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Motivation
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Central question:

How does a strongly coupled quantum system which is initially far-from 
equilibrium evolve to its equilibrium state?

[picture: S. Schlichting]

[see also talk by E. Lopez]



  

Quark-gluon plasma in heavy ion 
collisions

Quark-gluon plasma (QGP) is a deconfined phase of quarks and gluons
produced in heavy ion collision (HIC) experiments at RHIC and LHC.
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Why AdS/CFT?
The QGP produced in HIC's behaves like a strongly coupled liquid rather 
than a weakly coupled gas.
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Perturbative QCD? Lattice QCD?
Not at strong

 coupling!
Not for dynamics!



  

AdS/CFT correspondence

AdS/CFT correspondence:

Type IIB string theory on AdS
5 
x S5 is equivalent to 

N =4 super symmetric SU(N
C
) Yang-Mills theory in 4D.

[Maldacena 97]

Supergravity limit:

Strongly coupled large N
C
 N =4 SU(N

C 
) SYM theory is 

equivalent to classical (super)gravity on AdS
5
.

Boundary:
4-dim. CFT

Bulk:
5-dim. GR

z

Strategy:

● Use N=4 SYM as toymodel for QCD.
● Build a gravity model dual to HICs, like colliding gravitational shock waves.
● Switch on the computer and solve the 5-dim. gravity problem numerically.
● Use the holographic dictionary to compute observables in the 4 dim. field 

theory form the gravity result. 
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[see talks by Takayanagi, 
Lopez, Ammon, Riegler, ...]



  

Holographic thermalization

Thermalization       =    Black hole formation
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Entanglement entropy

Divide the system into two parts A,B.
The total Hilbert space factorizes:

quantum field theory

lattice model

BA

A B

The reduced density matrix of A is 
obtained by the trace over 

Entanglement entropy is defined as the 
von Neumann entropy of 

A
:
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Entanglement entropy in a two 
quantum bit system

Entanglement entropy is a measure for entanglement in a quantum system.

A (maximally) entangled state in a two spin 1/2 system:

Alice Bob

?

A product state (not entangled) in a two spin 1/2 system:

Alice Bob

? ?

Consider a quantum system of two spin 1/2 dof's.
Observer Alice has only access to one spin and Bob to the other spin. 
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A

B

L

Entanglement entropy in quantum 
field theories

x

B A B

L

1+1 dim. CFTs

With the replica method one gets analytic results 
for 1+1 dim. CFTs.

3-sheeted Riemann surface

One finds universal scaling with interval size:

UV cut off

central charge of the CFT

The Basic Method to compute entanglement entropy in quantum field theories 
is the replica method.

Notable generalization: 1+1 dim. Galilean CFTs

AdS/CFT provides a simpler method that works also in 
higher dimensions.

Involves path integrals over n-sheeted Riemann surfaces ~ it's complicated!

[Holzhey-Larsen-Wilczek 94]
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[Bagchi-Basu-Grumiller-Riegler 15]



  

Holographic entanglement entropy

A
B

zextremal 
surface 

w, y, ...

x

t=const.

[Ryu-Takayanagi 06,
Hubeny-Rangamani-Takayanagi 07]

D dim. CFT

UV cut off 
in CFT

D+1 dim. GR

Within AdS/CFT entanglement entropy can be computed form the area of 
minimal (extremal) surfaces in the gravity theory. 
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Holographic entanglement entropy
● In practice computing extremal co-dim. 2 hyper-surfaces is 

numerically involved.

● Can we somehow simplify our lives? 
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[E. Tonni 14: minimal surface for a star 
shaped boundary region (red) in AdS4 
computed with Surface Evolver]

Yes we can!

[ongoing work: CE-Grumiller-Kapetanoski-Khavari]



  

Entanglement entropy from 
geodesics

z

w, y, ...
A

homogeneous
directions

B

x

t=const.D dim. CFT

D+1 dim. GR

UV (IR) cut off 
in CFT (GR)

L

Consider a stripe region of infinite extend in homogeneous directions of the geometry.
The entanglement entropy is prop. to the geodesics length in an auxiliary spacetime.

geodesic 
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Numerics: relax, don't shoot!

● There are two standard numerical 
methods for solving two point 
boundary value problems.
 
Shooting:
Very sensitive to initialization on 
asymptotic AdS spacetimes.

Relaxation:
Converges very fast if good initial 
geodesic is provided.

Geodesic equation as two point boundary value problem.
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[see Numerical Recipes]



  

Isotropization of homogeneous 
plasma

A homogeneous but initially highly anisotropic  (N=4 SYM) plasma 
relaxates to its isotropic equilibrium state.

The dual gravity model describes the formation of a black brane in an 
anisotropic AdS5 geometry.
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[Chesler-Yaffe 09]

[CE-Grumiller-Stricker 15]



  

Geodesics in anisotropic AdS
5
 black 

brane background
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● Far-from equilibrium geodesics can go beyond the horizon.

● Near equilibrium geodesics stay outside the horizon.

[CE-Grumiller-Stricker 15]



  

Quasinormal ringdown of 
entanglement entropy
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The late time dynamics of EE is captured by a single (complex) number:

[CE-Grumiller-Stricker 15]



  

Holographic shock wave collisions

HIC is modeled by two colliding sheets of energy with infinite extend in transverse 
direction and Gaussian profile in beam direction. [Chesler-Yaffe 10]
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Wide vs. narrow shocks
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         Two qualitatively different dynamical regimes

● Wide shocks (~RHIC): full stopping

[Solana-Heller-Mateos-
van der Schee 12]

● Narrow shocks (~LHC): transparency

y y

transparency



  

Geodesics and apparent horizon
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[CE-Grumiller-Van der 
Schee-Stanzer-Stricker 15?]



  

Two point functions
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Preliminary Preliminary

Two point functions for operators O(t,x) of large conformal weight  can be 
computed form the length of geodesics.

t=const.

z

x x'

[Balasubramanian-Ross 00]

[CE-Grumiller-Van der Schee-Stanzer-Stricker 15?]

L

 

transparency (?)



  

Entanglement entropy
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PreliminaryPreliminary

t=const.

L

A

z 

[CE-Grumiller-Van der Schee-Stanzer-Stricker 15?]



  

Summary
● The near equilibrium dynamics of holographic entanglement shows 

quasinormal mode behaviour.

● In holographic shock wave collisions the entanglement entropy and 
the two point function may serve as order parameter for the full 
stopping–transparency transition.
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Ongoing Work
● Going beyond supergravity: string corrections, semi-holography, …

● Better understanding of EE in HICs: different shapes, higher dim. 
surfaces, other backgrounds, … 

[CE-Mukhopadhyay-Preiss-Rebhan-Stricker]

[CE-Grumiller-Van der 
Schee-Stanzer-Stricker 15?]

[CE-Grumiller-Stricker 15]

[CE-Grumiller-Kapetanoski-Khavari-Stanzer]



  

Take home message
Complicated stuff in CFT often is very simple on the AdS side.
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 thermalization

entanglement entropy

two point function

?

 =
 black hole formation

area of extremal surface     

 =
length of geodesic  

 =



  

Strong subadditivity
● A fundamental property of entanglement entropy is strong subadditivity.
● Hard to prove within QFT, very intuitive in the dual gravity picture.

X X
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Strong subadditivity

X X

Z Z

● A fundamental property of entanglement entropy is strong subadditivity.
● Hard to prove within QFT, very intuitive in the dual gravity picture.
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Strong subadditivity

X X

Z Z

● A fundamental property of entanglement entropy is strong subadditivity.
● Hard to prove within QFT, very intuitive in the dual gravity picture.
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Numerical check of strong 
subadditivity

Preliminary

 804.5
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[CE-Grumiller-Van der Schee-Stricker 15?]
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