20] 5.28 (0)[20] 3.91 (0)[0] 241.51 (0)[20] 248.19 (0)[20]

Table 3: Family benchmark: TBox size variations, fixed P and A50

6.3.1 Family benchmark

The first benchmark is derived from Example 1. For our evaluation we have constructed different scenarios,
varying the size of the TBox, the data part as well as the rule part of the DL-program.

1. Size of the data part. In the first setting, we fixed two ABoxes A50 and A1000, where A50 contains 50
children (7 adopted), 20 female and 32 male adults; and for A1000 twenty times as many. Every child has
at most two parents of different sex and the number of children per parent varies from 1 to 3. Rules (11)
and (12), not involved in conflicts, have been dropped from P . Instances are varied in terms of facts over I
included in P . The parameter reflecting the instance size is p, which ranges from 10 to 100. A benchmark
instance has size p if for every child c, additional facts boy(c) and isChildOf (c, d) appear in P with a
probability p/100, where d is a random male adult non-parent. As the number of facts in P varies, the size
of the actual conflict part in the program can be controlled.

The results for this benchmark are provided in Table 2. For each probability p we generated 20 random
instances with the fixed A50 and A1000 ABoxes, and evaluated the running time for the standard answer
set (column AS) and the repair answer set computation (column RAS) with no restrictions on the repairs
(column no restr) as well as limiting the number of allowed assertions for deletion to 10 for A50 and 20
for A1000 (columns lim = 10 and lim = 20 resp.).

The numbers in the second column reveal that all considered instances are inconsistent, which is recog-
nized by the AS solver within 2 milliseconds. In most cases all the repairs are found for bothA50 andA1000

except for lim = 10 of A50, where the repairs are computed only for some of the instances up to p = 60.

36 INFSYS RR 15-03

p
Rules50 Rules500 Rules5000

RAS RAS lim=10 RAS RAS lim=10 RAS RAS lim=20

10 (20) 0.55 (0)[20] 2.09 (0)[20] 2.56 (0)[20] 23.23 (0)[0] 64.65 (0)[20] 110.92 (0)[20]
20 (20) 0.69 (0)[20] 2.35 (0)[20] 5.22 (0)[20] 77.30 (0)[0] 257.35 (11)[9] 300.00 (20)[0]
30 (20) 0.90 (0)[20] 2.67 (0)[20] 8.50 (0)[20] 158.23 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
40 (20) 0.97 (0)[20] 2.86 (0)[20] 11.86 (0)[20] 128.87 (1)[0] 300.00 (20)[0] 300.00 (20)[0]
50 (20) 1.18 (0)[20] 3.11 (0)[20] 14.91 (0)[20] 144.71 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
60 (20) 1.29 (0)[20] 3.28 (0)[20] 17.68 (0)[20] 164.70 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
70 (20) 1.42 (0)[20] 3.19 (0)[20] 20.11 (0)[20] 186.38 (3)[0] 300.00 (20)[0] 300.00 (20)[0]

Table 4: Family benchmark: rule size variations, fixed T and A50

2. Ontology TBox size. In the second setting, we built instances based on the size of the TBox, leaving the
ontology ABox fixed to A50 and the rule part same as in the previous benchmark setting. The TBox axioms
from Example 1 are extended by the inclusions P v Person for all concepts P , informally stating that
every individual known to be either child, adopted, male or female is a person. Moreover, for each concept
P from the ontology signature and 1 ≤ i ≤ Tmax, we added the following inclusions with probability p/100
(p ranges from 10, 20 to 90).

(1) PMemberOfSocGroupi v P (2) ∃hasIDOfSocGroupi v Person.

Intuitively, (1) reflects that a P -member of a social group i is in the class P , while (2) states that each
individual having ID of a certain social group i is a person.

The evaluation results for this setting are presented in Table 3. One can see that the repair computation
is slower then the standard answer set computation, which is more obvious for T5000; This is due to the
construction of support sets and their exploitation in the declarative approach for repair answer set compu-
tation. In the standard setting, we do not exploit the TBox extensively, and therefore its growing size does
not affect the running time. As expected, bounding a number of eliminated facts to k slows down the repair
computation process.

3. Size of the rule part. The third setting evaluates the influence of the rule part size. Apart from the rules
(11) and (12) from Example 1 that were excluded in the previous settings, we also added for 1 ≤ i ≤ Rmax
and for 1 ≤ j ≤ i with probability p/100 (10 ≤ p ≤ 70) the following rules:

(1) contacti(X ,Y)← contact(X ,Y),not omit(X ,Y) (2) omiti(X ,Y)← omit(X ,Y)
(3) contactj (X ,Y)← contacti(X ,Y),not omitj (X ,Y) (4) omitj (X ,Y)← omiti(X ,Y).

The fresh predicates contacti(c, d) informally mean that d is a contact representative for a child c within
a social group i. The rules (1)-(4) state that if a contact for a child was identified, then this contact can be
propagated to randomly chosen social groups i and j.

The results are presented in Table 4. Standard answer set computation, times out even for smaller
instances, intuitively, this is due to a large numbers of rules in the programs. For a fair comparison, standard
answer set optimization techniques that evaluate independent components of a DL-program separately were
not considered, i.e. instead a monolithic evaluation heuristics was used; the repair model generator does not
support module-based heuristics at the moment and the extensions are nontrivial.

The maximal number of rules that were added is specified in the column “names”. Each such rule is
present in the test instance with probability p/100. We can see that the growing number of rules makes an

INFSYS RR 15-03 37

p AS
RAS

no restr lim = 3 lim = 20 Broken, forbid
2 (20) 0.10 (0)[12] 0.46 (0)[20] 0.84 (0)[20] 0.66 (0)[20] 0.46 (0)[20]
6 (20) 0.10 (0) [5] 0.45 (0)[16] 0.79 (0)[16] 0.61 (0)[16] 0.44 (0)[16]

10 (20) 0.09 (0) [3] 0.43 (0)[14] 0.76 (0)[14] 0.59 (0)[14] 0.43 (0)[14]
14 (20) 0.09 (0) [2] 0.41 (0)[10] 0.71 (0)[10] 0.54 (0)[10] 0.41 (0)[10]
18 (20) 0.09 (0) [0] 0.40 (0) [7] 0.67 (0) [7] 0.51 (0) [7] 0.40 (0) [7]
22 (20) 0.09 (0) [0] 0.41 (0) [9] 0.70 (0) [9] 0.54 (0) [9] 0.41 (0) [9]
26 (20) 0.09 (0) [0] 0.38 (0) [3] 0.63 (0) [3] 0.47 (0) [3] 0.38 (0) [3]
30 (20) 0.09 (0) [0] 0.37 (0) [2] 0.62 (0) [2] 0.46 (0) [2] 0.37 (0) [2]

Table 5: Network-connectivity benchmark results: A67

p
RAS

no restr lim = 3 lim = 20 lim = 100 Broken, forbid

2 (20) 179.49 (1)[19] 280.73 (16)[0] 288.64 (17)[3] 176.06 (1)[19] 125.47 (0)[0]
4 (20) 218.80 (8)[12] 291.80 (18)[0] 295.48 (19)[1] 226.25 (8)[12] 127.68 (0)[0]
8 (20) 230.79 (9)[11] 298.39 (19)[0] 300.00 (20)[0] 232.65 (9)[11] 126.97 (0)[0]

10 (20) 258.08 (14)[5] 300.00 (20)[0] 300.00 (17)[0] 259.69 (14)[6] 125.63 (0)[0]

Table 6: Network-connectivity benchmark results: A161

impact on the running time of the algorithm, which is not surprising, as the added rules introduce conflicts
due to a cycle through negation. Restricting the elimination to 10 facts slows for Rule50 computation down
compared to the unrestricted scenario. For larger instance size, i.e. Rules500, this restriction turns out to be
too strict, thus no repairs are actually found. Weakening the restriction for larger instance size (Rules5000)
produces again some repair answer sets, though only for smaller p. For larger p timeouts result, which
is natural as even for a standard ASP solver and consistent DL-programs with thousands of rules, their
evaluation is time-consuming.

6.3.2 Network benchmark

In the next scenario, the properties of the nodes and edges in a network are described by a fixed ontology
O using predicates Blocked, Broken, Avail for nodes and forbid for edges. The TBox encodes that if
an edge is forbidden, then its endpoint must be blocked, and if a node is known to be broken, then it is
automatically blocked, moreover blocked nodes are not available:

O = { ∃forbid v Block , Broken v Block , Block v ¬Avail }.
We considered two networks, N1 and N2, that are fragments of the Vienna public transportation net.

Network N1 corresponds to the central area of the metro lines and has 67 nodes and 117 edges; N2 covers
all metro lines and part of the urban railways, and has 161 nodes and 335 edges. In each network we
randomly made 30% of the nodes broken and 20% of the edges forbidden; network N2 has in addition 47
blocked nodes. This information is stored in the data part of O.

The experiments were run on two DL-programs Pconn and Pguess over O. Both programs contain as
facts edges and nodes of the graph, as well as randomly generated facts determining the portion of the nodes
on which a condition expressed by the rules of the program is checked. For creating the data part of the
Pconn program, we partitioned the set of nodes randomly into two sets, i.e. the set of in nodes and the set of
out nodes. For each node n from the in set, the fact in(n) is added with probability p/100. For each node
n′ from the set of out nodes, the fact out(n′) is added with probability p′ computed in the following way:

38 INFSYS RR 15-03

p AS
RAS

no restr lim = 3 lim = 10 limc = 10 Broken

2 (20) 180.06 (12)[0] 0.51 (0)[20] 0.91 (0)[19] 0.90 (0)[20] 0.69 (0)[20] 0.50 (0)[20]
10 (20) 15.17 (1) [0] 1.33 (0)[16] 0.89 (0) [2] 1.61 (0)[16] 0.85 (0)[16] 1.31 (0)[16]
18 (20) 0.18 (0) [0] 1.68 (0) [8] 0.90 (0) [0] 1.40 (0) [8] 0.81 (0) [8] 1.68 (0) [8]
26 (20) 0.19 (0) [0] 0.62 (0) [1] 0.97 (0) [0] 0.95 (0) [1] 0.60 (0) [1] 0.62 (0) [1]
34 (20) 0.20 (0) [0] 0.79 (0) [1] 1.04 (0) [0] 1.02 (0) [1] 0.62 (0) [1] 0.78 (0) [1]

Table 7: Network-guessing benchmark results: A67

p
RAS

no restr lim = 10 limc = 100 Broken

2 (20) 178.52 (3)[15] 187.65 (2)[16] 175.64 (2)[16] 179.57 (3)[15]
4 (20) 201.89 (6)[10] 211.10 (7) [9] 213.66 (9) [7] 178.55 (3)[13]
8 (20) 212.18 (10) [2] 215.44 (10) [2] 205.77 (9) [3] 191.97 (7) [5]
10 (20) 190.58 (9) [0] 184.80 (8) [1] 191.54 (9) [0] 191.06 (9) [0]

Table 8: Network-guessing benchmark results: A161

if 0 ≤ p ≤ 20, then p′ = p ∗ 4/100, if 20 ≤ p ≤ 30, then p′ = p ∗ 3/100. Pconn contains, moreover, the
following rules:

Pconn =



(1) go(X,Y)← open(X), open(Y), edge(X,Y);

(2) route(X,Z)← route(X,Y), route(Y,Z);

(3) route(X,Y)← go(X,Y),not DL[; forbid](X,Y);

(4) open(X)← node(X), not DL[; ¬Avail](X);

(5) ok(X)← in(X), out(Y), route(X,Y);

(6) fail ← in(X), not ok(X);
(7) ⊥ ← fail .


Intuitively, (1)-(4) recursively determine routes over non-blocked (open) nodes, where (3) expresses that by
default a route is recommended unless it is known to be forbidden. Rules (5)-(7) encode the requirement
that each node from the in set must be connected to at least one node from the out set via a route, which
amounts to a variation of a generalized connectivity problem.

The running times and repair results for the benchmark with N1 are given in Table 5. The same number
of repairs is computed for all of the RAS settings, but the running times for these settings slightly vary
as expected. The last column, where only broken nodes and forbidden edges are allowed for removal, has
similar running times as the unrestricted setting. This is also the case for network N2 (Table 6), where
this restriction does not yield repairs. Here one also needs to remove blocked/unavailable nodes from the
ontology in order to obtain repairs.

Another setting that we considered is a benchmark over the program Pguess, which has the same rules
(1) and (2) as Pconn, while the rest of the rules are as follows:

(3*) route(X,Y)← go(X,Y),not DL[Block] block ; forbid](X,Y);

(4*) open(X) ∨ block(X)← domain(X), not DL[; ¬Avail](X);

(5*) open(X)← node(X), notDL[; Broken](X), not block(X);

(6*) negis(X)← domain(X), route(X ,Y), X 6= Y ;

(7*) ⊥ ← domain(X), not negis(X)

INFSYS RR 15-03 39

O =

{
(1) Driver v ¬Cust (3) ∃worksIn v Driver
(2) EDriver v Driver (4) worksIn v ¬notworksIn

}

P=



(5) cust(X)← isIn(X ,Y), not DL[; ¬Cust](X);

(6) driver(X)← not cust(X), isIn(X ,Y);

(7) drives(X ,Y)← cust(Y), isIn(Y,Z), isIn(X ,Z),
driver(X), not omit(X ,Y);

(8) omit(X ,Y)← needsTo(Y ,Z), DL[; notworksIn](X,Z),
DL[Driver] driver ; EDriver](X);

(9) ok(Y)← customer(Y), drives(X ,Y);

(10) fail ← customer(Y), not ok(Y);

(11) ⊥ ← fail .


Figure 6: DL-program from Taxi-basic benchmark

The rule (3*) has an update in the DL-atom; the rule (4*) amounts to guessing for all selected nodes
(predicate domain) not known to be unavailable, whether they are blocked or not, i.e. it contains nondeter-
minism, which makes rule processing challenging. Other nodes are open by default, unless they are known
to be broken, which is encoded in the rule (5*). Rules (6*) and (7*) check whether none of the domain
nodes is isolated, i.e. does not have a connection to any other node via a route.

The results for Pguess with the two networks are in Tables 7 and 8, respectively. The facts domain(n)
are added for each node n with probability p/100. For the smaller network N1 one could observe a strict
increase in the running time for p = 2 and p = 10 in the standard answer set computation mode. As many
of the instances for smaller p are consistent, due to the guessing rules the standard answer set solver can not
compute the answer sets within the time frame of 300 seconds. For bigger p the instances are inconsistent
and the conflict is quickly determined by the solver. The results for network N2 in Table 8 show that the
guided search (last column) increases the number of found repairs quit a bit, and less timeouts are hit for
p = 4 and p = 8.

6.3.3 Taxi benchmark

The third experimental setting represents a taxi-driver assignment problem. Imagine a system that assigns
potential customers to taxi drivers under constraints, using (in a simplistic form) the DL-program Π =
〈O,P〉 presented in Figure 6. The (external) ontology O has a taxonomy T in (1)-(3). The logic program
P has the following rules: (5) and (6) single out customers resp. taxi drivers; (7) assigns taxi drivers to
customers in the same region; and (8) forbids drivers of electro-cars to serve needs going outside their
working region. Finally, the rules (9), (10) and a constraint (11) make sure that each customer is assigned to
at least one driver.

1. Repair Quality Assessment. One might argue that in case of inconsistency there are not many possi-
bilities for repairing the given system. Indeed, for instance, removing information about the drivers seems
absurd at the first glance, as some individuals are no longer known to be drivers, and thus assumed to be
customers by default (5). Observe that a complete removal of driver information will not make the system
consistent, but on the contrary will create even more customers, who will then possibly need to be assigned
to the drivers. Therefore, it is obvious that the guided repair search is often crucial and it should not only

40 INFSYS RR 15-03

p AS
RAS

no restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver
10 (20) 0.69 (0)[0] 0.14 (0)[13] 0.75 (0)[11] 0.75 (0)[13] 0.31 (0)[13] 0.26 (0)[13] 0.14 (0)[13]
20 (20) 0.37 (0)[0] 0.15 (0) [8] 0.89 (0) [4] 0.87 (0) [8] 0.32 (0) [8] 0.25 (0) [8] 0.15 (0) [8]
30 (20) 0.22 (0)[0] 0.16 (0) [7] 0.92 (0) [2] 0.89 (0) [7] 0.32 (0) [7] 0.26 (0) [7] 0.16 (0) [7]
40 (20) 0.58 (0)[0] 0.18 (0) [8] 1.06 (0) [1] 1.04 (0) [8] 0.36 (0) [8] 0.28 (0) [8] 0.18 (0) [8]
50 (20) 0.46 (0)[0] 0.18 (0) [7] 1.01 (0) [2] 0.98 (0) [7] 0.36 (0) [7] 0.29 (0) [7] 0.18 (0) [7]
60 (20) 0.22 (0)[0] 0.19 (0)[11] 1.02 (0) [1] 0.99 (0)[11] 0.38 (0)[11] 0.31 (0)[11] 0.19 (0)[11]
70 (20) 0.22 (0)[0] 0.21 (0) [4] 1.00 (0) [0] 0.99 (0) [4] 0.37 (0) [4] 0.29 (0) [4] 0.20 (0) [4]
80 (20) 1.02 (0)[0] 0.22 (0) [9] 1.10 (0) [1] 1.10 (0) [9] 0.40 (0) [9] 0.33 (0) [9] 0.22 (0) [9]
90 (20) 1.30 (0)[0] 0.23 (0)[12] 1.26 (0) [0] 1.20 (0)[12] 0.44 (0)[12] 0.36 (0)[12] 0.24 (0)[12]
100 (20) 1.47 (0)[0] 0.24 (0)[13] 1.20 (0) [0] 1.15 (0)[13] 0.45 (0)[13] 0.37 (0)[13] 0.26 (0)[13]

Table 9: Taxi-basic benchmark results: A50

improve the repair quality but also reduce the computation runtime.
In this setting we evaluated the quality of the repair computation by considering the evaluation time of

the repair computation under various independent selection functions. The latter include restrictions to a
certain set of predicates for deletion (in our case EDriver assertions) and limiting the number of removed
facts, predicates and constants. natural and can be easily justified, one might wonder when removal of
e-car driver is of practical use. We can imagine that e-cars are hybrid and can run on petrol, which for
environmental reasons is undesired, and the government wants to reduce petrol usage. However, in case it
is vital and some customers are left without drivers, they still can switch back to the petrol energy supply.

For the DL-program Π the ABoxA50 contains 50 customers, 20 drivers (among them 19 driving electro-
cars), and 5 regions; every driver works in 2-4 regions. In the program P from above, facts isIn(c, r),
needsTo(c, r), goTo(d, r) for appropriate constants c, d, r from A are randomly added with probability
p/100 under the following constraints: persons are in at most one region; customers need to go to at most one
region, and their position is known in that case. Furthermore, driver positions are added as facts isIn(d, r)
with fixed probabilities of 0.3, 0.7 and 1 growing discretely in accordance with p.

The results for A50 are given in Table 9, where the first column shows in parentheses the number of
instances generated per value p. The second and third column state results for standard and repair answer
set computation, respectively, while the rest of the columns present the running times for repair computation
under various selection functions, i.e. in the fourth and fifth column we restricted repairs by allowing removal
of only a limited number of assertions (3 and 10) and in the sixth and seventh column we computed repairs
where only facts containing 2 predicates and 10 constants are eliminated. Finally in the last column the
results for removing only EDriver facts are shown.

One can see that bounding the number of removed assertions makes the computation slower. For
repdel = EDriver, the guided repair computation effectively reduces the search space, and it helps the
solver to find repairs quicker. In fact, the analysis of the program reveals that most of the valid repairs
exclude certain EDriver concept memberships, since they often cause the omission of driver-customer
assignments and thus violate constraint (11).

2. Real world data. For another benchmark, we considered rules on top of the ontology developed
in the MyITS project, which enhanced personalized route planning with semantic information [39].9 That
ontology is augmented with axioms (1)-(4) in Figure 6 and the axiom (5’) adjoint v ¬disjoint , stating
that adjoint regions are not disjoint; the resulting ontology has 389 TBox axioms on 339 concepts and
41 roles. This scenario is modeled to demonstrate the applicability of the repair answer set computation
approach for TBoxes from the real world domain. We considered DL-programs over two ABoxes A50 and
A500 (containing 10 times as many customers, drivers and e-car drivers as A50). Along with customer

INFSYS RR 15-03 41

p AS
RAS

no restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver
2 (20) 0.25 (0) [5] 4.12 (0) [5] 5.27 (0) [5] 5.32 (0) [5] 5.01 (0) [5] 4.98 (0) [5] 4.10 (0) [5]
10 (20) 0.25 (0) [0] 4.18 (0)[11] 6.19 (0) [7] 6.18 (0)[11] 5.22 (0)[11] 5.15 (0)[11] 4.13 (0) [3]
18 (20) 0.25 (0) [1] 4.24 (0)[14] 6.71 (0)[10] 6.74 (0)[14] 5.34 (0)[14] 5.19 (0)[14] 4.15 (0) [3]
26 (20) 0.25 (0) [1] 4.28 (0)[14] 7.26 (0) [9] 7.42 (0)[14] 5.50 (0)[14] 5.24 (0)[14] 4.22 (0) [5]
34 (20) 0.26 (0) [3] 4.39 (0)[19] 8.54 (0)[16] 8.52 (0)[19] 5.74 (0)[19] 5.40 (0)[19] 4.35 (0) [9]
42 (20) 0.27 (0) [5] 4.42 (0)[18] 9.35 (0)[18] 9.31 (0)[18] 5.86 (0)[18] 5.49 (0)[18] 4.51 (0)[16]
50 (20) 0.29 (0)[10] 4.49 (0)[19] 10.42 (0)[19] 10.29 (0)[19] 6.05 (0)[19] 5.54 (0)[19] 4.63 (0)[19]
58 (20) 0.32 (0)[14] 4.62 (0)[20] 11.48 (0)[20] 11.50 (0)[20] 6.33 (0)[20] 5.63 (0)[20] 4.76 (0)[20]
66 (20) 0.31 (0)[11] 4.61 (0)[20] 11.59 (0)[20] 13.42 (0)[20] 6.27 (0)[20] 5.71 (0)[20] 4.76 (0)[18]

Table 10: Taxi-districts benchmark results: A50

p AS
RAS

no restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

2 (20) 2.11 (0) [0] 9.22 (0) [7] 25.05 (0) [6] 24.91 (0) [7] 12.32 (0) [7] 10.24 (0) [6] 7.56 (0) [0]
10 (20) 2.23 (0) [0] 14.17 (0)[20] 46.37 (0)[20] 46.52 (0)[20] 20.54 (0)[20] 15.75 (0)[15] 12.16 (0) [4]
18 (20) 5.58 (0) [5] 15.96 (0)[20] 51.89 (0)[20] 52.44 (0)[20] 23.11 (0)[20] 17.93 (0)[20] 28.00 (0)[20]
26 (20) 17.95 (0)[12] 18.28 (0)[20] 55.30 (0)[20] 55.84 (0)[20] 25.57 (0)[20] 20.27 (0)[20] 31.76 (0)[20]
34 (20) 37.87 (0)[17] 20.81 (0)[20] 58.71 (0)[20] 58.51 (0)[20] 28.35 (0)[20] 22.93 (0)[20] 36.00 (0)[20]

Table 11: Taxi-districts benchmark results: A500

and driver information from above, the ABoxes also contain data about mutual spatial relations among the
districts of Vienna. These relations are stored using the predicates adjoint and disjoint . The rule part of
the DL-program has the same rules (5)-(6) and (9)-(11) as in Figure 6, while the rules (7) and (8) are as
follows:

(7*) drives(X ,Y)← driver(X), cust(Y),needsTo(X ,Z1),
goTo(X ,Z2),DL[; adjoint](Z1 ,Z2), not omit(X ,Y)

(8*) omit(X ,Y)← DL[; EDriver](X),needsTo(Y ,Z),DL[; notworksIn](X,Z)

Intuitively, the rule (7*) states that a driver can be assigned to a customer only if the driver is going to a
region adjoint to the destination region of the customer. Similar as in the previous scenario, some of the
assignments are dropped if they involve drivers of e-cars aiming at the regions they are not assigned to. The
rule (8*) is the same as the rule (8), with the only difference that the DL-atom involved in it does not have
any updates.

The benchmark results for this setting andA50 are presented in Table 10. Unsurprisingly, the restriction
on the number of assertions allowed for deletion slows down the repair computation again. With the increase
of this limit the running time slightly improves. As in the previous setting the restriction of the set of
predicates allowed for deletion to EDriver does not yield much of the computation overhead; however,
in contrast to the previous setting the number of repairs found decreases. Since the number of districts
increased compared to the previous setting, apart from the information about drivers of e-cars, one needs
to expand the working area of the drivers too; thus removal of notworksIn facts should again increase the
number of obtained repairs.

Table 11 presents the results for the ABox A500. Despite a natural increase in running times compared
to the smaller ABox, repairs are found in many cases for this setting. While the number of regions stays
the same as for A50, proportionally there are more available drivers per district, and more customers can be
served.

42 INFSYS RR 15-03

p AS
RAS

RAS lim = 20 limp = 2 limc = 20 IS
2 (20) 3.97 (0)[0] 13.98 (0)[20] 38.90 (0)[20] 16.01 (0)[20] 15.24 (0)[20] 15.20 (0)[6]
6 (20) 4.25 (0)[0] 16.16 (0)[20] 115.62 (0)[19] 18.08 (0)[20] 18.63 (0)[19] 11.16 (0)[2]

10 (20) 4.64 (0)[0] 18.95 (0)[20] 245.40 (0)[7] 20.85 (0)[20] 20.79 (0)[4] 9.12 (0)[0]
14 (20) 4.86 (0)[0] 21.50 (0)[20] 236.40 (1)[3] 23.73 (0)[20] 23.50 (0)[1] 9.53 (0)[0]
18 (20) 5.33 (0)[0] 24.86 (0)[20] 230.21 (0)[1] 27.11 (0)[20] 26.86 (0)[0] 10.15 (0)[0]
22 (20) 5.54 (0)[0] 28.21 (0)[20] 228.12 (0)[0] 30.19 (0)[20] 29.93 (0)[0] 10.36 (0)[0]
26 (20) 5.71 (0)[0] 31.50 (0)[20] 222.78 (0)[0] 33.84 (0)[20] 33.26 (0)[0] 10.75 (0)[0]
30 (20) 6.07 (0)[0] 36.88 (0)[20] 225.18 (0)[0] 38.82 (0)[20] 38.47 (0)[0] 11.45 (0)[0]
34 (20) 6.36 (0)[0] 42.18 (0)[20] 241.30 (0)[0] 44.29 (0)[20] 44.01 (0)[0] 12.22 (0)[0]
38 (20) 6.55 (0)[0] 46.07 (0)[20] 245.77 (0)[0] 47.87 (0)[20] 47.64 (0)[0] 12.41 (0)[0]
42 (20) 6.93 (0)[0] 52.50 (0)[20] 255.74 (0)[0] 54.17 (0)[20] 56.91 (0)[0] 12.94 (0)[0]
46 (20) 7.15 (0)[0] 56.98 (0)[20] 276.52 (5)[0] 58.96 (0)[20] 58.47 (0)[0] 13.35 (0)[0]
50 (20) 7.53 (0)[0] 63.96 (0)[20] 276.07 (5)[0] 65.79 (0)[20] 65.50 (0)[0] 14.18 (0)[0]

Table 12: LUBM benchmark results

O =

 (1) Student v ¬NonStudent (4)VisitPostDoc v PostDoc
(2) VisitPostDoc v ResearchAssistant (5) Student v OrgHelp
(3) VisitPostDoc v NonStudent



P =



(6) resas(X)← DL[; ResearchAssistant](X);

(7) student(X)← resas(X), notnegStudent(X);

(8) negStudent(X)← resas(X),DL[Student] student ; ¬Student](X);

(9) helps(Y,X)← resas(X),DL[; PostDoc](Y), not omit(Y,X);

(10) omit(Y,X)← helps(Y ,X),DL[; PostDoc](X);

(11) visitPostDoc(Z)← DL[; VisitPostDoc](Z);

(12) orghelp(Z1)← DL[; OrgHelp](Z1);

(13) supports(Z1, Z)← orghelp(Z1), visitPostDoc(Z), not drop(Z1, Z);

(14) negStudent(Z1)← orghelp(Z1), not student(Z1);

(15) student(Z1)← orghelp(Z1),DL[NonStudent] negStudent ; ¬NonStudent](Z1);

(16) drop(Z1, Z)← supports(Z1, Z),DL[; InternationalStudent](Z1).


Figure 7: DL-program from LUBM benchmark

6.3.4 LUBM benchmark

We have evaluated also DL-programs over the famous LUBM ontology17 in its DL-LiteA form. For ABox
generation we used the dedicated Combo tool.18 We considered an extended assignment problem in com-
bination with multiple mutually related defaults (see Figure 7). Informally, the goal of this program is to
construct candidate assignments by identifying postdocs helping students with their research work and orga-
nizational staff supporting visiting postdocs with language related issues. From every model of the program
a set of candidate assignments satisfying additional side constraints expressed by the rules of the program is
extracted.

• The rules (6) - (8) encode the default that research assistants are students unless the contrary is derived.

17http://swat.cse.lehigh.edu/projects/lubm/
18http://code.google.com/p/combo-obda/

INFSYS RR 15-03 43

• The rule (9) assigns postdocs to every research assistant (who is a student by default). In case the
“supposed” student has problems, there is always a person to contact, viz. some assigned postdoc; the
possible assignments are collected in the helps . However, a research assistant may happen to be a
visiting postdoc and thus a postdoc (axiom (4) in O); then, no help from another postdoc is needed
(rule (10)).

• Visiting postdocs do not need help with their work-related problems, but they need language support,
as (being foreigners) they will not know the local language. Hence, a person who can provide or-
ganizational help ought to be found for each postdoc. Rule (11) collects all visiting postdocs into a
respective predicate, and rule (12) similarly persons capable of providing organizational help. Rule
(13) assigns any such person to a visiting postdoc using the supports predicate.

• However, not all people who can provide organizational help are equally good in rule (13), and some
may be exempted; in particular, rule (16) exempts international students from organizational help.

• As for organizational help, persons are assumed to be not students by default (rules (14) - (15)).

The absence of answer sets for the program is caused by the cyclic dependencies of a literal from
its default negation, which manifests in the rules (9)-(10) and (13)-(16). The results of the experiments
are given in Table 12. Standard answer set computation outperforms repair answer set computation; thus
in this benchmark inconsistency is found faster than the first repair. There are many DL-atoms without
input predicates, so called outer DL-atoms. In the standard answer set mode, for these atoms all relevant
constants are retrieved at an early stage, which speeds up the computation. The restricted repairs are found
in this benchmark too, and the results are as expected: the stricter the limit, the less repairs are found
and the more time is needed. The last column of Table 12 shows the results for removal restricted to
InternationalStudents . As one can see, this guided search speeds up the computation but significantly
decreases the number of found repairs. Note that allowing deletion of at most 20 facts leads to higher
running time than the other restrictions; this is explained by the structure of repairs, which do not involve
many different predicates, but the number of facts in each repair is very likely to exceed 20.

7 Discussion

In this section, we discuss extensions of our work for DL-programs on ontologies beyond DL-LiteA and
consider related work on inconsistency management in more detail.

7.1 Further Work

Our notions of repair and repair answer set naturally generalize to DL-programs over ontologies in other
DLs, and similar techniques as above can be employed to compute repair answer sets. In particular, the
approach was extended in [34] to DL-programs over EL ontologies; the EL family [3] includes like the
DL-Lite family prominent DLs that are tractable and despite limited expressiveness still useful for many
application domains. The general complexity results in Sections 3.1 and 3.3 carry over to the core DL
EL, assuming that negative concepts assertions are admissible (which do not affect tractability of standard
reasoning tasks). In absence of such assertions, and thus of the update operators −∪ and −∩, deciding existence
of flp-repair answer sets for normal DL-programs drops to NP. However, like for DL-LiteA deciding
weak - or flp-repair answer set existence is NP-hard for DL-programs with simple structure and input-free

44 INFSYS RR 15-03

DL-atoms where deciding answer set existence is tractable [78]. Furthermore, deletion repairs for ORPs over
EL ontologies are intractable, even in absence of negative assertions, and so are the other repair notions in
Section 3.5 except bounded δ±-change repairs. Intuitively, support sets for DL-atoms over EL ontologies
can involve arbitrarily many assertions, and disabling a support set leads to choosing one of them; thus,
hypergraph 2-colorability, which is well-known to be NP-complete [44], can be easily expressed. Complete
support families for DL-atoms over EL can get very large (exponential size) or even infinite in case of cyclic
TBoxes (which are though less frequent in practice [43]).

To address these issues, a version of the algorithm for repair answer set computation was given in [34]
that operates on incomplete (partial) support families; this algorithm and the underlying framework can be
applied to repair DL-programs over ontologies in other DLs as well. It uses hitting sets to disable known
support sets of negative DL-atoms and performs evaluation postchecks–if needed–to compensate incom-
pleteness of support families. Moreover, it trades answer completeness for scalability by using minimal
hitting sets. A declarative implementation for ontologies in EL is available on top of dlvhex, where partial
support families for DL-atoms are computed by unfolding datalog rewritings of queries over an EL ontol-
ogy; for more details, see [34, 78]. Finally, we remark that the notion of support set has been fruitfully
generalized to HEX programs [38], in which instead of an ontology arbitrary external information sources
of computation can be accessed from an answer set program [32] (see also Appendix A).

7.2 Related Work

Handling inconsistencies in DL-programs is a rather recent issue, which has been targeted in few works,
including [71, 40], and these works focused on inconsistency tolerance. Pührer et al. [71] aimed to avoid
answer sets that are non-intuitive due to inconsistency in DL-atoms, by dynamically disabling rules that
possibly involve spoiled information. Here the underlying assumption is that the ontology can or should not
be changed; for the case where changes are possible, ontology repair was posed as an important open issue.
Fink [40] addressed inconsistency of DL-programs due to the lack of stability in models by resorting to
semi-stable models based on [31], and combined the resulting paracoherent semantics with paraconsistency
techniques for handling classical conflicts (i.e., truth of a formula and its negation) similar as in Description
Logics [60]. Semi-stable models repair in a sense the DL-program by changing the data part, but are quite
different from repair answer sets: indeed, only addition of data is possible, but no deletion; additions are
not restricted to ontology assertions; and noticeably, the additions are treated as unjustified beliefs rather
than as facts that are true. Finally, additions must be smallest possible (w.r.t. set inclusion), which leads to a
complexity increase that makes reasoning from semi-stable models harder than from repair answer sets.

Like for DL-programs, also in other hybrid formalisms so far inconsistency management has concen-
trated on inconsistency tolerance rather than repair. For instance, Huang et al. [49] presented a four-valued
paraconsistent semantics, based on Belnap’s logic [8], for hybrid MKNF knowledge bases [66], which are
the most prominent tightly coupled combination of rules and ontologies. Inspired by the paracoherent stable
semantics from [74], the work [49] was extended in [48] to handle also incoherent MKNF KBs, i.e. pro-
grams in which inconsistency arises as a result of dependency of an atom on its default negation in analogy
to [40]. Another direction of inconsistency handling for hybrid MKNF KBs is using the three-valued (well-
founded) semantics of Knorr et al. [52], which avoids incoherence for disjunction-free stratified programs.
Most recently, this has been extended in [50] with additional truth values to evaluate contradictory pieces
of knowledge, such that inconsistency can be modeled with a new truth value and non-contradictory knowl-
edge that is only derivable from the inconsistent part of a KB is still considered to be true in the classical
sense, or in another view truth which depends on the inconsistent part of a KB is distinguished from truth

INFSYS RR 15-03 45

derivable without involving any contradictory knowledge (also known as suspicious reasoning). However,
these works aim at inconsistency tolerance rather than repair, and are geared in spirit to query answering
that is inherent to well-founded semantics.

In the context of Description Logics, repairing ontologies has been studied intensively, foremost to
handle inconsistency. In particular, Lembo et al. [54] and Bienvenu [12] studied consistent query answering
over DL-Lite ontologies based on the repair technique from databases (see [10]). In the spirit of minimal
change, an inconsistent ontology (with a consistent TBox) is repaired by identifying and eliminating minimal
conflict sets causing (i.e., explaining) the inconsistency; this results in maximal deletion repairs. Note that
our algorithm SupRAnsSet constructs in its search all maximal deletion repairs; in that it is similar to
the ABox cleaning [64, 73] (though in general non-maximal repairs are also computed by our method).
However, our setting differs also in other respects fundamentally from the one in [54, 12]: (i) the ontology
is consistent and inconsistency arises only through the interface of a DL-atom, and (ii) several DL-atom
queries, where each is either an entailment or a non-entailment query, have to be considered en bloc; and
(iii) in addition, individual ABox updates are possible.

Calvanese et al. [22] considered explaining negative answers to instance queries and unions of conjunc-
tive queries in DL-LiteA, i.e., to give reasons for tuples missing from the output, complementing [16] which
considered explanations for positive query answers in DL-Lite . They proposed abductive explanations that
correspond to repairs by increasing the ABox, and they characterized the computational complexity of de-
ciding explanation existence and other reasoning problems around explanations, for arbitrary and preferred
explanations that amount to non-independent σ-selections. In absence of preferences and with empty ABox,
this problem can be seen as a special ORP with a single query and empty update sets, and thus contributes
a tractable case.

Repairing inconsistent non-monotonic logic programs is less developed; Sakama and Inoue [75] used
extended abduction to delete minimal sets of rules; however, notably also adding rules can remove inconsis-
tency from such a program. This was exploited by Balduccini and Gelfond [7], who proposed consistency-
restoring rules that may be added, under Occam’s razor, in order to remove inconsistency. Syränen [80]
aimed at finding reasons for the absence of answer sets and addressed debugging logic programs based on
model-based diagnosis [72], which in a generalized setting was considered by Gebser et al. [45], who pro-
vided explanations why interpretations are not answer sets of a program. Repairing rules in a DL-program
subsumes repair of ordinary nonmonotonic logic programs, and thus represents a challenge as such, espe-
cially if repair goes beyond merely dropping rules. Inconsistent DL-programs can be seen as programs with
bugs that need appropriate debugging techniques for fixing. These were studied in [68], where an approach
building on [80, 45, 70] was developed. The idea is to proceed in a user-interactive way by stepping through
the rules of the DL-program, and to distinguish at each step a set active rules along with an intermediate in-
terpretation. Faulty rules are identified if a conflict is reached in the stepping process. It would be interesting
to see if stepwise debugging and data repair can be fruitfully combined, which remains for future work.

Our ideas on domain-dependent restrictions on repairs are related to the inconsistency policy for databases
discussed e.g. in [77, 63], where the authors presented preference-based techniques for repairing databases;
in the context of DL-programs, this has not been considered before. Finally, the complexity of consis-
tent query answering based on preferred repairs over lightweight ontologies (in particular, in DL-Lite R)
has been recently studied in [13], where for a number of preferences that amount to non-independent σ-
selections intractability was shown, which in most cases is beyond NP.

46 INFSYS RR 15-03

8 Conclusion

We have considered the issue of repairing DL-programs, which are a well-known loose-coupling combina-
tion of nonmonotonic logic rules and description logic ontologies, in case of inconsistency, i.e., when no
answer set (model) of a DL-program exists. To this end, we have introduced repair answer sets based on
repairs, which change the data part (ABox) of the ontology to gain consistency. We have characterized the
computational complexity of repair answer sets, showing that they do not add to the complexity of answer
sets (more specifically, to weak and FLP answer sets) for ontologies in DL-LiteA, which is a prominent
description logic featuring tractable reasoning; this similarly holds for other tractable Description Logics.
Indeed, while we concentrated on DL-LiteA, our general methodology for restoring consistency can be ap-
plied to DL-programs over ontologies in a range of description logics. We have provided selection functions
to single out preferred repairs from candidate set, and we have discussed the benign property of indepen-
dence which allows for local preferred repair selection (filtering).

We have then extended an in-use algorithm for DL-program evaluation for computing repair answer sets.
At the heart of this extension is a generalized Ontology Repair Problem (ORP), which asks for a modified
ABox that simultaneously entails respectively non-entails sets of queries, possibly under individual ABox
updates. While intractable in general, we have presented several non-trivial tractable cases, among them
deletion repairs, which are often applied in practice.

As a naive extension lacks scalability, we developed a new evaluation approach that is based on the
novel notion of support set for DL-atoms, and we showed that for DL-programs over DL-LiteA ontologies,
a complete support family of such supports sets that allows to completely avoid ontology reasoning during
the repair computation can be efficiently constructed. For the experimental evaluation of the approach, we
have built a set of benchmarks in different scenarios that involve different ontologies. The experimental
results are promising; in particular, for inconsistent DL-programs the repair answer set computation is often
faster than standard answer set computation. Furthermore, use-case guided restrictions on repairs did often
not introduce much overhead. Overall, the empirical evaluation has revealed a great potential of the novel
repair methodology.

8.1 Outlook

We can see several directions for future work. One is to consider repair semantics and computation for
DL-programs over Description Logics other than DL-LiteA. As mentioned above, for EL this was done in
[34, 78], but more expressive DLs can be considered, e.g. the DLs SHIQ, SHOIN , and SROIQ that
are important in the Semantic Web context. Orthogonal to other DLs, additional repair possibilities may
be considered besides ABox changes. For repairing DL-rules the works on ASP debugging [41, 45, 80]
may serve as starting point, but the problem is challenging as the search space of possible changes is large.
The latter applies to changes of DL-atoms as well, and in both cases restrictions and/or user interaction
will be necessary. Another direction would be to consider other formalisms for hybrid knowledge bases, or
more general formalisms than DL-programs for combining knowledge bases such as HEX programs [38].
Heterogeneity of external sources in HEX-programs makes both repair and inconsistency-tolerant reasoning
very challenging.

Regarding optimizations, learning techniques may be exploited for repair computation, e.g. caching
of intermediate repairs/repair answer sets, considering correlation patters between them, and identifying
mutual dependence of DL-atoms might be worthwhile. Furthermore, program and repair decomposition can
be considered, where a DL-program is split into modular components that can be handled separately, and

INFSYS RR 15-03 47

local repairs for them are combined into a global repair. It remains to be seen, however, to what extent and
for which program classes the repair methods can be adapted for a modular setting; as regards ABox change,
localization and decomposition methods from databases may be exploited [29].

Another direction are alternative evaluation approaches. Instead of turning answer sets of the replace-
ment program into repair answer sets by suitable changes of the ontology ABox, one could aim at finding
repair answer sets incrementally, e.g., by exploiting debugging based on stepping techniques [68]. In a user-
interactive mode, one traverses the rules of a DL-program until a conflict is identified; if the latter occurred
due to a DL-atom, the ontology ABox is repaired and then the stepping process is continued. While this
strategy may not work in general, it can be of interest in restricted settings, e.g. for stratified DL-programs.

On the practical side, providing other independent selection functions apart from deletions (see Sec-
tion 3) is an important issue, along with means to incorporate domain specific information in the repair
process (e.g., protected ontology parts). This calls for convenient representation and effective exploitation
of such information with the dlliteplugin.

References

References

[1] C. E. Alchourrón, P. Gärdenfors, D. Makinson, On the logic of theory change: Partial meet contraction
and revision functions, J. Symbolic Logic 50 (2) (1985) 510–530.

[2] F. Baader, A. Bauer, M. Lippmann, Runtime verification using a temporal description logic, in: S. Ghi-
lardi, R. Sebastiani (Eds.), Proc. 7th International Symp. Frontiers of Combining Systems (FroCoS
2009), LNCS 5749, Springer, 2009, pp. 149–164.

[3] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: Proc. 19th Joint Conf. Artificial Intelligence
(IJCAI 2005) AAAI Press, 2005, pp. 364–369.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge Univ. Press, 2003.

[5] F. Baader, B. Hollunder, Embedding defaults into terminological knowledge representation for-
malisms, J. Automated Reasoning 14 (1) (1995) 149–180.

[6] F. Baader, C. Lutz, M. Milicic, U. Sattler, F. Wolter, Integrating description logics and action for-
malisms: First results, in: M. M. Veloso, S. Kambhampati (Eds.), Proc. 20th National Conf. Artificial
Intelligence (AAAI 2005), AAAI Press / The MIT Press, 2005, pp. 572–577.

[7] M. Balduccini, M. Gelfond, Logic programs with consistency-restoring rules, in: Proc. International
Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium
Series, California, USA, 2003, pp. 9–18.

[8] N. Belnap, A useful four-valued logic, in: J.M. Dunn and G. Epstein (Eds.), Modern Uses of Multiple-
Valued Logic, Reidel Publishing Company, Dordrecht, 1977, pp. 7–37.

[9] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American 2841 (5).

48 INFSYS RR 15-03

[10] L. E. Bertossi, Database Repairing and Consistent Query Answering, Morgan & Claypool Publishers,
Ottawa, Canada, 2011.

[11] L. E. Bertossi, A. Hunter, T. Schaub, Introduction to inconsistency tolerance, in: L. E. Bertossi et al.
(Eds.), Inconsistency Tolerance [result from a Dagstuhl seminar], LNCS 3300, Springer, 2005, pp.
1–14.

[12] M. Bienvenu, On the complexity of consistent query answering in the presence of simple ontologies,
in: Proc. 26th Conf. Artificial Intelligence (AAAI 2012), AAAI Press 2012, pp. 705–711.

[13] M. Bienvenu, C. Bourgaux, F. Goasdoué, Querying inconsistent description logic knowledge bases
under preferred repair semantics, in: C. E. Brodley, P. Stone (Eds.), Proc. 28th Conf. Artificial Intelli-
gence (AAAI 2014), AAAI Press, 2014, pp. 996–1002.

[14] P. A. Bonatti, M. Faella, I. Petrova, L. Sauro, A new semantics for overriding in description logics,
Artificial Intelligence 222 (2015) 1–48.

[15] P. A. Bonatti, C. Lutz, F. Wolter, The complexity of circumscription in DLs, J. Artificial Intelligence
Research 35 (2009) 717–773.

[16] A. Borgida, D. Calvanese, M. Rodriguez-Muro, Explanation in DL-Lite , in: Proc. 21st International
Workshop on Description Logics (DL 2008), Germany, 2008.

[17] G. Brewka, Preferred subtheories: An extended logical framework for default reasoning, in: Proc. 11th
International Joint Conf. Artificial Intelligence (IJCAI 1989), Morgan Kaufmann, 1989, pp. 1043–
1048.

[18] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun. ACM 54 (12)
(2011) 92–103.

[19] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, Ontology-based database
access, in: M. Ceci, D. Malerba, L. Tanca (Eds.), Proc. 15th Italian Symposium on Advanced Database
Systems, (SEBD 2007), pp. 324–331.

[20] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Lembo, A. Poggi, R. Rosati, MASTRO-I: efficient
integration of relational data through DL ontologies, in: D. Calvanese et al., Proc. 2007 International
Workshop on Description Logics (DL 2007), Vol. 250 of CEUR Workshop Proc., CEUR-WS.org,
2007.

[21] D. Calvanese, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering
in description logics: The DL-Lite family, J. Automated Reasoning 39 (3) (2007) 385–429.

[22] D. Calvanese, M. Ortiz, M. Simkus, G. Stefanoni, Reasoning about explanations for negative query
answers in DL-Lite , J. Artificial Intelligence Research 48 (2013) 635–669.

[23] G. Casini, U. Straccia, Rational closure for defeasible description logics, in: Proc. 12th European Conf.
Logic in Artificial Intelligence (JELIA 2010), 2010, pp. 77–90.

[24] W. W. Cohen, P. D. Ravikumar, S. E. Fienberg, A comparison of string distance metrics for name-
matching tasks, in: Proc. IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03),
2003, pp. 73–78.

INFSYS RR 15-03 49

[25] N. C. A. da Costa, F. Holik, A formal framework for the study of the notion of undefined particle
number in quantum mechanics, Synthese 192 (2) (2015) 505–523.

[26] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, A. Schaerf, An epistemic operator for description
logics, Artificial Intelligence 100 (1-2) (1998) 225–274.

[27] F. M. Donini, D. Nardi, R. Rosati, Description logics of minimal knowledge and negation as failure,
ACM Trans. Comput. Log. 3 (2) (2002) 177–225.

[28] T. Eiter, E. Erdem, M. Fink, J. Senko, Updating action domain descriptions, in: Proc. 19th International
Joint Conf. Artificial Intelligence (IJCAI 2005), Morgan Kaufmann, 2005, pp. 418–423.

[29] T. Eiter, M. Fink, G. Greco, D. Lembo, Repair localization for query answering from inconsistent
databases, ACM Trans. Database Systems 33 (2), (2008) article 10.

[30] T. Eiter, M. Fink, T. Krennwallner, C. Redl, P. Schüller, Efficient HEX-program evaluation based on
unfounded sets, J. Artificial Intelligence Research 49 (2014) 269–321.

[31] T. Eiter, M. Fink, J. Moura, Paracoherent answer set programming, in: Proc. 12th International Conf.
Principles of Knowledge Representation and Reasoning (KR 2010), AAAI Press 2010, pp. 486–496.

[32] T. Eiter, M. Fink, C. Redl, D. Stepanova, Exploiting support sets for answer set programs with external
evaluations, in: Proc. 28th Conf. Artificial Intelligence (AAAI 2014), AAAI Press, 2014, pp. 1041–
1048.

[33] T. Eiter, M. Fink, D. Stepanova, Data repair of inconsistent dl-programs, in: F. Rossi (Ed.), Proc. 23rd
International Joint Conf. Artificial Intelligence (IJCAI 2013), AAAI Press/IJCAI, 2013, pp. 869–876.

[34] T. Eiter, M. Fink, D. Stepanova, Computing repairs for inconsistent dl-programs over EL ontologies,
in: Proc. 14th Joint European Conf. Logics in Artificial Intelligence (JELIA 2014), 2014, pp. 426–441.

[35] T. Eiter, M. Fink, D. Stepanova, Towards practical deletion repair of inconsistent dl-programs, in:
T. Schaub et al. (Ed.), Proc. 21st European Conf. Artificial Intelligence (ECAI 2014), IOS Press, 2014,
pp. 285–290.

[36] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, Well-founded semantics for description logic pro-
grams in the Semantic Web, ACM Trans. Comput. Log. 12 (2), article 11 (41 pp.).

[37] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, H. Tompits, Combining answer set programming
with description logics for the Semantic Web, Artificial Intelligence 172 (12-13) (2008) 1495–1539.

[38] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A uniform integration of higher-order reasoning and
external evaluations in answer-set programming, in: Proc. 19th International Joint Conf. Artificial
Intelligence (IJCAI 2005), Morgan Kaufmann, 2005, pp. 90–96.

[39] T. Eiter, T. Krennwallner, M. Prandtstetter, C. Rudloff, P. Schneider, M. Straub, Semantically en-
riched multi-modal routing, International Journal of Intelligent Transport System Research, DOI
10.1007/s13177-014-0098-8. Online August 05, 2014.

[40] M. Fink, Paraconsistent hybrid theories, in: Proc. 13th International Conf. Principles of Knowledge
Representation and Reasoning (KR 2012), AAAI Press, 2012, pp. 141–151.

50 INFSYS RR 15-03

[41] M. Frühstück, J. Pührer, G. Friedrich, Debugging answer-set programs with ouroboros - extending the
SeaLion plugin, in: Proceedings of the 12th International Conf. Logic Programming and Nonmono-
tonic Reasoning, Spain, 2013, pp. 323–328.

[42] P. Gärdenfors, H. Rott, Belief revision,in: Dov M. Gabbay, C. J. Hogger, J. A. Robinson (Eds.), Hand-
book of Logic in Artificial Intelligence and Logic Programming, vol. 4, Oxford Univ. Press, (1995)
35–132.

[43] T. Gardiner, D. Tsarkov, I. Horrocks, Framework for an automated comparison of description logic
reasoners, in: Proc. International Semantic Web Conference (ISWC 2006), 2006, pp. 654–667.

[44] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman, 1979.

[45] M. Gebser, J. Pührer, T. Schaub, H. Tompits, A meta-programming technique for debugging answer-
set programs, in: Proc. 23rd AAAI Conf. Artificial Intelligence, (AAAI 2008), Chicago, Illinois, USA,
2008, pp. 448–453.

[46] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener-
ation Computing 9 (1991) 365–385.

[47] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, A non-monotonic description logic for reasoning
about typicality, Artificial Intelligence 195 (2013) 165–202.

[48] S. Huang, J. Hao, D. Luo, Incoherency problems in a combination of description logics and rules, J.
Applied Mathematics.

[49] S. Huang, Q. Li, P. Hitzler, Reasoning with inconsistencies in hybrid MKNF knowledge bases, Logic
J. the IGPL 21 (2) (2013) 263–290.

[50] T. Kaminski, M. Knorr, J. Leite, Efficient paraconsistent reasoning with ontologies and rules, in:
Q. Yang (Ed.), Proc. 24th International Joint Conf. Artificial Intelligence (IJCAI 2015), Argentina,
AAAI Press/IJCAI, 2015, to appear.

[51] Y. Kazakov, M. Krötzsch, F. Simancik, The incredible ELK - from polynomial procedures to efficient
reasoning with EL ontologies, J. Automated Reasoning 53 (1) (2013) 1–61.

[52] M. Knorr, J. J. Alferes, P. Hitzler, Local closed world reasoning with description logics under the
well-founded semantics, Artificial Intelligence 175 (9-10) (2011) 1528–1554.

[53] T. Kotek, M. Simkus, H. Veith, F. Zuleger, Towards a description logic for program analysis: Extending
ALCQIO with reachability, in: Informal Proc. 27th International Workshop on Description Logics
(DL 2014), Vienna, Austria, 2014, pp. 591–594.

[54] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Inconsistency-tolerant semantics for de-
scription logics, in: Proc. 4th Conf. Rules and Web Reasoning (RR 2010), Italy, 2010, pp. 103–117.

[55] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Query rewriting for inconsistent DL-Lite
ontologies, in: Proc. 5th International Conf. Web Reasoning and Rule Systems (RR 2011), 2011, pp.
155–169.

INFSYS RR 15-03 51

[56] D. Lembo, V. Santarelli, D. F. Savo, A graph-based approach for classifying OWL 2 QL ontologies, in:
Proc. 26th International Workshop on Description Logics (DL 2013), Germany, 2013, pp. 747–759.

[57] V. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Soviet Physics
Doklady 10 (1966) 707.

[58] M. K. Levin, A. Ruttenberg, A. M. Masci, L. G. Cowell, owl cpp, a C++ library for working with
OWL ontologies, in: Proc. 2nd International Conf. Biomedical Ontology, Buffalo, NY, USA, 2011,
pp. 255–257.

[59] T. Lukasiewicz, A novel combination of answer set programming with description logics for the se-
mantic web, IEEE Trans. Knowledge and Data Engineering 22 (11) (2010) 1577–1592.

[60] Y. Ma, P. Hitzler, Z. Lin, Paraconsistent reasoning for expressive and tractable description logics, in:
Proc. 21st International Workshop on Description Logics (DL 2008), Germany, 2008.

[61] V. W. Marek, M. Truszczyński, Autoepistemic logic, J. ACM 38 (3) (1991) 588–619.

[62] M. V. Martinez, C. Molinaro, V. S. Subrahmanian, L. Amgoud, A General Framework for Reasoning
On Inconsistency, Springer Briefs in Computer Science, Springer, 2013.

[63] M. V. Martinez, F. Parisi, A. Pugliese, G. I. Simari, V. S. Subrahmanian, Policy-based inconsistency
management in relational databases, Int. Journal Approx. Reasoning 55 (2) (2014) 501–528.

[64] G. Masotti, R. Rosati, M. Ruzzi, Practical Abox cleaning in DL-Lite (progress report), in: Proc. 24th
International Workshop on Description Logics (DL 2011), 2011.

[65] B. Motik, I. Horrocks, U. Sattler, Adding integrity constraints to OWL, in: Proc. OWLED 2007 Work-
shop on OWL: Experiences and Directions, Austria, 2007.

[66] B. Motik, R. Rosati, Reconciling Description Logics and Rules, J. ACM 57 (5) (2010) 1–62.

[67] N. T. Nguyen, Advanced Methods for Inconsistent Knowledge Management, Advanced Information
and Knowledge Processing, Springer, 2008.

[68] J. Oetsch, J. Pührer, H. Tompits, Stepwise debugging of description-logic programs, in: Correct Rea-
soning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, 2012, pp. 492–508.

[69] Ö. L. Özçep, R. Möller, Combining DL-Lite with spatial calculi for feasible geo-thematic query an-
swering, in: Y. Kazakov, D. Lembo, F. Wolter (Eds.), Proc. 2012 International Workshop on Descrip-
tion Logics, (DL 2012), Vol. 846 of CEUR Workshop Proc., CEUR-WS.org, 2012.

[70] J. Pührer, Stepwise Debugging in Answer-Set Programming: Theoretical Foundations and Practical
Realisation. PhD thesis, Vienna University of Technology, Vienna, Austria (2014).

[71] J. Pührer, S. Heymans, T. Eiter, Dealing with inconsistency when combining ontologies and rules using
DL-programs, in: Proc. 7th Extended Semantic Web Conference (ESWC 2010), part I, Springer, 2010,
pp. 183–197.

[72] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1) (1987) 57–95.

52 INFSYS RR 15-03

[73] R. Rosati, M. Ruzzi, M. Graziosi, G. Masotti, Evaluation of techniques for inconsistency handling in
OWL 2 QL ontologies, in: Proc. 11th International Semantic Web Conference (ISWC 2012), 2012,
pp. 337–349.

[74] C. Sakama, K. Inoue, Paraconsistent stable semantics for extended disjunctive programs, J. Log. Com-
put. 5 (3) (1995) 265–285.

[75] C. Sakama, K. Inoue, An abductive framework for computing knowledge base updates, Theory and
Practice of Logic Programming 3 (6) (2003) 671–713.

[76] Y.-D. Shen, Well-supported semantics for description logic programs, in: Proc. 22nd International
Joint Conf. Artificial Intelligence (IJCAI 2011), IJCAI/AAAI Press, 2011, pp. 1081–1086.

[77] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query answering in
relational databases, Ann. Math. Artif. Intell. 64 (2-3) (2012) 209–246.

[78] D. Stepanova, Inconsistencies in Hybrid Knowledge Bases, PhD thesis, Vienna University of Technol-
ogy (2015).

[79] U. Straccia, Default inheritance reasoning in hybrid KL-ONE-style logics, in: Proc. 13th International
Joint Conf. Artificial Intelligence (IJCAI 1993), 1993, pp. 676–681.

[80] T. Syrjänen, Debugging Inconsistent Answer-Set Programs, in: Proceedings of the 11th International
Workshop on Nonmonotonic Reasoning, (NMR 2006), University of Clausthal, Department of Infor-
matics, Technical Report, IfI-06-04, 2006, pp. 77–83.

[81] Y. Wang, J.-H. You, L.-Y. Yuan, Y.-D. Shen, Loop formulas for description logic programs, Theory
and Practice of Logic Programming 10 (4-6) (2010) 531–545.

[82] G. Xiao, Inline Evaluation of Hybrid Knowledge Bases, PhD thesis, Vienna University of Technology,
Austria (2014).

A Supplement to Section 2

This section introduces HEX-programs [38] and explains their correspondence with DL-programs (which
are a proper instance of HEX programs). The material is included for the convenience of the reader, as a
supplement to ease deeper understanding of the evaluation algorithm for DL-programs, which is in terms
of the more general class of HEX programs [30]. However, this appendix is not strictly needed and can be
omitted.

A.1 HEX-programs

Apart from the interaction with the DL ontology through a logic program there are other ways of access-
ing information from different external sources. An important generalization of DL-programs are HEX-
programs [38], which accommodate a universal bidirectional interface for arbitrary sources of external
computation. This is achieved by means of the notion of an external atom. Using such external atoms,
whose semantics is abstractly modeled by an input-output relationship, one can access different kinds of in-
formation and reasoning in a single program. HEX-programs have been successfully used in various kinds

INFSYS RR 15-03 53

of applications. Some examples include multi-agent systems, rule-based policy specification, distributed
SPARQL processing, to mention a few.

We assume that for a given HEX-program the vocabulary consists of mutually disjoint sets C of con-
stants, V of variables, P of predicates, X of external predicates. Next we recall syntax and semantics of
HEX-programs.

Syntax. HEX-programs generalize (disjunctive) extended logic programs under the answer set semantics
described earlier with external atoms, allowed in the bodies of the rules. External atoms have a list of input
parameters (constants or predicate names) and a list of output parameters.

Definition 77 (external atom). An external atom a(~Z) is of the form

&g [~Y](~X), (8)

where &g ∈X, ~Y =Y1, . . . , Y`, and ~X = X1, . . . , Xm, such that Yi, Xj ∈ P ∪ C ∪V, for 1≤ i ≤ ` and
1≤ j ≤m, and ~Z is the restriction of ~Y and ~X to elements from V.

An external atom is ground if Yi ∈ C ∪P for all 1 ≤ i ≤ l and Xj ∈ C for all 1 ≤ j ≤ m.

Example 78. Consider the external atom a(~X) = &diff [p, q](~X), where p and q are predicates. The atom
a(~X) computes the set of all elements X , which are in the extension of p but not in the extension of q.

HEX-programs are defined as follows:

Definition 79 (HEX-program). A HEX-program consists of rules r of form

a1 ∨ · · · ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (9)

where each ai is an (ordinary) atom, each bj is either an ordinary atom or an external atom, and n+m > 0.

Like for ordinary logic programs, we refer to H(r) = {a1, . . . , an} as the head of r, and to B(r) =
{b1, . . . , bk,not bk+1, . . . ,not bn} as the body of r.

Example 80. Consider the program Π

d(c)←; q(c)← d(c),&diff [d , p](c);
p(c)← d(c),&diff [d , q](c)

Informally, this program implements a choice from p(c) and q(c)

A program is ground, no variables occur in it. For non-ground HEX-programs, a suitable safety condi-
tions allows to use a grounding procedure that transforms the program to a ground program with the same
answer sets.

Semantics. The semantics of a HEX-program is defined via interpretations I over the Herbrand base,
which is naturally generalized from ordinary logic programs as follows:

Definition 81 (Herbrand base). A Herdbrand Base of a HEX-program Π, denoted HB(Π) is the set of all
atoms constructable from the predicates occurring in Π and the constants from C.

54 INFSYS RR 15-03

Given a HEX-program Π, satisfaction of (sets of) literals, rules, etc. O w.r.t. an interpretation I over
HB(Π), denoted I |= O, extends naturally from ordinary [46] to HEX-programs, and the satisfaction of
a ground external atom &g [~y](~x) is more involved. It is given by the value of a 1+|~y|+|~x|-ary Boolean
function f&g . Formally,

Definition 82 (Satisfaction). Let Π be a HEX-program and I ⊆ HB(Π) an interpretation. The satisfaction
relation is defined as follows:

• for an ordinary atom b, I |= b, if b ∈ I , and I 6|= b, if b 6∈ I;
• for a ground external atom &g [~y](~x), I |= &g [~y](~x), if f&g(I, ~y, ~x) = 1, and I 6|= &g [~y](~x), if
f&g(I, ~y, ~x) = 0;
• I satisfies an (ordinary or external) literal not b, if I 6|= b;
• I satisfies a rule of form (9), if I |= ai for some 1 ≤ i ≤ k or I 6|= bi for some 1 ≤ i ≤ m or I |= bi

for some m < i ≤ n;
• I satisfies a ground HEX-program Π (I is a model of Π), if I |= r for all rules r of Π.

The answer sets of HEX-programs are defined in terms of the flp-reduct.

Definition 83 (flp reduct). Let Π be a HEX-program and let I be an assignment. An flp-reduct of Π w.r.t.
I is a program ΠI

flp = {r ∈ Π | I |= B(r)}.

Definition 84 (flp-answer set). Given a HEX-program Π, an assignment I is an flp-answer set of Π, if I is
a ⊆-minimal model of ΠI

flp . AS flp(Π) denotes the set of all flp-answer sets of a HEX-program Π.

Example 85. Recall the HEX-program from Example 80 and consider an assignment I1 = {d(c)}. The
reduct ΠI1

flp of Π relative to I1 is as follows:

ΠI1
flp = {d(c); p(c)← &diff [d , q](c)}.

Observe, that I1 is a minimal model of ΠI1
flp , therefore I1 ∈ ASflp(Π).

The assignment I2 = {d(c), q(c)} is another flp-answer set of Π. Indeed, the flp-reduct comprises

ΠI2
flp = {d(c); q(c)← &diff [d , p](c)}.

As I2 is the minimal model of ΠI2
flp , we get that I2 ∈ ASflp(Π).

A.2 From HEX-programs to DL-programs

We now provide a correlation between DL-programs and HEX-programs.
Let Π = 〈O,P〉 be a DL-program, whereO is a consistent ontology fixed as an external source and P is

a set of DL-rules. DL-atoms are encoded as external atoms of the form &DL[c+, c−, r+, r−, Q](~x), where
c+, c− (r+, r−) are binary (resp. ternary) predicates andQ is a string which encodes an ontology query. The
query Q is a possibly negated ontology concept or a role name, concept or role subsumption or its negation.

The oracle function of &DL is defined by

f&DL(I, c+, c−, r+, r−, ~x) = 1 ⇐⇒ O ∪ U I(c+, c−, r+, r−) |= Q(~x),

where U I(c+, c−, r+, r−) is an update to O, specified by the (extension of the) predicates c+, c−, r+, r−.
More specifically, it contains for each c+(C, a) ∈ I (resp. c−(C, a) ∈ I), a concept assertion C(a) (resp.
¬C(a)). Updates of roles, generated by the predicates r+ and r− are analogous.

INFSYS RR 15-03 55

Example 86. DL[Male] boy ; Male](X) from Figure 1 is translated to &DL[c+, c−, r+, r−,Male](X),
s.t. P is extended by the rule c+(Male, X)← boy(X), and the predicate c+ does not occur elsewhere P .

The rule (9) of P in Figure 1 corresponds to the following rules in the HEX-program:

P =


(9) hasfather(X ,Y)← &DL[c′+, c′−, r′+, r′−, hasParent](X,Y),

&DL[c+, c−, r+, r−,Male](Y);

(9’) c+(Male,X)← boy(X)



B Proofs of Section 3

Proof of Theorem 16. (i) NP-completeness result for normal Π and x = weak.
(Membership) Let Π = 〈O,P〉 be a normal DL-program, where O = 〈T ,A〉. The algorithm of deciding
whether RAS (Π) 6= ∅ proceeds as follows: we guess an interpretation I , the values of the DL-atoms and
the repair ABox A′. We then check whether I is a repair answer set of Π as follows:

(1) evaluate all DL-atoms over O′ = 〈T ,A′〉 and compare their values with the guessed values;

(2) check whether I is a minimal model of the reduct PI,O
′

weak.

The check (1) is feasible in polynomial time, which follows from the Proposition 15. As for the check
(2), observe that the reduct PI,O

′

weak is constructable in polynomial time, and it is a normal positive ASP
program, which has a single model. Therefore, the check (2) is also polynomial. The above algorithm
solves the target problem, which proves its membership in NP.

(Hardness) The NP-hardness is inherited from ordinary normal logic programs, whose repair answer sets
coincide with their answer sets; as deciding answer set existence for normal logic programs is NP-hard [61],
the result follows.

(ii) ΣP
2 -completeness result for arbitrary Π and x = weak.

(Membership) The overall algorithm of deciding the existence of a weak repair answer set proceeds as
follows: we guess an interpretation I , values of DL-atoms and an ABox A′ and then check whether:

(1) the real values of DL-atoms over I and O′ = 〈T ,A′〉 coincide with the guessed values;

(2) I is a minimal model of PI,O
′

weak.

Like in (i) the check (1) is polynomial. PI,Oweak is a propositional disjunctive program. Deciding whether I is
its minimal model can be verified with a call to an NP oracle, from which the membership in ΣP

2 follows.

(Hardness) Similar like in (i), the hardness results for arbitrary DL-programs and weak RAS -existence are
inherited from the answer set existence for ordinary disjunctive logic programs.

(iii) ΣP
2 -completeness result for normal Π and x = flp.

(Membership) We can guess a repair A′ together with an interpretation I and then check whether I is an
flp-repair answer set of Π′ = 〈O′,P〉, where O′ = 〈T ,A′〉. Constructing the reduct PI,O

′

flp is polynomial,
as we only need to pick those rules of Π whose body is satisfied by I , and all DL-atoms can be evaluated in
polynomial time. With the reduct PI,O

′

flp at hand we then need to check whether

56 INFSYS RR 15-03

(1) all values of DL-atoms over O′ coincide with the guessed ones;

(2) I is a minimal model of PI,O
′

flp .

The check (1) can be done in polynomial time. For (2) we have that the interpretation I is not a minimal
model of PI,O

′

flp iff there exists an interpretation I ′ ⊂ I such that I ′ |= PI,O
′

flp . A guess for I ′ is verifiable

in polynomial time, thus deciding whether I is not an answer set of PI,O
′

flp is in NP. From this we get that

deciding whether I is an answer set of PI,O
′

flp is in co-NP. Hence for the check (ii) we need to make a call to
a co-NP oracle. Since having an oracle for co-NP is equivalent to having an oracle for NP, we get that the
overall problem can be solved in NPNP = ΣP

2 .

(Hardness) We prove the Σp
2-hardness result by a reduction from deciding validity of a QBF formula

φ = ∃x1 . . . xn∀y1 . . . ymE, n,m ≥ 1, (10)

where E = χ1 ∨ . . . ∨ χr is a DNF formula, and each χk = lk1 ∧ lk2 ∧ lk3 is a conjunction of literals over
atoms x1, . . . , xn, y1, . . . , ym.

For each atom xi we introduce a fresh concept Xi, and for each atom yj we introduce a fresh concept Yj
and a fresh logic program predicate yj . Furthermore, we introduce an additional fresh predicate w. Given
φ, we construct Π = 〈∅,A,P〉 with A = {X1(b), . . . , Xn(b)} and P as follows:

P =



(1) ⊥ ← not DL[; Xi](b), not DL[; ¬Xi](b);

(2) ⊥ ← DL[; Yj](b);

(3) ⊥ ← DL[; ¬Yj](b);
(4) w(b) ← not w(b);

(5) yj(b) ← w(b);

(6) w(b) ← f(lk1), f(lk2), f(lk3)


,

where f(xi) = DL[Xi] w; Xi](b), f(yj) = DL[Yj] yj , Yj] w; Yj](b),
f(¬xi) = DL[Xi −∪ w; ¬Xi](b), f(¬yj) = DL[Yj −∩ yj , Yj −∪ w; ¬Yj](b).

Intuitively, the rules of the form (1) of P ensure that for each xi at least one of Xi(b) and ¬Xi(b) is present
in the repair ABoxA′, while the rules (2) and (3) forbid that Yj(b) resp. ¬Yj(b) is inA′. The rule (4) forces
each consistent flp-repair answer set of Π to contain w(b). The rule (5) ensures that the ground atoms of
the form yj(b) are also contained in each repair answer set. Finally, the rules of the form (6) are present in
P for each clause χk of φ. For each literal lkh in χk these rules have a DL-atom f(lkh) in the body, which
poses to the ontology under some updates an instance query corresponding to the literal lkh .

We now formally show that φ is valid iff RAS flp(Π) 6= ∅.
(⇒) Let φ be valid and let ν(φ) be a satisfying assignment, i.e. for all extensions of ν to variables

y1, . . . , ym it holds that ν(φ) is true. From this we construct a repair ABox A′ as follows. If ν(xi) = true,
then Xi(b) ∈ A′, otherwise ¬Xi(b) ∈ A′. By construction the repair A′ represents a maximal consistent
subset of {Xi(b), ¬Xi(b) | 1≤ i≤n}. Therefore, the constraints (1)-(3) are not violated under A′.

We now show that for any interpretation I the body of at least one rule of the form (6) of Π′ = 〈∅,A′,P〉
must be satisfied by I . Let us consider various possibilities for an interpretation I of Π′.

INFSYS RR 15-03 57

• I ∩ {y1(b), . . . , ym(b)} = ∅. Let us look at an extension ν ′ of ν, under which all variables yj of φ
are false. Since ν ′(φ) = true , there must exist a clause χk, such that ν ′(χk) = true . Consider the
rule rk of the form (6) that corresponds to χk. The clause χk is a conjunction of literals, thus all
of its conjuncts over yj must be negative. We have that each ¬yj occurring in χk corresponds to a
DL-atom of the form f(¬yj) = DL[Yj −∩ yj , Yj −∪w; ¬Yj](b). As yj(b) 6∈ I , it holds that λI(f(yj)) =
{¬Yj(b)}, leading to I |=O′ f(¬yj). All DL-atoms of the forms f(xi) and f(¬xi) are satisfied by
the construction of A′.

• I ∩ {y1(b), . . . ym(b)} 6= ∅. Let us look at an extension ν ′ of ν such that

ν ′(yj) =

{
true, if yj(b) ∈ I
false, if yj(b) 6∈ I.

Since ν(φ) is a satisfying assignment of φ, there must exist a clause χk in φ such that ν ′(χk) = true .
Let us look at the rule rk of the form (6) corresponding to χk. For all literals lkh we have that
I |= f(lkh). Indeed, if lkh is a literal over xi, then the corresponding DL-atom is true by construction
of A′. If lkh = yj then as ν ′(yj) = true we have that yj(b) ∈ I and thus λI(f(yj)) = {Yj(b)}.
Similarly, if lkh = ¬yj , then λI(f(¬yj)) = {¬Yj(b)}. Therefore, I |= f(lkh) for all lkh occurring in
χk.

So we have that for any I the body of at least one rule rk of the form (6) must be satisfied, and hence
the rule rk must be present in the reduct PI,O

′

flp . Moreover, if Π′ has some flp-answer set I , then it must

contain w(b) (this follows from w(b)← not w(b)), and thus the rule of the form (4) is not in PI,O
′

flp . Finally,
according to the rules (5) the answer set I should also contain all yj(b) for 1 ≤ j ≤ m.

As there are no other atoms which could be in the answer set, we now show that I = {w(b), y1(b), . . . , ym(b)}
is a minimal model of PI,Oflp . First, obviously I satisfies all rules of the reduct; we only need to show its min-

imality. Towards a contradiction, assume that there is an interpretation I ′ ⊂ I , such that I ′ |= PI,O
′

flp . There
are two possibilities: either w(b) ∈ I ′ or w(b) 6∈ I ′. The former can not be true, as then there is some yj(b),
such that yj(b) 6∈ I ′, and hence for some rule r of the form (5) we have that r is not satisfied by I ′. If the
latter holds, then we know that there are no rules of the form (6), whose body is satisfied by I ′. Consider an
extension ν ′′ of the assignment ν to the atoms yj , such that ν ′′(yj) = true , if yj(b) ∈ I ′, and ν ′′(yj) = false
otherwise. We know that ν ′′(φ) = true , i.e. there is a disjunct χk in φ, such that ν ′′(χk) = true . Let us
look at the rule rk corresponding to the disjunct χk. All DL-atoms f(xi) are satisfied by I ′, due to the
construction of the ABox A′. The DL-atoms of the forms f(yj) are satisfied by I ′, because yj(b) ∈ I ′, and
thus λI(f(yj)) |= Yj(b). Similarly, the DL-atoms of the form f(¬yj) are satisfied, as for them we have that
yj(b) 6∈ I ′, and thus λI(f(¬yj)) |= ¬Yj(b). Hence I ′ must satisfy B(rk); but since w(b) 6∈ I ′, we have that
I ′ 6|= rk, leading to a contradiction. Therefore, I is indeed an flp-repair answer set of Π.

(⇐) Let I ∈ RAS flp(Π) be some flp-repair answer set of Π with a repair ABoxA′, i.e. I ∈ ASflp(〈T ,A′,P〉).
Since I is a repair answer set, the repair ABoxA′ must contain a nonempty consistent subset of {Xi(b),¬Xi(b)},
1 ≤ i ≤ n because of constraints of the form (1). We construct an assignment ν of φ from A′ as follows:

ν(xi) =

{
true, if Xi(b) ∈ A′

false, if ¬Xi(b) ∈ A′.

We now show that ν is a satisfying assignment of φ, i.e. for any extension ν ′ of ν to the values of yj , we have
that ν ′(φ) = true . Towards a contradiction, assume that this is not the case, i.e. there exists an extension ν ′

of ν to the values of yj , such that ν ′(φ) = false , that is ν ′(χk) = false for all clauses χk of φ.

58 INFSYS RR 15-03

Let us now look at the interpretation I ′ of Π′, such that yj(b) ∈ I ′, if ν ′(yj) = true and yj(b) 6∈ I ′,
if ν ′(yj) = false . We know that I ⊃ I ′ is a minimal model of PI,O

′

flp . Therefore, it must hold that I ′ 6|= r

for some rule r of PI,O
′

flp , i.e. I ′ |= B(r), but I ′ 6|= H(r). Observe that the reduct PI,O
′

flp contains only the
rules (5) and (6). Since w(b) 6∈ I ′ by construction, the rule r that I ′ does not satisfy can not be of the form
(5), hence it must be of the form (6). Let us look at the corresponding clause χk in φ. By our assumption
ν ′(χk) = false , i.e. there is a conjunct lkh in χk, such that ν ′(lkh) = false . We distinguish the following
cases:

• lkh is a literal over xi. We know that λI
′
(f(lkh)) = ∅, because w(b) 6∈ I . Thus it must be true that

A′ |= f(lkh). Since A′ is a repair, by Definition 24 it must be consistent. Thus the query of f(lkh)
must be explicitly present in A′, i.e. Xi(b) ∈ A′, if lkh = xi; ¬Xi(b) ∈ A′, if lkh = ¬xi. However,
then by construction of ν ′ we have that ν(lkh) = true , which leads to a contradiction.

• lkh is a literal over yj . There are two possibilities: either lkh = yj or lkh = ¬yj .

– First suppose that lkh = yj . The corresponding DL-atom f(yj) = DL[Yj] yj , Yj] w; Yj](b)
is true under I ′ by our assumption. Since the repair ABox A′ is consistent and does not contain
any concepts of the form Yj(b), it must hold that λI

′
(f(yj)) |= Yj(b). Observe that w(b) 6∈ I ′,

thus it must be true that yj(b) ∈ I ′; however, then ν ′(lkh) = true , leading to a contradiction.

– Now assume that lkh = ¬yj . We have that I ′ |= f(¬yj), where f(¬yj) = DL[Yj −∩ yj , Yj −∪w; ¬Yj](b).
It must hold that λI

′
(f(¬yj)) |= ¬Yj(b), and hence yj(b) 6∈ I ′ since w(b) 6∈ I ′. Therefore,

ν ′(yj) = false , i.e. ν ′(lkh) = true , contradicting our assumption.

We have shown that ν ′ is a satisfying assignment for φ for each extension of ν to variables yj , from which
the validity of φ follows.

Proof of Proposition 26. A guess forA′ is verifiable in polynomial time, as deciding all 〈T ,A′ ∪Ui〉 |= Qi
is polynomial in DL-LiteA [21]. NP-hardness is shown by a reduction from SAT instances φ = χ1∧· · ·∧χm
over atoms x1, . . . , xn. We construct the ORP R = 〈〈T , ∅〉, D1, D2〉, using concepts Xi, X̄i for the xi, Cj
for the χj , and a fresh concept ν as follows:

• T = {Xj vCi, X̄j′ vCi | 1 ≤ i ≤ m,xj ∈ χi,¬xj′ ∈ χi}

• D1 = {〈∅, Ci(b)〉, 〈Ui,¬Ci(b)〉, 〈Vj , A(b)〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
where Ui = {X̄k(b), Xk′(b) |xk ∈ χi,¬xk′ ∈ χi}, 1 ≤ i ≤ m, and Vj = {¬Xj(b),¬X̄j(b)},
1 ≤ j ≤ n; and
• D2 = {〈∅,¬Ci(b)〉 | 1 ≤ i ≤ m} ∪ {〈∅, A(b)〉}.

Intuitively, by D2 a repair A′ must not contain ¬Ci(b) nor A(b), and must be consistent. By D1 the
repair must entail Ci(b). Therefore, for each i, the ABox A′ must contain some Xk (resp. X̄k), such that
Xk v Ci (resp. X̄k v Ci). Moreover, adding either Ui or Vj toA′ causes inconsistency. The former implies
that A′ contains some ¬X̄k(b) (resp. ¬Xk(b)) such that xk ∈ χk (¬xk ∈ χk), and the latter implies that at
least one of ¬Xk(b) and ¬X̄k(b) must be in A′ for all 1 ≤ k ≤ n. Since in addition the ABox is consistent
as argued above, it can not contain both ¬X̄k and ¬Xk thus A′ represents a consistent choice of literals that
satisfies φ.

We formally show that φ is satisfiable iffR has a repair.

INFSYS RR 15-03 59

(⇒) Let ν be a satisfying assignment for φ. We construct a repair ABoxA′ forR as follows: if a variable
xk is set to true in the satisfying assignment of φ, then we addXk(b) and ¬X̄k(b) to the ABoxA′, otherwise,
i.e. if xk is set to false in ν, we add X̄k(b) and ¬Xk(b) to A′. We now verify whether the constructed ABox
is indeed a repair forR by checking whether it satisfies the conditions (i) to (iii) of Definition 24.

(i) T ∪A′ is consistent, since ν is a consistent set of literals (not bothXk(b) and¬Xk(b) (resp. X̄k(b),¬X̄k(b))
can be present in A′).

(ii) We check whether for all 〈U1
i , Q

1
i 〉 ∈ D1 it holds that T ∪ A′ ∪ U1

i |= Q1
i . Let us first consider

〈∅, Ci〉, 1 ≤ i ≤ m. Observe that ν is a satisfying assignment of φ, therefore each clause of φ is
satisfied under ν. Thus, for each clause either there exists a variable xj occurring as a disjunct in the
clause Ci positively and being set to true in the satisfying assignment ν or occurring negatively as a
disjunct in Ci and being set to false in ν. By construction of A′, we have that T ∪ A′ |= Ci(b) for all
1 ≤ i ≤ m due to the inclusion Xj v Ci (resp. X̄j v Ci). Similarly, we have that for all Ui, A′ ∪ Ui
is inconsistent and, therefore trivially entails ¬Ci(b). Finally, since the assignment ν is full, each xi
has a truth value. Hence, due to the form of updates Vj , we have that A′ ∪ Vj is inconsistent for all j,
and thus the queries A(b) are also entailed.

(iii) It is left to show that for all 〈U2
i , Q

2
i 〉 ∈ D2 we have that T ∪ A′ ∪ U2

i 6|= Q2
i . The latter holds since

the ontology 〈T ,A′〉 is consistent, and there is no way to derive either ¬C(b) or A(b) by means of
the TBox axioms and the facts in A′.

The above shows that the ABox A′ is indeed a solution to theR.

(⇐) Now assume that there exists an ABox A′ that is a solution toR. We show that then the formula φ
is satisfiable. First since T ∪A′∪Vj |= A(b), T ∪A′ 6|= A(b) and T ∪Vj 6|= A(b), we have that T ∪A′∪Vj
must be inconsistent. Moreover, as T ∪ A′ 6|= ¬Ci(b), we know that the inconsistency must occur due to
the facts Xj(b), X̄j(b). Therefore, for each j either ¬Xj(b) or ¬X̄j(b) must be inA. Observe now, that due
to 〈∅, Ci(b)〉, 〈Ui,¬Ci(b)〉 ∈ D1, the ABox A′ must contain such Xj(b) (resp. X̄j(b)), that xj (resp. ¬xj)
is a disjunct in the clause χi. Moreover, due to 〈Ui,¬Ci(b)〉 for some k such that xk ∈ χi (or ¬xk ∈ χi),
it must hold that ¬X̄k(b) (resp. ¬Xk(b)) is in A′. The above argument shows that the ABox A′ encodes a
satisfying assignment ν for φ: if Xi(b) ∈ A′, then ν(xi) = true; if X̄i(b) ∈ A′, then ν(xi) = false.

Proof of Theorem 27. NP-hardness of an ORP holds by a reduction from SAT. Given φ=χ1∧ · · · ∧χm on
atoms x1, . . . , xn, we construct R = 〈〈∅, ∅〉, D1, D2〉, with concepts Xj , X̄j for the xj and a fresh concept
A, such that

• D1 = {〈Ui, A(b)〉, 〈Vj , A(b)〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
where Ui = {X̄j(b), Xj′(b) | xj ∈ χi,¬xj′ ∈ χi}, 1 ≤ i ≤ m and Vj = {¬Xj(b),¬X̄j(b)},
1 ≤ j ≤ n, and
• D2 = {〈∅, A(b)〉}.

Intuitively, by D2 a repair A′ must not contain A(b), and by D1 adding either (i) Ui or (ii) Vj to A′ causes
inconsistency. By (i) A′ must contain at least one ¬X̄j(b) (resp. ¬Xj(b)) such that xj ∈ χi (¬xj ∈ χi),
and by (ii) at least one of Xj(b), X̄j(b) must be in A. Furthermore, D2 forbids both Xj(b),¬Xj(b) (resp.
X̄j(b),¬X̄j(b)) to be in A′. Thus A′ encodes a consistent choice of literals that satisfies φ.

60 INFSYS RR 15-03

Proof of Theorem 35. The guess of the repair A′ ⊆ A out of 2n candidates, where n = |A|, is verifiable in
polynomial time. The NP-hardness for the cases (i) and (ii) is proved separately.

(i) NP-hardness for (i) is shown by a reduction from SAT instances φ = χ1 ∧ · · · ∧ χm over atoms
x1, . . . , xn. We construct the ORPR = 〈〈T , ∅〉, D1, D2〉, where all Uki are empty for k ∈ {1, 2}. We
use concepts Xj , X̄j , X

′
j for the xj , Ci for the χi as follows:

– T = {Xj v Ci, X̄j′ v Ci, | xj ∈ χi, ¬xj′ ∈ χi, 1 ≤ i ≤ m} ∪ {X̄k v ¬X ′k | 1 ≤ k ≤ n}

– A = {Xj(b), X̄j(b) | 1 ≤ j ≤ n}

– D1 = {〈∅, Ci(b)〉 | 1 ≤ i ≤ m},

– D2 = {〈∅,¬(Xj v X ′j)〉 | 1 ≤ j ≤ n}.

Intuitively, the queries in D1 ensure that at least one Xj(b) (resp. X̄j(b)) is present in the ontology
ABox, such that xj (resp. ¬xj) is a disjunct in χi. The queries in D2 forbid both Xj(b) and X̄j(b) to
be in the ABox, which is expressed by the non-containment query ¬(Xj v X ′j) and TBox axioms of
the form X̄j v ¬X ′j . Therefore, the solution toR encodes a satisfying assignment of φ.

We now formally prove that φ is satisfied iff σdel solution forR exists.

(⇒) Let φ be satisfiable, and let ν be a satisfying assignment of φ. From this we construct a solution
A′ to R as follows: if ν(xj) = true , then Xj(b) ∈ A′, otherwise, X̄j(b) ∈ A′. The ontology
O′ = 〈T ,A′〉 is clearly consistent. Assume towards a contradiction that A′ is not a solution to R.
That is, either (1) D1 contains a tuple 〈∅, Q1

i 〉, such that O′ 6|= Q1
i or (2) some 〈∅, Q2

j 〉 exists in D2,
such that O′ |= Q2

j . If (1) holds then Ci(b) is not entailed for some i from O′. That means that there
is a conjunct χi ∈ φ, such that for none of its disjuncts xj (resp. ¬xj) we have the corresponding
assertion Xj(b) (resp. X̄j(b)) in A′. Hence by construction none of the literals in χi is true under ν,
meaning that ν(χi) = false and thus ν(φ) = false , i.e. contradiction. If (2) holds then for some j we
have that Xj(b) and ¬X ′j(b) are entailed by O′. As by construction of A′ it holds that A′ ⊆ A, both
Xj(b) and ¬X ′j(b) are entailed only if Xj(b), ¯Xj(b) ∈ A′. This can not happen, as A′ is built from a
satisfying assignment ν of φ, and thus it represents a consistent set of values for xj . Hence we arrived
at a contradiction.

(⇐) LetA′ be a σdel solution toR. From this we construct a satisfying assignment ν for φ as follows:

ν(xj) =

{
true, if Xj(b) ∈ A′ or Xj(b), X̄j(b) 6∈ A′

false, if X̄j(b) ∈ A′.

We show that ν(φ) = true . Observe that for every Ci there must exist Xj (resp. X̄j), such that
Xj v Ci (resp. X̄j v Ci) due to the tuples 〈∅, Ci(b)〉 in D1 and the fact that A′ ⊆ A. Thus by
construction of ν in each clause χi some disjunct is true. It is left to show that ν is well defined,
i.e. it is not the case that (i) either ν(xj) = true or ν(xj) = true is defined for every j, and (ii) it
is not the case that ν(xj) = true and ν(xj) = false for some j. In other words we need to show
that ν(xj) 6= ν(¬xj). Towards a contradiction suppose that this is not the case. Then for some i it
holds that ν(xj) and ν(¬xj) have the same value. Then Xj(b) and X̄j(b) are entailed from O for
some j, and therefore X ′j(b) is also entailed from O due to X̄j v X ′j ∈ T . However, this means that

INFSYS RR 15-03 61

O′ |= ¬(Xj v X ′j), which is forbidden by the respective tuple 〈,¬(Xj v X ′j)〉 in D2. The latter
means that A′ is not a solution to R, leading to a contradiction. Thus ν is a satisfying assignment of
φ.

(ii) NP-hardness for (ii) is shown by a reduction from monotone not-all-equal SAT (NAE-SAT) instances
φ = χ1 ∧ · · · ∧ χm over atoms x1, . . . , xn [44]. In monotone NAE-SAT, all occurrences of literals
in clauses are positive, but a formula is “satisfied” only if there is an assignment under which both
a literal assigned to true and a literal assigned to false occur in each clause. We construct ORP
R = 〈〈∅, ∅〉, D1, D2〉, using concepts Xj , X̄j for the xj , Ci for the χi as follows:

– A = {Xj(b), X̄j(b) | 1 ≤ j ≤ n},

– D1 = {〈{¬Xj(b) | xj ∈ χi}, Ci(b)〉, 〈{¬X̄j′(b) | xj′ ∈ χi}, Ci(b)〉 | 1 ≤ i ≤ m},

– D2 = {〈∅,¬(Xj v ¬X̄j)〉, 〈∅, Ci(b)〉 | 1 ≤ j ≤ n, 1 ≤ i ≤ m}.

Intuitively, the queries Q1
i can only be satisfied if the repair ABox A′ is inconsistent with the updates

U1
i , as T = ∅ and explicit presence of Ci(b) in A′ is forbidden by tuples 〈∅, Ci(b)〉 ∈ D2. Therefore,

for every χi some Xj(b) ∈ A′ must exist such that xj is a conjunct in χi, which is ensured by
〈{Xj | xj ∈ χi}, Ci〉 ∈ D1. However, also some X̄j′(b) must be in A′, such that xj′ ∈ χi, which is
ensured by 〈{Xj′ | xj′ ∈ χi}, Ci〉 ∈ D1. By 〈∅,¬(Xj v X̄j)〉, the indices j and j′ must be different,
thus the repair ABox encodes a consistent choice of truth values for variables in φ, corresponding to
a satisfying assignment of φ.

We now formally show that φ is a positive instance of monotone NAE-SAT iff the R has some solu-
tion.

(⇒) Let φ be a positive instance of monotone NAE-SAT, and let ν be the witnessing assignment. From
this we construct the solution A′ to R as follows. Xi(b) ∈ A′, if ν(xj) = true , and X̄j(b) ∈ A′,
if ν(xj) = false . Since for every clause χi some xj ∈ χi must be set to true, we have that some
Xj(b) ∈ A′, and hence the query of 〈{¬Xj(b) | xj ∈ χi}, Ci(b)〉 ∈ D1 is satisfied by inconsistency.
Similarly, queries of tuples 〈{¬X̄j(b) | xj ∈ χi}, Ci(b)〉 ∈ D1 are satisfied, as at least one xj in χi
is set to false, and by construction the respective X̄j(b) is in A′. The queries in D2 are satisfied, since
ν represents a consistent choice of values for xj , and thus both Xj(b) and X̄j(b) can not be present in
A′.

(⇐) Let A′ be a solution to theR. From this we construct the assignment of φ as follows.

ν(xj) =

{
true, if Xj(b) ∈ A′,
false, if X̄j(b) ∈ A′.

Since Ci can not be in A′ by 〈∅, Ci〉 ∈ D2 and T = ∅, we have that all queries in D1 are entailed by
inconsistency introduced by the updates, and hence in every clause at least one of xj must be true and
at least one xj′ must be false. Furthermore, the assignment ν represents a consistent set of values for
xj by construction, since for all j not both Xj(b) and X̄j(b) can be in A′ due to 〈∅,¬(Xj v X̄j)〉 ∈
D2.

62 INFSYS RR 15-03

Proof of Theorem 37. We prove the statement for the case when few negative assertions are added to the
ABox, i.e. |A′− \ A| ≤ k. The case when few positive assertion are added to the ABox, i.e. |A′+ \ A| ≤ k
is completely symmetric, and our proof can be easily adapted to treat is it as well.

We provide an extension of the method for deletion repairs. Assuming that 〈T ,A〉 is consistent (other-
wise no σbop-repair exists), we proceed as follows:

1. Like for deletion repairs, we compute the sets Suppij . We simplify OΠsuppP , resp. quit if no repair
can exist, checking also whether Suppij ∩A 6= ∅ (as then Qij is entailed). More specifically, whenever
U ij ∪ A ∪ T |= Qij or Suppij ∩ A 6= ∅,

• we drop 〈U ij , Qij〉 from Di, if i = 1, and
• we quit, if i = 2.

2. We then let Sj = Supp1
j \ (A ∪

⋃
j′ Supp2

j′). Similar as in the proof of Theorem 33, the σbop-repairs
are then of the form A′ = A ∪H where H is a hitting set of the Sj , but we must ensure that 〈T ,A′〉
is consistent asH consists of new assertions.

3. We choose a setH− ⊆
⋃
j Sj of at most k negative assertions, which is a partial hitting set, and check

that 〈T ,A ∪ H−〉 is consistent. If yes, we remove Sj if it intersects with H− and remove otherwise
from Sj each positive assertion α such that ¬α is entailed by 〈T ,A∪H−〉, and all negative assertions.

4. Then, for every hitting set H+ of S ′j , the ABox A′ = A ∪ H− ∪ H+ is a σbop-repair. On the other
hand, some σbop-repair with few negative additions exists only if some choice forH− succeeds.

The crucial point for the correctness of this method is that, if T has no disjointness axioms, by adding to
A∪H− positive assertionsH+ we can not infer new negative assertions, unless inconsistency emerges; this
is exploited in Step 3, which limits the candidate space for positive hitting sets a priori.

We now show the correctness of the proposed algorithm formally. Suppose that given the Ontology
Repair Problem R = 〈O, D1, D2〉 as an input to the algorithm from above, the ABox A′ was produced as
the output after execution of the Steps 1-3. We prove that the ABoxA′ is indeed a σbop-repair forR, i.e. we
prove that the conditions that a σbop-repair needs to satisfy are indeed satisfied by A′.

(i) T ∪ A′ ∪ U1
j |= Q1

j for all 〈U1
j , Q

1
j 〉 ∈ D1. Towards a contradiction, suppose that there is some

〈U1
ji
, Q1

ji
〉 ∈ D1, such thatA′ ∪T ∪U1

ji
6|= Q1

ji
. We know that by construction, it either holds that (1)

U1
ji
∪ T |= Q1

ji
; (2) A ∩ Supp1

ji
, i.e. A ∪ T |= Q1

ji
; (3) H− ⊆ A′ hits Sji or (4) H+ ⊆ A′ hits Sji .

For (1) and (2) we immediately get a contradiction. For (3) it holds thatH−∩Supp1
ji 6= ∅. Therefore,

there is α ∈ A′, such that {α} ∪ U1
j ∪ T |= Q1

ji
.

(ii) T ∪A′∪U2
j′ 6|= Q′2j for all 〈U2

j′ , Q
2
j′〉 ∈ D2. To the contrary, assume that there exists some j′i, such that

T ∪A′ ∪U2
j′i
|= Q2

j′i
. There are several possibilities: (1) U2

j′i
∪ T |= Q2

j′i
; (2) there is α ∈ A, such that

{α}∪U2
j′i
∪T |= Q2

j′i
; (3) there is α ∈ H−, such that {α}∪T ∪U2

j′i
|= Q2

j′i
; (4) there is α ∈ H+, such

that {α}∪T ∪U2
j′i
|= Q2

j′i
. Observe that if (1) or (2) were the case, then the algorithm would terminate

at Step 1, and no repair A′ would be in the output. For the case (3) we have that H− ∩ Supp2
j′i
6= ∅.

However, according to the Step 3 of our algorithm, it holds thatH− ⊆
⋃
j(Supp

1
j\(A∪

⋃
j′ Supp

2
j′)),

meaning thatH− ∩ Supp2
j′i

= ∅, which leads to a contradiction.

INFSYS RR 15-03 63

(iii) A′ ⊇ A | |A′−\A|≤k, i.e. there are at most k negative assertions in the ABox A′.

Finally, we show that the number of negative assertions in A′\A is indeed bounded by k. Towards a
contradiction, suppose that there are more then k negative assertions inA′\A = H+∪H−. According
to the Step 3 of our algorithm, it holds thatH− contains at most k negative assertions. Therefore, the
rest of the negative assertions must be in H+. The set H+ is constructed at Step 4 as a hitting set
of sets Sj , which due to the Step 3 contain only positive assertions. Therefore, there are no negative
assertions in the set H+, moreover T ∪ H+ ∪ H− infers only at most k negative assertions, since T
contains only positive inclusions and A ∪H+ ∪H− ∪ T is guaranteed to be consistent at Step 3.

This shows that the output A′ is indeed a σbop-repair for the R with at most k negative assertions. The
case when few positive assertions are allowed for addition is symmetric.

Finally, we show that if a given R has σbop repairs, then after executing the Steps 1-3 some σbop repair
is found, i.e. A′ = A ∪ H+ ∪ H−, such that |H−| ≤ k. Assume towards a contradiction that this is not
the case. We distinguish the cases based on stages of the algorithm at which the computation could have
terminated.

• Suppose that the computation terminated at (1). Then there is some 〈U2
j , Q

2
j 〉 ∈ D2, such that either

(i) U2
j ∪T |= Q2

j or (ii)A∩Supp2
j 6= ∅. If (i) holds then by monotonicity we have that for anyA′ the

condition (iii) of Definition 24 is not satisfied, i.e. R does not have any solutions, which contradicts
our assumption. If (ii) is the case, then there is some α ∈ A, such that α ∪ T |= Q2

j . Again due to
monotonicity, for any ABox A′ ⊇ A it is true that A′ |= Q2

j . Thus all repairs A′ for R are such that
A′ 6⊇ A. Therefore, no σbop repair exists forR, contradicting our assumption.

• Assume that we have reached (2), and constructed the sets Sj . Suppose that the computation stopped
at (2), i.e. no hitting set H of Sj was found. This means that some j1 exists, such that Sj1 = ∅.
Therefore, by construction of Sj1 it holds that Suppj1 \ (A ∪

⋃
j′ Supp

2
j′) = ∅. Since all 〈U1

j , Q
1
j 〉,

such that Supp1
j ∩A 6= ∅ were removed from D1 at (1), we have that for all α ∈ Supp1

j1
, it holds that

α ∈ Supp2
k for some k. Hence, for all ABoxes A′ = A ∪ α some 〈U2

k , Q
2
k〉 ∈ D2 exists, such that

〈T ,A′〉 |= Q2
k, meaning thatR does not have any solutions, which leads to a contradiction.

• Suppose that the state (3) has been reached, i.e. some repair candidate A′ = A ∪ H was identified
at (2), where H is a hitting set of Sj . At (3) we picked some set H− and updated every Sj by
removing appropriate assertions from Sj . Computation could not have stopped at (3), therefore, we
are guaranteed to reach (4). Assume that the algorithm terminated at (4). Then it must be the case
that no hitting set H+ of updated Sj has been found at (4); that is for all choices of H− at (3) some
j1 exists, such that Sj1 = ∅ at (4). Consider some particular H− ⊆

⋃
j Sj of at most k assertions

computed at (3), such that 〈T ,A ∪ H−〉 is consistent. We have that Sj1 ∩ H− = ∅ at (3), since
otherwise Sj1 would have been removed and would have not been considered in the computation of
a hitting set H+ at (4). We have that for all positive α ∈ Sj1 , the ontology 〈T ,A ∪ H− ∪ {α}〉 is
inconsistent. As 〈U1

j1
, Q1

j1
〉 was not dropped at (1), we have that 〈T , U1

j1
∪ A〉 6|= Q1

j1
. Therefore, it

follows by Lemma 34 that no σbop-repair exists, such that |A′− \ A| ≤ k, leading to a contradiction.

We have shown that if R has solutions with at most k negative assertions, then some such solution will be
found by our algorithm. The argument can be accordingly adjusted to prove the statement for few positive
assertions are allowed for addition.

64 INFSYS RR 15-03

C Proofs for Section 4

Proof of Lemma 55. We prove each “if” direction of the statement separately.

• We first show that if I |=O d then I |=OId DL[ε; Q](~t). Let I |=O d. That means that O ∪ λI(d) |=
Q(~t). By definition, we have that λI(d) = {P (~t) | p(~t) ∈ I andP] p ∈ λ} ∪ {¬P (~t) | p(~t) ∈
I andP −∪ p ∈ λ}. Therefore, T ∪ {Pp v P | P] p ∈ λ} ∪ {Pp v ¬P | P −∪ p ∈ λ} ∪ A ∪
{Pp(~t) ∈ Ad | p(~t) ∈ I} |= λI(d), i.e. OId |= λI(d), and hence OId |= Q(~t). Therefore, we get that
I |=OId DL[ε; Q](~t).

• We now prove the opposite direction, i.e. if I |=OId DL[ε; Q](~t) then I |=O d, where d = DL[λ; Q](~t).
Let I |=OId DL[ε; Q](~t). Then we have that Td ∪ A ∪ {Pp(~t) ∈ Ad | p(~t) ∈ I} |= Q(~t). By con-
struction of OId, λ must be as follows: P] p ∈ λ iff Pp v P ∈ Td; P −∪ p ∈ λ iff Pp v ¬P ∈ Td.
Therefore, for all P ′ ∈ sig(A∩ (Ad\A)), we have that if Td ∪A∪{Pp(~t) | p(~t) ∈ I} |= P ′(~t′) then
T ∪A∪ λI(d) |= P ′(~t′). As Q 6∈ sig(Ad\A), we obtain that O∪ λI(d) |= Q(~t), and hence I |=O d.

• The last implications, i.e. I |=OId DL[ε; Q](~t) iff I |=OId Q(~t) are immediate from the definition of a
DL-atom’s satisfaction by an interpretation.

Proof of Theorem 52. (Soundness of RepAns) Let A′ be an output of RepAns . Towards a contradiction,

suppose A′ 6∈ repÎ|Π(σ,x)(Π). Then Î|Π 6∈ AS (Π′), where Π′ = 〈T ,A′, P 〉 and A′ is σ-selected. Clearly, A′

is σ-selected, since otherwise A′ 6∈ ORP(Î ,Π, σ) and A′ is not in the output. As it holds that Î ∈ AS (Π̂),
it must hold that either Î is not a compatible set of Π′ or it is not x-founded. If either of these cases is true,
then the corresponding procedure CMP or xFND returns false and A′ is not in the output, which leads to
contradiction.

(Completeness of RepAns) Let repÎ|Π(σ,x)(Π) be the set of all σ-selected repairs for Π that turn Î|Π into an

x-repair answer set. Towards a contradiction, assume that there exists some A′ ∈ repÎ|Π(σ,x)(Π) which is not

an output of the algorithm RepAns . Then either (1) A′ 6∈ ORP(Î ,Π, σ); (2) CMP(Î , 〈T ,A′, P 〉) = false
or (3) xFND(Î , 〈T ,A′, P 〉) = false . If (1) holds, thenA′ is not a solution of the ORP instance. Thus either

〈T ,A′〉 is unsatisfiable (contradiction to A′ ∈ repÎ|Π(σ,x)(Π) by the definition of repair) or the actual values

of the DL-atoms do not coincide with the replacement atoms in Π̂ (contradiction due to the failure of the

compatibility check). Finally, if either (2) or (3) holds then we obtain a contradiction, sinceA′ ∈ repÎ|Π(σ,x)(Π)

implies Î|Π should be compatible and x-founded.

Soundness and Completeness of RepAnsSet follow immediately from the soundness and completeness
of RepAns , respectively, and Proposition 49.

Proof of Theorem 53. (i) NP-completeness result for x = weak .

(Membership) Given a candidate interpretation I = Î|Π for some Î ∈ AS(Π̂), we guess a repairA′ and then
check whether I satisfies all rules of the reduct PI,Oweak. Both the construction of the reduct PI,Oweak and the
check whether I satisfies all rules of PI,Oweak is polynomial, from which the membership in NP is obtained.

INFSYS RR 15-03 65

(Hardness) To prove NP-hardness, we reduce 3SAT to deciding whether a given interpretation I obtained
from answer set Î ∈ AS(Π̂) is a weak repair answer set of Π as follows.

Let φ = C1 ∧ · · · ∧ Cm be 3SAT instance, where each Cj , 1 ≤ j ≤ m, is a disjunction of three atoms
over the variables x1, . . . , xn. From this we construct a DL-program Π = 〈T ,A,P〉.

• As for the TBox T , we introduce concept names Xi and X̄i, for each variable xi occurring in φ.
Moreover, we introduce a concept name Cj for each clause Cj in φ. Then T contains the following
axioms:

– Xi v Cj iff xi is a disjunct in Cj ;

– X̄i v Cj iff ¬xi is a disjunct in Cj ;

– Xi v ¬X̄i and X̄i v ¬Xi for all pairs Xi, X̄i;

• the ABox is A = {D(b)}, where D and b are a fresh concept and a fresh constant respectively.
• As for P , we introduce fresh ground atoms pi(b) (resp. p̄i(b)) for each xi occurring positively (resp.

negatively) in φ. The rules of P are as follows:

P =



(1) ⊥ ← DL[; D](b);

(2) ⊥ ← not DL[; Cj](b), 1 ≤ j ≤ m;

(3) ⊥ ← not DL[λj ; ¬Cj](b), 1 ≤ j ≤ m;

(4) pi(b). | pi occurs in λj , 1 ≤ i ≤ n, 1 ≤ j ≤ m;

(5) p̄i(b), | p̄i occurs in λj , 1 ≤ i ≤ n, 1 ≤ j ≤ m


,

where for each xi, we have that Xi] pi (resp. X̄i] p̄i) occurs in λj if ¬xi (resp. xi) is a disjunct in
Cj of φ. In addition, P contains the facts pi(b) (resp. p̄i(b)) iff xi (resp. x̄i) occurs in some λj .
• I consists of the atoms that occur as facts in P .

For illustration, let φ = x1 ∨ ¬x2 ∨ x3 with n = 3 and m = 1. Then the DL-program Π = 〈T ∪ A,P〉
is such that T = {X1 v C1; X̄2 v C1; X3 v C1}, A = {D(b)} and

P =


⊥ ← DL[; D](b);

⊥ ← not DL[; C1](b);

⊥ ← not DL[X̄1] p̄1, X2] p2, X̄3] p̄3; ¬C1](b);

p̄1(b); p2(b); p̄3(b)

 .

The interpretation I contains the facts of P , i.e. I = {p̄1(b), p2(b), p̄3(b)}. Note that I = Î|Π for some
answer set Î of Π. The assignment ν(φ) such that ν(x1) = ν(x2) = true , and ν(x3) = false satisfies of φ;
according to our construction, from ν(φ) the repair A′ = {X1(b), X2(b), X̄3(b)} of Π is obtained.

Note that for every Π constructed, all answer sets of Π̂ coincide on the predicates of Π, i.e., Î|Π = Ĵ |Π
for every Î , Ĵ ∈ AS (Π̂).

We claim that φ is satisfiable iff I ∈ RASweak (Π), i.e. there exists an ABox A′ such that I is a weak
answer set of Π′ = 〈T ,A′,P〉.

(⇒) Suppose that φ is satisfiable and ν(φ) is a satisfying assignment. From this we construct a repair
ABox A′, such that Xi(b) ∈ A′ (resp. X̄i(b) ∈ A′), if xi is true (resp. false) under the assignment ν(φ).

Now we show that I is a weak answer set of Π′ = 〈T ,A′,P〉, and thus a weak repair answer set
of Π. Observe that the body of the rule (1) is not satisfied, as D(b) 6∈ A′. Furthermore, the DL-atoms

66 INFSYS RR 15-03

DL[; C1](b), . . . ,DL[; Cm](b) evaluate to true under O′ = 〈T ,A′〉, since O′ |= Cj(b) for all 1 ≤ j ≤ m
by construction. Moreover, each dj = DL[λj ; ¬Cj](b) evaluates to true under I , because the ontology
O′ ∪ λI(dj) is unsatisfiable (by construction Xi(b) ∈ A′ or X̄i(b) ∈ A′ for some Xi v Cj resp. X̄i v Cj),
and thus each ¬Cj(b) is trivially entailed. Therefore, none of the constraints of P is present in the program
reduct PI,O

′

weak. The reduct PI,Oweak contains only facts of the program, from which we get that I is a weak
repair answer set of Π.

(⇐) Let I be a weak repair answer set of Π and let A′ be its respective repair. Then all DL-atoms
of Π apart from DL[; D](b) are true. This means that for all Cj it holds that O′ |= Cj(b). The ontology
O′ = 〈T ,A′〉 is satisfiable, therefore Xi(b) and X̄i(b) simultaneously can not be in A′. Therefore, either

(i) Cj(b) ∈ A′ or
(ii) X(b) ∈ A′, such that X v Cj is in T .

If (i) was true, then the bodies of the constraints (4) would be satisfied, which contradicts I being a repair
answer set. Thus, it holds that some X(b) ∈ A′ such that X v Cj ∈ T . Hence, from the repair ABox A′ a
satisfying assignment ν(φ) can be constructed as follows: ν(φ) such that ν(xi) = true (resp. ν(ai) = false)
if Xi(b) ∈ A′ (resp. X̄i(b) ∈ A′). The assignment ν(φ) witnesses satisfiability of φ.

(ii) ΣP
2 -completeness result for x = flp.

(Membership) We can guess a repair A′ and then check whether I is an flp-repair answer set of Π′ =

〈O′,P〉, where O′ = 〈T ,A′〉. Constructing the reduct PI,O
′

flp is polynomial, as we only need to pick those
rules of Π whose body is satisfied by I , and all DL-atoms can be evaluated in polynomial time. As shown in
the proof of Theorem 16 the check (i) is polynomial and the check (ii) is in co-NP, from which membership
in ΣP

2 follows.

(Hardness) The hardness is shown by the construction in the proof of Theorem 16 (iii). We set I =
{w(a), y1(a), . . . , ym(a)} and consider deciding whether I ∈ RAS (Π), i.e. whether some ABox A′ exists
such that I ∈ AS (Π′), where Π′ = 〈T ,A′P〉. Note that every answer set of Π̂ resp. repair answer set of Π

must contain w(a), and that I = Î|Π for some Î ∈ AS(Π̂) and ΠI,O′
flp = {(5), (6)} for every O′ = T ∪ A′.

Furthermore, Î|Π = Ĵ |Π for every answer sets Î , Ĵ ∈ AS(Π̂).
Due to (1)-(3), a repair A′ must be a maximal consistent subset of {Xi(a), ¬Xi(a) | 1≤ i≤n} and

thus encode a truth assignment ν to x1, . . . , xn. Now I ∈ RAS flp(Π) implies that some A′ exists s.t. by
minimality of I , for each I ′ ⊆ I\{w(a)} some index k exists such that all f(lk1), f(lk2), f(lk3) are true,
hence χk is true; therefore, φ is true. Conversely, every assignment ν to x1, . . . , xn witnessing that φ is true
induces some maximal consistent subset A′ ⊆ {Xi(a), ¬Xi(a) | 1≤ i≤n}. By a slight adaptation of the
argument in the proof of Theorem 16, it can be shown that A′ ∈ repIflp(Π); this proves Σp

2-hardness under
the asserted restriction.

Proof of Proposition 61. (⇒) Suppose d=DL[λ;Q](~t) evaluates w.r.t. O and I to true, i.e., λI(d) ∪ O |=
Q(~t). Towards a contradiction, assume no S ∈SuppO(d) is coherent with I . There are two cases:

(1) λI(d) ∪ O is consistent. Proposition 5 implies that an assertion α ∈ λI(d) ∪ A must exist such
that T ∪ {α} |= Q(t). If α ∈ A then SuppO(d) contains {α} by (i) of Proposition 58, which trivially is
coherent with I and thus contradicts the assumption. If α ∈ λI(d), then α is an input assertion for d. For
αd ∈ Ad, we then obtain that {αd} ∈ SuppO(d) according to (i) of Proposition 58, again a contradiction
due to coherence with I .

INFSYS RR 15-03 67

(2) λI(d) ∪O is inconsistent. From Proposition 5 and consistency of O, it follows that some δ ∈ λI(d)
exists such that either (a) T ∪ {δ} is inconsistent, or (b) some γ ∈ A ∪ λI(d) exists such that T ∪ {δ, γ} is
inconsistent. In case a), we obtain {δd} ∈ SuppO(d), for the corresponding input assertion δd ∈ Ad. by (i)
of Proposition 58; this is a contradiction, as {δd} is coherent with I . In case b), we similarly conclude that
either {δd, γ} ∈ SuppO(d) or {δd, γd} ∈ SuppO(d), depending on whether γ ∈ λI(d), according to (ii) of
Proposition 58. Again this is a support set coherent with I , contradiction.

(⇐) Suppose some S ∈ SuppO(d) is coherent with I . Assume towards a contradiction that I 6|=O d.
Again we consider two cases:

(1) Td ∪ S is consistent. Then, Td ∪ S |= Q(~t) by item (i) of Proposition 58. Since S is coherent with I ,
we conclude that OId |= Q(~t) which implies I |=O d by Proposition 55. Contradiction.

(2) Td ∪ S is inconsistent. Then, due to coherence with I , so is OId, and trivially OId |= Q(~t); again we
arrive at a contradiction by concluding that I |=O d from Proposition 55.

Proof of Proposition 63. By Proposition 58 there are two possibilities: either (i) S is unary or (ii) it is binary.
In case of (i) we have that S is either a concept or a role assertion, and therefore, it involves at most two
constants. For the case (ii) it holds that S ∪ Td is inconsistent. Hence S represents a binary conflict set. It
has been shown in [55] that S can be a binary conflict set only due to one of the following reasons:

• T |= C v ¬D, and S = {C(a), D(a)}, in which case S involves only 1 constant;

• T |= R v ¬R′, and S = {R(a, b), R′(a, b)}, thus S involves at most 2 constants;

• T |= C v ¬∃R or C v ¬∃R−, and S = {C(a), R(a, b)} resp. S = {C(a), R(b, a)}, i.e. S involves
at most 2 constants;

• T |= ∃R v ¬C or ∃R− v ¬C, and S = {R(a, b), C(a)} resp. S = {R(b, a), C(a)}, in which case
S involves 2 constants maximum;

• T |= ∃R v ¬∃R′, and S = {R(a, b), R′(a, c)}, thus there are 3 constants occurring in S (similarly
for the cases T |= ∃R− v ¬∃R′−, T |= ∃R v ¬∃R′−, T |= ∃R− v ¬∃R′−);

• funct(R) ∈ T , and S = {R(a, b), R(a, c)} with b 6= c, in which case again at most 3 constants
appear in S (the case when funct(R−) ∈ T is analogous).

As we have considered all possibilities for binary conflict sets, the statement is proved.

of Proposition 71. Assume that I is an answer set of Π = 〈O,P〉, where O = 〈T ,A〉 and that Î is a
compatible set for Π′ = 〈O′,P〉 where O′ = 〈T ,A′〉 and A′ ⊃ A. Towards contradiction, suppose I is
not an answer set of Π. Hence, I = Î|Π is not a minimal model of Π′I,Oflp = 〈T ,A′,PI,Oflp 〉. That is, some

I ′ ⊂ I exists such that I ′ |=O′ PI,Oflp . We then obtain that also I ′ |=O PI,Oflp ; this contradicts I ∈ AS (Π).

Indeed, suppose that I ′ 6|=O PI,Oflp . Then some rule r ∈ PI,Oflp of form (1) is violated wrt. I ′ and O, i.e., (i)
I ′ |=O bi for each 1 ≤ i ≤ k, (ii) I ′ 6|=O bj for each k < j ≤ m, and (iii) I ′ 6|=O ah for each 1 ≤ h ≤ n.
By monotonicity of I |=O a w.r.t. I and O, we conclude I ′ |=O′ bi, I ′ 6|=O

′
bj (as Î is a compatible set for

both Π̂ and Π̂′), and I 6|=O bj , and I ′ 6|=O′ ah. But then I ′ 6|=O′ PI,Oflp , which is a contradiction. Hence, I ′

does not exist and I is an answer set of Π′.

68 INFSYS RR 15-03

Proof of Theorem 72. Soundness. Suppose SupRAnsSet outputs I = Î|Π. We can get to (h) only if Î
is an answer set of Π̂; furthermore, by setting SÎgr to Gr(S, Î,A) in (b) and by the further modifications,
it is ensured at (h) that each DL-atom a ∈ Dp has some coherent support set that matches with A′ (i.e.,
Gr(S, Î,A′)(a) 6= ∅), while no DL-atom a′ ∈ Dn has such a support set. Thus from Proposition 61, it
follows that Î is a compatible set for Π′ = 〈T ∪ A′, P 〉; hence I |= Π′. Furthermore, as flpFND(Î , T ∪
A′, P) succeeds, I is a minimal model of Π′I,Oflp . Hence I is an answer set of Π′, and thus a deletion repair
answer set of Π.

Completeness. Suppose I is a deletion repair answer set. That is, for some A′ ⊆ A, we have that
I is an answer set of Π′ = 〈T ∪ A′, P 〉. This implies Proposition 48 that Î is an answer set of Π̂ and
thus will be considered in (b), with Dp and Dn reflecting the (correct) guess for I |=O′ a for each DL-
atom a, where O′ = T ∪ A′. From Proposition 61 and completeness of S, we obtain that each a ∈
Dp has Gr(S, Î,A′)(a) 6= ∅ and each a ∈ Dn has Gr(S, Î,A′)(a) = ∅. The initial SÎgr is such that

Gr(S, Î,A′)(a) ⊆ SÎgr = Gr(S, Î,A)(a) holds for each DL-atom a; in further steps, the algorithm removes

all support sets S ∈ Gr(S, Î,A)(a) for a ∈ Dp from SÎgr(a) such that such that S ∩ S′ ∩ A 6= ∅ for some
support set S′ ∈ Gr(S, Î,A)(a′) and a′ ∈ Dn, and removes all assertions in S′ ∩ A from A. Importantly
no removed S is in Gr(S, Î,A′)(a), since by the assertion that T ∪A is consistent, |S′ ∩A| = 1 must hold.
Thus step (g) will be reached, and the variableA′ is assigned an ABoxA′′ such thatA′ ⊆ A′′ ⊆ A. Since Î
is a compatible set for Π′′ = 〈T ∪A′′,P〉 and I is an answer set of Π′, by Proposition 71 I is also an answer
set of Π′′, and thus I is a minimal model of Π′′I,Oflp = 〈T ∪A′′,PI,Oflp 〉. Hence, the test flpFND(Î , T ∪A′,P)

in step (h) (where A′ has value A′′) succeeds, and ÎΠ, i.e, I is output.

D Proofs for Section 5

Proof (sketch) of Proposition 73. For DL-LiteA ontologies classification can be modeled declaratively as a
reachability problem, what is exactly reflected in the rules (1) and (2). The conflict sets in turn are found by
means of the rules (3)-(6) and analysis of functional roles. As a result the program ProgTclass computes all
concept and role inclusions that follow from the TBox as well as all unary and binary conflict sets (whose
construction is sound and complete based on the results in [73]). All support sets of type (i) of Proposition 58
are extracted from subsumptions and unary conflict sets, while the support sets of type (ii) correspond to
binary conflict sets. As according to Proposition 58 there are no other types of support sets from the model
MTclass of ProgTclass , a complete support family for a given DL-atom can be extracted.

Proof of Proposition 75. We separately prove AS (Π̂∪Πsupp ∪ facts(A))|Π ⊆ RAS weak (Π) and AS (Π̂∪
Πsupp ∪ facts(A))|Π ⊇ RAS weak (Π), i.e., correctness and completeness of the provided implementation.

(⊆) Assume towards a contradiction that AS (Π̂ ∪ Πsupp ∪ facts(A))|Π 6⊆ RAS weak (Π). Then there
exists an element I ∈ AS (Π̂ ∪ Πsupp ∪ facts(A)), such that I|Π 6∈ RAS weak (Π). This means that for all
A′ ⊆ A, it holds that I|Π 6∈ ASweak (Π′) with Π′ = 〈T ,A′,P〉. Consider the ABox A′′ = {P (~c) | pP (~c) ∈
I|facts(A), p̄P (~c) 6∈ I}19, which is a particular subset of A. We have that I|Π 6∈ ASweak (Π′′) with
Π′′ = 〈T ,A′′,P〉. Thus one of the following must be true: (i) no extension of I|Π with guessed values
of replacement atoms is a model of Π̂′′, (ii) no model of Π̂′′ is a compatible set for Π′′ or (iii) there exists
I ′ ⊂ I|Π, which is a model of PI|Π,O

′′

weak .

19p̄P corresponds to the respective S̄Aa

INFSYS RR 15-03 69

The case (i) is irrelevant, as I|Π̂ satisfies all rules of Π̂ due to I ∈ AS (Π̂ ∪ Πsupp ∪ facts(A)) and
Π̂′′ = Π̂. We next show that (ii) can not hold by deriving a contradiction. Indeed, assume that (ii) holds,
then as I|Π̂ is a model of Π̂, it is not a compatible set for Π. Therefore there exists a DL-atom ai in Π′′, such
that its real value is different from the guessed value in I|Π̂. Suppose first that I|Π |= ai, but neai ∈ I|Π̂. By
Proposition 61 there must exist a support set S ∈ Si, such that S is coherent with I|Π and its ABox part SA is
inA′′. If SA is nonempty, then due to the rule of the form (r4) of Πsupp we get that S̄A must be in I , but then
SA is not present in A′′. Therefore, SA must be empty, i.e. S must contain only input assertions. However,
then the body of the constraint (r2) of Πsupp is satisfied, contradicting I ∈ AS (Π̂ ∪Πsupp ∪ facts(A)). In
conclusion, this shows that (ii) does not hold, and in particular that I|Π̂ is a compatible set for Π.

Finally, the last possibility is that (iii) holds, meaning that there is an interpretation I ′ ⊂ I|Π which is
a model of PI|Π,O

′′

weak . The interpretations I|Π and I ′ differ on the set M = I|Π\I ′, containing only ground
atoms from the language of Π. Let us now look at the interpretation I ′′ = I\M . We know that I is an
answer set of Π̂ ∪ Πsupp ∪ facts(A), i.e. it is a minimal model of Π̂I

gl ∪ Πsupp
I
gl ∪ facts(A). Therefore,

there must exist some rule rIgl either in (1) Π̂I
gl or in (2) Πsupp

I
gl, which I ′′ does not satisfy, i.e. I ′′ |= B(rIgl)

and I ′′ 6|= H(rIgl).
Assume that (1) holds. Then the rule rIgl must involve some replacement atoms ea occurring positively.

Otherwise I ′ 6|= rIgl, and since this rule is also in PI|Π,O
′′

weak , we have that I ′ is not a model of PI|Π,O
′′

weak , leading

to a contradiction. Furthermore, we know that I|Π̂ is a compatible set. Therefore, rI,O
′′

weak is the rule rIgl
without replacement atoms in its body; but then I ′ 6|= rI,O

′′

weak, and hence I ′ is not a model of PI|Π,O
′′

weak .
Now assume that (2) holds, i.e. there is a rule rIgl ∈ Πsupp

I
gl, such that I ′′ |= B(rIgl), but I ′′ 6|= H(rIgl).

The rule rIgl can not be a constraint of the forms r1, r2, since then I ⊃ I ′′ is not an answer set of Π̂ ∪
Πsupp ∪ facts(A), leading to a contradiction. Therefore, r must be of the form r3 or r4. However, the
latter is not possible either, since the set of atoms M on which I and I ′′ differ contains only atoms from
the signature of Π, and H(rIgl) does not fall into this set, meaning that I 6|= rIgl, which contradicts to
I ∈ AS (Π̂ ∪ facts(A) ∪Πsupp).

(⊇) Suppose that I ∈ RAS weak (Π), but there is no I ′ ⊇ I , such that I ′ ∈ AS (Π̂ ∪Πsupp ∪ facts(A)).
By definition of repair answer sets, someA′ ⊂ A exists, such that I ∈ ASweak (Π′), where Π′ = 〈T ,A′,P〉.
We construct the interpretation I ′ by extending I with

• {ea | I |=O
′
a} ∪ {nea | I 6|=O

′
a}, i.e. facts stating the values of the replacement atoms under I

and A′;
• facts(A);
• {p̄P (~c) | P (~c) ∈ A\A′};
• Supai(~c) encoding information about support sets of ai(~c) coherent with I .

We now show that I ′ is an answer set of Π̂∪Πsupp∪facts(A), i.e. it is a minimal model of (Π̂ ∪ facts(A′) ∪Πsupp)
I′
gl.

Assume towards a contradiction that this is not the case. Then either (i) I ′ does not satisfy some rules of the
reduct, or (ii) some smaller model of the reduct exist.

First consider (i). I ′ immediately satisfies all facts as well as all rules in Π̂I′
gl. This means that there must

be some rule rI
′
gl in Πsupp

I′

gl that is not satisfied, i.e. I ′ |= B(rI
′
gl), but I ′ 6|= H(rI

′
gl). By construction of I ′

and Proposition 61, if ea ∈ I ′ (resp. nea ∈ I ′) then Supa ∈ I ′ (resp. Supa 6∈ I ′), therefore r can not be
of the form (r1) or (r2). Suppose that r is of the form (r3). We have that some DL-atom a has a support set
whose ABox part is in A′ or empty. Then by construction of I ′ the head of the rule rI

′
gl has to be satisfied.

70 INFSYS RR 15-03

Therefore, the rule r must be of the form (r4). Then I 6|=O′ a for some DL-atom a, such that there is a
support set for a which is coherent with I and its ABox part is either empty or present in A. In both cases
by Proposition 61 we get that I |=O′ a, which leads to a contradiction.

Let us now look at (ii), i.e. some interpretation I ′′ ⊂ I ′ exists such that I ′′ |= (Π̂ ∪Πsupp ∪ facts(A))I
′
gl.

Note that I ′′ and I ′ can not differ only on replacement atoms, since for each DL-atom a, either ea or nea
must be in I ′′. As I ′ already contains the corresponding replacement atoms, removal of any such atom will
violate the satisfaction of some guessing rule ea∨nea in Π̂I′

gl. Suppose that I ′′\I ′ contains some atoms from

Π. Consider I ′′|Π, which is a subset of I . Observe that I ′′|Π can not be a model of PI,O
′

weak, because I ⊃ I ′′|Π
is its minimal model. Therefore, some rule rI,O

′

weak must exist in the reduct PI,O
′

weak which is not satisfied by
I ′′|Π, i.e. I ′′|Π |= B(rI,O

′

weak) but I ′′|Π 6|= H(rI,O
′

weak). By construction of the weak reduct this rule does not
contain any DL-atoms. Let us look at the corresponding rule in the reduct Π̂I′′

gl . The rule rI
′′
gl either does not

contain any replacement atoms or contains only positive atoms ea such that ea ∈ I ′′ (by construction of the
GL-reduct). Therefore I ′′ |= B(rI

′
gl), but I ′′ 6|= H(rI

′
gl), contradicting I ′′ |= Π̂I′

gl.
Suppose that the interpretations I ′ and I ′′ differ only on the facts over predicates in Πsupp. We know

that the rule rI
′
gl , where r is of the form (r1) is not present in Πsupp

I′

gl, moreover, I ′′ 6|= r′I
′

gl for r′ of the form
(r2). If the difference I ′\I ′′ contains Supa, then it must contain some atoms from r(Sa) too. Moreover,
these atoms must be related to the ABox facts, which are present in I ′. This, however, means that some fact
in facts(A) is not satisfied, contradicting I ′′ |= (Π̂ ∪Πsupp ∪ facts(A))I

′
gl. Finally, I ′′ \ I ′ can not contain

elements S̄Aa , as then the rule rI
′
gl for r of the form (r4) is not satisfied by I ′′.

