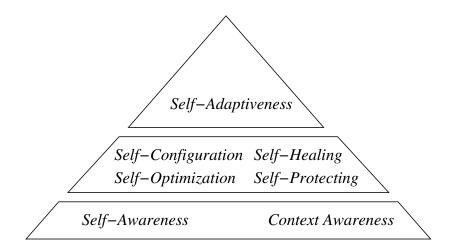
Self-Awareness in Cyber-Physical Systems

Axel Jantsch¹ Nikil Dutt²

¹TU Wien, Vienna, Austria

²UC Irvine, CA

HiPEAC Computing Week Beyond Self-Aware Embedded Computing Oslo, 7 May 2015


What is Self-Awareness ?

Is it fault-tolerance? No

Is it adaptation? No

Is it self-monitoring? No

What is Self-Awareness ?

Self-Awareness - A Working Definition

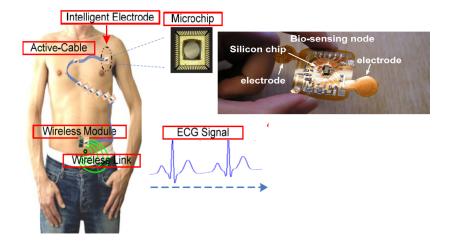
Self-awareness of a system is the capability to correctly assess the system's own behavior and performance (self-monitoring or self-awareness in a narrow sense),

the environmental context and events (situation awareness),

and to focus the system's activities and resources (attention);

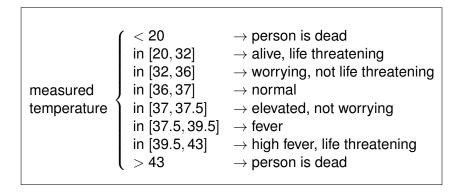
all that with proper regard to given goals and expectations.

The Benefits of Awareness

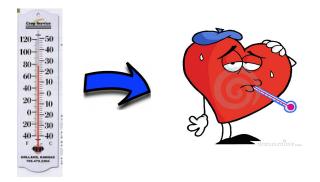

 Better functionality in different contexts

Context depending performance

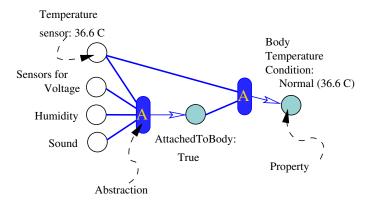
 Appropriate reaction in presence of faults


Self-Awareness for Resource Constrained, Insect-like Gadgets

Properties of Awareness

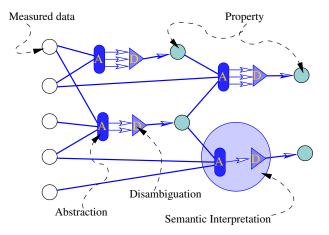

- Not all information is necessary
- More information does not imply more awareness
- Raw data is interpreted/abstracted
- Data interpretation is "meaningful"
- The drawn conclusions are "robust"
- The reaction is appropriate

BioPatch: Temperature Sensor

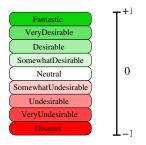


Abstractions and Models

Abstraction: Mapping of Measurements \Rightarrow Properties



Abstractions and Models

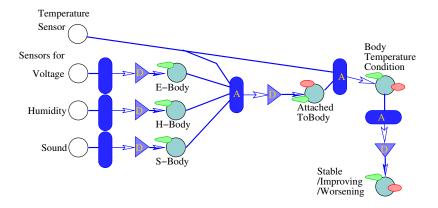

Disambiguation

Selection among several interpretations

Desirability Scale

A value range that captures the desirability of something

Semantic Attribution maps the values of a property to a point in the desirability scale.


History of a Property The evolution of the values of a property.

Abstracted History The history stores abstracted values.

Attributed History The history is annotated with attributions.

Fading History If the property values are more abstracted the longer ago they have occurred.

Sensors and properties of the BioPatch

Expectations

Expectation on Environment

- all implicit and explicit assumptions about the environment;
- a value range for each of the monitored properties.

Expectation on System

- all implicit and explicit assumptions about the system;
- a value range for each of its monitored properties.

Sub-Goal A sub-goal of the system is a desired value range of a property of the system or its environment.

Goal A goal consists of one or several sub-goals.

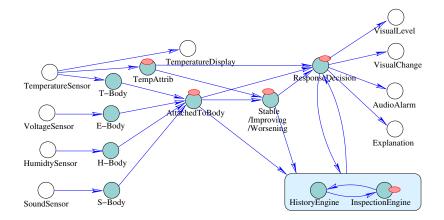
Purpose The purpose of a system is to achieve all its defined goals.

Inspection and Simulation

Self Inspection Engine is a mapping from a set of properties onto a desirability scale;

Model Transformation Given a model and a set of actions, a transformation applies actions and derives the new values for all properties.

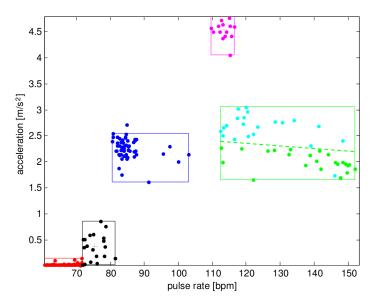
Simulation Given a model and a set of potential actions, a simulation is a sequence of transformations applied onto the model resulting in a new, updated model.

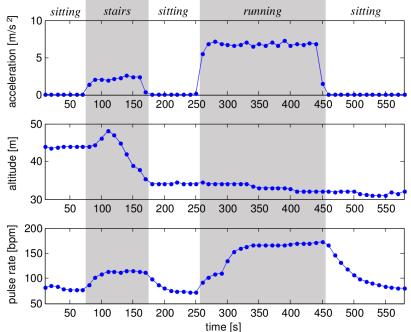

Awareness of a Property

- The system makes observations and derives the property by means of a meaningful semantic interpretation (Meaning Condition).
- The semantic interpretation is robust (Robustness Condition).
- There is a meaningful semantic attribution into a desirability scale (Attribution Condition).
- The system reacts appropriately to its perception of the property (Appropriateness Condition).
- A history of the evolution of the property over time is maintained (History Condition).

Awareness of a System

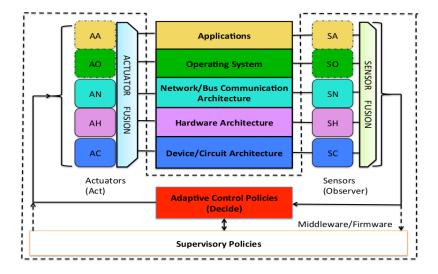
- The system can assess how well it meets all its goals (Goal Condition).
- The system can assess how well the goals are achieved over time and when its performance is improving or deteriorating (Goal History Condition).

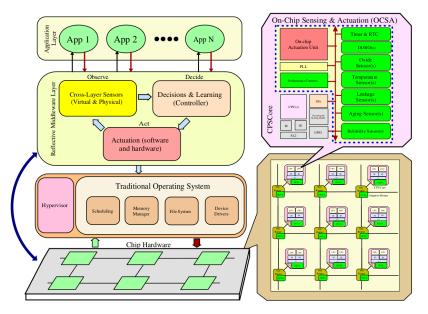

BioPatch Example

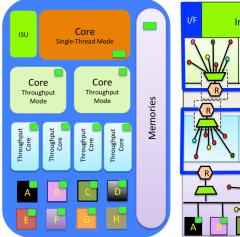

BioPatch Example

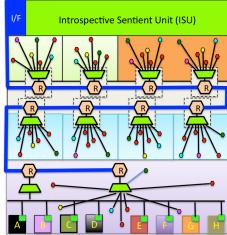
e ⊖ ⊕ BioPatch			
Scenario DownUp2			
Temperature:	38.9		
Level:		0	
Temp Change:	Decreasing		
Attached:	Most likely at Body (0.8)		
Audio Alarm:	No Alarm		
Explanation:		Normal	
History Attribution:			
Quit			

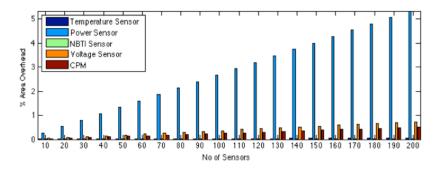
BioPatch Monitoring

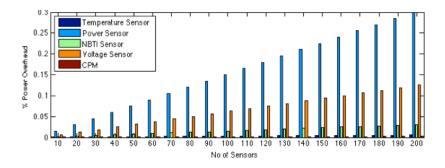



BioPatch Monitoring




- Sensors and actuators at five layers:
 - Device/ circuit architecture
 - Hardware architecture
 - Network/Bus communication architecture
 - Operating system
 - Application
- Observe-decide-act paradigm
- Codesign of control, communication and computing


Santanu Sarma, Nikil Dutt, N. Venkatasubramaniana, A. Nicolau, and P. Gupta. *CyberPhysical-System-On-Chip (CPSoC): Sensor-Actuator Rich Self-Aware Computational Platform*. Tech. rep. CECS Technical Report No: CECS TR–13–06. Irvine, CA 92697-2620, USA: Center for Embedded Computer Systems University of California, Irvine, May 2013



Virtual sensing reduces the area overhead for 1000 sensors from 7.3% to 0.6%.

Virtual sensing reduces the power overhead for 1000 sensors from 1.7% to 0.3%.

VIRTUAL/PHYSICAL SENSING AND ACTUATIONS ACROSS LAYERS

Virtual/Physical Sensors	Virtual/Physical Actuators
Workload, Power, Energy and	Loop Perforation, Approximation,
Execution Time, Phases	Algorithmic Choice, Transformations
System Utilization and	Task Allocation, Partitioning, Scheduling
Peripheral States	Migration, Duty Cycling
Bandwidth, Packet/Flit Status and	Adaptive Routing, Dynamic BW Allocation and
Channel Status, Congestion	Ch. no and Direction Control
Cache Misses, Miss Rate, Access	Cache & Issue-Width Sizing, Reconfiguration
Rate, IPC, Throughput, MLP	Resource Provisioning, Static/Dynamic Redundancy
	DVFS, ABB, Voltage Frequncy Island
Temperature, Oxide Breakdown	Clock Gating, Power Gating
	Workload, Power, Energy and Execution Time, Phases System Utilization and Peripheral States Bandwidth, Packet/Flit Status and Channel Status, Congestion Cache Misses, Miss Rate, Access Rate, IPC, Throughput, MLP Circuit Delay, Aging, Leakage

Summary of Self-Aware Properties

- Awareness and self-awareness are useful properties
 - Context dependent functionality
 - Context dependent performance
 - Appropriate behavior in all situations
- Necessary features:
 - Data abstraction
 - Disambiguation
 - Desirability mapping
 - History maintenance
 - Expectations and goals
 - Self-inspection
 - Prediction and simulation

Challenges:

- Application specific selection and tuning of features
- Online learning and adaptation
- Efficient implementation

Beyond Self-Awareness

... but when we are, the rest is easy.