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Abstract. We extend a finite group solvability criterion of J.G. Thompson,

based on his classification of finite minimal simple groups, to a prosolvability
criterion. Moreover, we generalize to the profinite setting subsequent devel-

opments of Thompson’s criterion by G. Kaplan and the second author, which

recast it in terms of properties of sequences of Sylow subgroups and their prod-
ucts. This generalization also encompasses a possible characterization of the

prosolvable radical whose scope of validity is still open even for finite groups.

We prove that if this characterization is valid for finite groups, then it carries
through to profinite groups.

1. Introduction

The most prominent class of Mel’nikov formations (or NE-formations, see [12]),
that is, formations also closed under taking normal subgroups and extensions (see
[3, ch.17]), is the class of all prosolvable groups. Recall that a profinite group G is
prosolvable if it is the inverse limit of an inverse system of finite solvable groups, or,
equivalently, if G/N is solvable for any N CO G (N is an open normal subgroup of
G). In this paper we present new prosolvability criteria which are based upon and
generalize a solvability criterion for finite groups, conjectured already by G. Miller
([11]) and P. Hall ([4]), and first proved by J.G. Thompson ([14, Corollary 3]) as a
corollary to his classification of the minimal simple finite groups.

We now state our main results. In order to keep the introduction at a manage-
able size, some details are postponed to the relevant sections. We begin with the
generalization of [14, Corollary 3] to profinite groups.

Definition 1.1. Let G be a profinite group. A triple (a, b, c) ∈ G3 will be called a
Thompson triple (in short a T-triple) of G, if (a, b, c) 6= (1, 1, 1), a, b, c are coprime
in pairs, and abc = 1. An element g ∈ G will be called a Thompson factor if g
appears in some T-triple of G.

Definition 1.2. Let G be a profinite group, and let N C G be closed. A triple
t ∈ G3 will be called a T-triple modulo N of G if tN3 is a T-triple of G/N .

Prosolvability is characterized by the non-existence of T-triples.

Theorem 1.3. Let G be a profinite group, and let M CO G be such that G/M is
non-solvable. Then G has a T-triple which is also a T-triple modulo M . It follows
that G is prosolvable if and only if G has no T-triples.

More can be said about the connection between Thompson factors and prosolv-
ability. For this we need the following known result which can be derived from [12,
Prop. 2.2.1].
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Proposition 1.4. Let G be a profinite group, and let {Ni|i ∈ I} be any family of
closed normal subgroups of G such that G/Ni is prosolvable for any i ∈ I. Then
G/ (∩i∈INi) is prosolvable. It follows that if {Ni|i ∈ Imax} is the family of all
closed normal subgroups of G such that G/Ni is prosolvable for any i ∈ Imax, then
S (G) := ∩i∈Imax

Ni satisfies that G/S (G) is prosolvable and for any N E G such
that G/N is prosolvable, we have S (G) ≤ N .

For any profinite group G, the subgroup S (G) defined in Proposition 1.4 will
be called the prosolvable residual of G. It is a closed normal subgroup of G. For a
finite G the prosolvable residual of G coincides with the solvable residual of G.

Theorem 1.5. Let G be a profinite group. Then S (G) is equal to the subgroup
generated by all Thompson factors of G.

The finite group precursor of Theorem 1.5 is [8, Theorem 9]. Because of differ-
ences in formulation, and since the finite group case is needed for proving Theorem
1.3, we state and prove it separately, as Lemma 3.4.

Another solvability criterion for finite groups whose proof employs Thompson’s
T-triple solvability criterion makes use of the concept of a complete Sylow sequence.
Let G 6= 1 be a finite group and let π (G) be the set of prime divisors of |G|. A
complete Sylow sequence P of G is a sequence of |π (G)| Sylow subgroups of G, each
of which is associated with a different prime. The product Π (P) of P is the setwise
product of the subgroups in P as ordered in P. Section 4 presents generalizations of
these concepts for profinite groups and proves the following prosolvability criteria,
relying on and generalizing [5, Theorem A] (see also [1]).

Theorem 1.6. Let G be a profinite group. Then the following are equivalent:
(1) G is prosolvable.
(2) For every permutation τ of the set of all primes and for every complete Sylow

sequence P of type τ it holds that G = Π (P).
(3) Fix an arbitrary permutation τ of the set of all primes. Then for every

complete Sylow sequence P of type τ it holds that G = Π (P).

Let G be a finite group, P = (P1, ..., Pm) any complete Sylow sequence of G,
where Pi is a Sylow pi-subgroup of G (pi ∈ π (G) for all 1 ≤ i ≤ m), and g ∈
G. Then the multiplicity of g in P, denoted mP (g), is the number of possible
factorizations of g in P, namely:

mP (g) := |{(g1, ..., gm) |gi ∈ Pi,∀1 ≤ i ≤ m and g1 · · · gm = g}| .
Since |G| = |P1| · · · |Pm|, an elementary counting argument shows that G = Π (P)
if and only if mP (g) = 1 for all g ∈ G. Hence, the non-negative integers mP (g) tell
if the group is solvable or not. In Section 5 we show that upon a suitable choice of
a definition of mP (g) for profinite groups, we have:

Proposition 1.7. Let G be a profinite group, and let P =
(
Gτ(p)

)
p∈Pr

be a complete

Sylow sequence of type τ . Then G = Π (P) if and only if mP (g) = 1 for all g ∈ G.

Corollary 1.8. Combining Theorem 1.6 and Proposition 1.7, G is prosolvable if
and only if there exists an ordering τ of the primes such that mP (g) = 1 for every
complete Sylow sequence of G and every g ∈ G.

Our final topic concerns the prosolvable radical of a profinite group. In or-
der to introduce it we begin with a finite group G. If N1, N2 E G are solvable,
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then N1N2 E G is solvable and consequently, the product of all normal solvable
subgroups of G is the unique largest (with respect to inclusion) normal solvable sub-
group of G. This subgroup is called the solvable radical of G and will be denoted
R (G). The following proposition generalizes this to profinite groups.

Proposition 1.9. Let G be a profinite group. Then G has a unique normal prosolv-
able subgroup which contains any normal prosolvable subgroup of G. Furthermore,
this subgroup is closed and characteristic.

For any profinite group G, the subgroup whose existence is proved in Proposition
1.9, will be called the prosolvable radical of G and will be denoted R (G). Note that
R (G) is the solvable radical of G if G is finite.

In [5] it was observed that the intersection of all complete sylow products of a
finite group G, denoted H (G), is a characteristic subgroup of G which contains
the solvable radical of G and has a number of properties in common with it ([5,
Theorem B]). In fact, it is an open question, whether or not H (G) = R (G) for
every finite group G. As far as we know, there is no published counterexample.
Further evidence in favour of H (G) = R (G) can be found in [5],[6],[7],[9].

In section 6 we define an appropriate generalization of H (G) to the profinite case.
This involves the introduction of an opposite Sylow sequence, denoted Pop, for every
complete Sylow sequence P. We show that the generalization of H (G) satisfies the
same basic properties as in the finite case (compare the following theorem with [5,
Theorem B]).

Theorem 1.10. Let G be a profinite group, and let τ be any permutation of N.
Then:

(a) Hτ (G) and therefore H (G), is a closed characteristic subgroup of G.
(b) Let P be a complete Sylow sequence of G of type τ . Then each of Π(P) and

Π(Pop) is a union of cosets of Hτ (G).
(c) R (G) = R (H (G)), and in particular, R (G) is a characteristic subgroup of

H (G).
(d) Hτ (G/Hτ (G)) = 1. In particular, R (G/Hτ (G)) = 1.
(e) H (G/H (G)) = 1. In particular, R (G/H (G)) = 1.

It would be extremely interesting if one can utilize some profinite technique in
order to shed new light on the H (G) = R (G) question. Here we observe that a
positive answer for finite groups implies a positive answer for profinite groups.

Proposition 1.11. Let G be a profinite group. If H (G/N) = R (G/N) for every
open normal subgroup N , then H (G) = R (G).

2. Basic notions and notations

Let G be a profinite group. For any subset S of G we denote by cl (S) the usual
set topological closure of S (the union of S with the set of all its limit points). The
following fact is well-known.

Claim 2.1. Let G be a profinite group. Let H be a subgroup of G. Then cl (H) is
also a subgroup of G.

If H is a subgroup of G we’ll denote H = cl (H). It follows from the claim above
that H is the smallest (with respect to inclusion) closed subgroup of G, containing
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H. For any subset S of G, the abstract group generated by S is denoted 〈S〉, and

we shall say that S topologically generates 〈S〉.
Unless otherwise stated, an automorphism α of a profinite group will be assumed

to be both an abstract group automorphism and a continuous map. As is well-
known, this implies that α is a homeomorphism. Moreover, if H is a closed subgroup
of G then so is α (H), and if N CO G then α (N) CO G. Hence indices and orders
are invariant under automorphisms. It follows that if P is a p-Sylow subgroup of
G, then α (P ) is also a p-Sylow subgroup of G ([15, Definition 2.2.1]). A subgroup
H ≤ G will be called characteristic if it is invariant under any automorphism of G.

A filter base in G is any collection N of normal subgroups of G such that for any
N1, N2 ∈ N there exists N3 ∈ N with N3 ≤ N1 ∩ N2. Suppose that N is a filter
base in G, H is a closed subgroup of G, and K is a closed normal subgroup of G.
Then:

(1). NH := {H ∩N |N ∈ N} is a filter base in H. If all members of N are closed,
then so are all members of NH , and if

⋂
N∈N

N = 1 then
⋂

N∈NH
N = 1.

(2). If all members of N are closed then NNK := {KN |N ∈ N} is a filter base in
G of closed normal subgroups containing K. If

⋂
N∈N

N = 1 then
⋂

N∈NK
N = K (see

proof of [15, Theorem 1.2.5]). Furthermore NG/K := {KN/K|N ∈ N} is a filter
base in G/K of closed normal subgroups, and

⋂
N∈N

N = 1 implies
⋂

N∈NG/K
N = 1.

(3). Let N be the set of all normal open subgroups of G. Then N is a filter base
of G. By [15, Theorem 1.2.3], we get

⋂
N∈N

N = 1. Henceforth we denote this filter

base of G by N (G). Furthermore, let M be any normal open subgroup of G. Then,
by (1) above,

(
N (G)

)
M

is a filter base in M which satisfies
⋂

N∈(N (G))
M

N = 1. But(
N (G)

)
M

is precisely the set of all normal open subgroups of G which are contained
in M , and hence it is also a filter base in G.

Lemma 2.2. Let G be a profinite group. Let A,B ⊆ G. If AN/N = BN/N for
every N ∈ N (G) then cl (A) = cl (B). Thus if A and B are closed then A = B.

Proof. From the assumption of the lemma it follows that AN = BN for every
N ∈ N (G). Now, by [15, Proposition 0.3.3.(c)], we get:

cl (A) =
⋂

N∈N (G)

AN =
⋂

N∈N (G)

BN = cl (B) .

We denote Pr := (pi)i∈N the set of all primes with the natural ordering, where
N is the set of all natural numbers, so p1 = 2, p2 = 3 etc. For a profinite group
G we let π(G) denote the set of primes such that G possesses a nontrivial Sylow

p-subgroup. Two elements x, y ∈ G are coprime if π(〈x〉) ∩ π(〈y〉) = ∅. The proof
of the next result is straightforward.

Lemma 2.3. Let G be a profinite group and let x ∈ G. Let N be a filter base of
open normal subgroups of G.

(i) Two elements x, y ∈ G have coprime orders if and only if for every N ∈ N ,
the elements xN and yN of G/N have coprime orders.

(ii) If x, y ∈ G have coprime orders and K is a closed normal subgroup of G,
then xK and yK (as elements of G/K) have coprime orders.
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We end up this section with proofs of Proposition 1.4 (existence of the prosolvable
residual) and of Proposition 1.9 (existence of the prosolvable radical).

Proof of Proposition 1.4. Since prosolvability is inherited by Cartesian products,
C := Cr (G/Ni|i ∈ I) is prosolvable. Define φ : G → C by φ (g)i = gNi, for every
g ∈ G and every i ∈ I. Now φ is a group homomorphism and φ is continuous
since its composition with each projection map C → G/Ni is continuous. Since
G is compact and φ continuous, φ (G) is compact, and hence (C is Hausdorff)
closed. Therefore φ (G) is prosolvable. On the other hand, φ (G) ∼= G/ ker (φ).
Since ker (φ) = ∩i∈INi, we get that G/ (∩i∈INi) is prosolvable.

Proof of Proposition 1.9. Let G be a profinite group. For any N ∈ N (G) let RN
be the inverse image of R(G/N) in G, with respect to the natural map G→ G/N .
Set R :=

⋂
N∈N (G) RN . Since R ≤ RN for all N ∈ N (G), we have that RN/N ≤

R(G/N) is solvable. Hence R is prosolvable. Now let K be any normal prosolvable
subgroup of G. Then, for all N ∈ N (G), KN/N ≤ R(G/N) whence KN ≤ RN .
Therefore K =

⋂
N∈N (G) KN ≤

⋂
N∈N (G) RN = R. Thus R contains every normal

prosolvable subgroup of G.
Let N ∈ N (G). Since the natural map G → G/N is continuous, and every

subgroup of the finite group G/N is closed, RN is closed and hence R is closed.
Finally, if α is an automorphism of G, and K is a normal prosolvable subgroup of
G then α (K) is also normal and prosolvable. Therefore R is characteristic.

3. Existence of T-triples in non-prosolvable groups

In this section we prove Theorem 1.3 which characterizes prosolvable groups in
terms of T-triples (Definition 1.1).

Observe that if (a, b, c) ∈ G3 is a T-triple then, in fact, (a, b, c) ∈ (G− {1})3
.

Moreover, since G3 can be viewed as the direct product of three copies of G, and
hence is itself a profinite group, for any t = (a, b, c) ∈ G3 and M ⊆ G, we shall use
the notation tM3 := (aM, bM, cM). Also note that (a, b, c) ∈ G3 is a T-triple if
and only if (c, a, b) and

(
c−1, b−1, a−1

)
are T-triples.

The difficult part of [14, Corollary 3] is to show that a finite non-solvable group
must possess a T-triple. We begin by generalizing the easy part.

Lemma 3.1. Let G be a prosolvable group. Then G has no T-triple.

Proof. Let t = (a, b, c) ∈ G3, be such that a, b, c are coprime in pairs and abc = 1.
Let N ∈ N (G) be arbitrary. Then, since G is prosolvable, G/N is a finite solvable
group, and hence has no T-triple. Now aN, bN, cN are pairwise coprime by Lemma
2.3 (ii), and (aN) (bN) (cN) = (abc)N = 1G/N . Hence, the fact that G/N has
no T-triple implies (aN, bN, cN) = (N,N,N), from which it follows that if x ∈
{a, b, c} then x ∈ N . Since N is arbitrary, we get that x ∈ {a, b, c} implies x ∈⋂
N∈N (G)

N = 1, so t = (1, 1, 1) proving that G has no T-triple.

For the first claim of Theorem 1.3 we need a few lemmas.

Lemma 3.2. Let G be a profinite group, and let t = (a, b, c) ∈ G3 be a T-triple in

G. Let M C G be closed. Then either t ∈ M3 or t ∈ (G−M)
3
. Moreover, t is a

T-triple modulo M of G if and only if t ∈ (G−M)
3
.
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Proof. Suppose that t = (a, b, c) /∈ M3, and assume by contradiction that one of
a, b, c is in M . If c ∈ M , then abc = 1 implies ab ∈ M whence a−1M = bM . But
then, a−1M and bM (viewed as elements of G/M) are coprime, by Lemma 2.3 (ii)
and the fact that a−1 and b are coprime. This implies a−1M = bM = M , whence
a, b ∈M , contradicting t /∈M3. A similar argument applies if we assume b ∈M or
a ∈M . Thus t ∈ (G−M)

3
.

If t ∈ M3 then tM3 := (aM, bM, cM) = (M,M,M) is not a T-triple in G/M .

If t ∈ (G−M)
3

then tM3 is a T-triple in G/M , since aM, bM, cM are pairwise
coprime and (aM) (bM) (cM) = M (see proof of Lemma 3.1).

Lemma 3.3. Let G be a profinite group, N,K C G closed and N ≤ K. Suppose
that t = (a, b, c) is T-triple modulo N of G such that t ∈ (G−K)

3
. Then t is also

a T-triple modulo K of G.

Proof. Since G/K ∼= (G/N) / (K/N), the fact that aN , bN and cN are coprime in
pairs implies (Lemma 2.3 (ii)) that also aK, bK and cK are coprime in pairs. More-
over (aN) (bN) (cN) = N gives abc ∈ N ≤ K so (aK) (bK) (cK) = K. Finally,

t ∈ (G−K)
3

implies that aK, bK and cK are non-trivial.

The last ingredient needed for the proof of Theorem 1.3 is the finite group case
of Theorem 1.5 (see Section 1). For this and for the general case of Theorem 1.5,
it is convenient to denote by T (G) the subgroup which is topologically generated
by the set of all Thompson factors in the profinite group G. Note that T (G) is a
closed characteristic subgroup of G.

Lemma 3.4. Let G be a finite group. Then T (G) = S (G). Furthermore, if M E G

and G/M is not solvable then there exists a T-triple t of G such that t ∈ (G−M)
3
,

and so, by Lemma 3.2, t is a T-triple modulo M of G .

Proof. First we show T (G) ≤ S (G). Suppose by contradiction that t = (a, b, c)

is a T-triple in G such that {a, b, c} * S (G). Then, by Lemma 3.2, tS (G)
3

is a
T-triple in G/S (G) - a contradiction since G/S (G) is a finite solvable group.

In order to prove S (G) ≤ T (G), it is sufficient to prove that G/T (G) is solvable.
Let M be a minimal supplement to T (G) in G, Then G = T (G)M , and T (G)∩M
is nilpotent (see [13, Exercise 618, p.271]). We get G/T (G) ∼= M/T (G) ∩M , and
therefore G/T (G) is solvable if and only if M is solvable. Assuming that M is not
solvable there exists a T-triple t of M . But clearly t is also a T-triple of T (G) so t
is a T-triple of T (G) ∩M which is solvable - a contradiction.

Finally, if M E G and G/M is not solvable, we get T (G) = S (G) � M . Hence

there exists a T-triple t of G such that t /∈M3. By Lemma 3.2, t ∈ (G−M)
3
.

Proof of Theorem 1.3. Let N be the set of all normal open subgroups of G which
are contained in M . Then (see Section 2, (3) where this set is denoted

(
N (G)

)
M

)

N is a filter base in G satisfying
⋂

N∈N
N = 1. Let N ∈ N . Then G/N is a finite

group, and since N ≤ M we get that M/N is a normal subgroup of G/N , and,
by an isomorphism theorem, (G/N) / (M/N) ∼= G/M . Since G/M is non-solvable
then so is G/N . By Lemma 3.4, G/N has a T-triple which is also a T-triple modulo
M/N . Let tN := (aN , bN , cN ) ∈ G3 be such that tNN

3 is a T-triple of G/N which
is also a T-triple modulo M/N (no claim is made that tN is a T-triple of G). It

follows that tN is a T-triple modulo N of G, and tN ∈ (G−M)
3
.
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Observe that the assignment N 7−→ tN defines a function N → (G−M)
3

which
is a topological net since N is a filter base. Moreover, because M is open in G, the
subset (G−M)

3
is closed in G3 and since G3 is compact so is (G−M)

3
. Therefore

the net defined by N 7−→ tN has at least one cluster point. Choose t = (a, b, c)
to be such a cluster point. Now let K ∈ N be arbitrary. Then tK3 is an open
neighborhood of t in G3, and hence tK3 ∩ (G−M)

3
is an open neighborhood of t

in (G−M)
3
. Therefore, by definition of a cluster point, there exists N ∈ N , such

that N ≤ K and tN ∈ tK3 ∩ (G−M)
3
. From tN ∈ tK3 we get

(3.1) tNK
3 = tK3.

Furthermore, N ≤ K, the fact that tN is a T-triple modulo N of G, and tN ∈
(G−M)

3 ⊆ (G−K)
3

(since K ≤M), imply, by Lemma 3.3, that tN is a T-triple
modulo K of G. Hence, by Equation 3.1, t is a T-triple modulo K of G. Thus we
have proved that t is a T-triple modulo K of G for all K ∈ N . This implies that
aK, bK, cK are coprime in pairs for all K ∈ N , and hence, by Lemma 2.3 (i), a, b, c
are coprime in pairs. We also get that abc ∈ K for all K ∈ N . Since

⋂
K∈N

K = 1,

this implies abc = 1. Finally, t = (a, b, c) ∈ (G−M)
3
. Hence t is a T-triple of

G which is also a T-triple modulo M of G. Combining what we proved here with
Lemma 3.1 shows that G is prosolvable if and only if G has no T-triples.

Proof of Theorem 1.5. First we show T (G) ≤ S (G). Suppose by contradiction
that t = (a, b, c) is a T-triple of G such that {a, b, c} * S (G). Then, by Lemma

3.2, tS (G)
3

is a T-triple of G/S (G). But, by definition, G/S (G) is prosolvable, so
we get a contradiction with Lemma 3.1.

To prove S (G) ≤ T (G), we show that G/T (G) is prosolvable. Suppose by
contradiction that G/T (G) is not prosolvable. Then there exists N CO (G/T (G))
such that (G/T (G)) /N is non-solvable. Thus M := T (G)N is an open normal
subgroup of G and G/M is non-solvable. By Theorem 1.3, G has a T-triple t which
is also a T-triple modulo M . Hence tM3 is a T-triple of G/M - a contradiction.

4. Complete Sylow Sequences

Here we define complete Sylow sequences and products and prove Theorem 1.6.

Definition 4.1. Let G be a profinite group. Fix a permutation τ of N. A complete
Sylow sequence of G of type τ is a sequence P =

((
Gpτ(1) , ..., Gpτ(i)

))
i∈N, where for

each p ∈ Pr, Gp is a p-Sylow subgroup of G (if p /∈ π (G) then Gp = {1}). The
product of the sequence P is defined by

Π (P) := cl

( ∞⋃
i=1

Gpτ(1) · · ·Gpτ(i)
)

,

where the product Pτ(p1) · · ·Pτ(pi) is the setwise product. If P =
((
Gpτ(1) , ..., Gpτ(i)

))
i∈N,

is a given complete Sylow sequence of G of type τ then the opposite sequence to P,
denoted Pop, is defined by Pop :=

((
Gpτ(i) , ..., Gpτ(1)

))
i∈N, and its product is

Π (Pop) := cl

( ∞⋃
i=1

Gpτ(i) · · ·Gpτ(1)
)

.
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Remark 4.2. a. We will allow ourselves to regard τ also as a permutation of Pr,
via τ (p) = pτ(i) for p ∈ Pr, where i is uniquely determined by p = pi, and write,

when convenient, P =
(
Gτ(p)

)
p∈Pr

for P =
((
Gpτ(1) , ..., Gpτ(i)

))
i∈N.

b. The choice of working simultaneously with all primes is out of notational
convenience. We could have limited the definition to primes in π (G), since primes
outside π (G) do not really matter. For this reason, if π (G) is finite, modulo the
harmless addition of trivial Sylows, Definition 4.1 agrees with the finite group defi-
nition given in Section 1 and we will freely use the latter in this case. Furthermore,
note that if π (G) is finite, an opposite Sylow sequence is essentially just a Sylow
sequence while if π (G) is infinite it has to be introduced as an independent object.

For any non-empty subset S of a group G denote S−1 :=
{
s−1|s ∈ S

}
.

Lemma 4.3. Let G be a profinite group. Let P =
((
Gpτ(1) , ..., Gpτ(i)

))
i∈N be a

complete Sylow sequence of G of type τ . Then:
(a) Let N be a closed normal subgroup of G. Then PG/N :=

(
Gpτ(p)N/N

)
p∈Pr

is a complete Sylow sequence of G of type τ , and Π (P)N/N = Π
(
PG/N

)
.

(b) Π (P) = G if and only if Π
(
PG/N

)
= G/N for every N ∈ N (G).

(c) Π (P)
−1

= Π (Pop).

Proof. (a) Let ϕN : G → G/N be the natural projection. For any p ∈ Pr we have
that ϕN (Gp) = GpN/N is a Sylow p-subgroup of G/N ([15, Proposition 2.2.3(b)]).
Hence ϕN maps P to PG/N . Moreover, since ϕN is a group homomorphism,

ϕN
(
Gpτ(1) · · ·Gpτ(i)

)
= (G/N)pτ(1) · · · (G/N)pτ(i) . By continuity of ϕN , we have

ϕN (cl (S)) ⊆ cl (ϕN (S)) for any S ⊆ G. Applying this for S =
∞⋃
i=1

Gpτ(1) · · ·Gpτ(i) ,

we get ϕN (Π (P)) ⊆ Π
(
PG/N

)
. Now, by [15, Lemma 0.1.2(a)-(c)], ϕN (Π (P)) is

closed and hence we obtain ϕN (Π (P)) = Π
(
PG/N

)
.

(b) If Π (P) = G then, by (a), Π (P)N/N = Π
(
PG/N

)
= G/N for every N ∈

N (G). In the other direction suppose that Π
(
PG/N

)
= G/N for every N ∈ N (G).

Then, by (a), Π (P)N/N = G/N for every N ∈ N (G). Using Lemma 2.2 with
A = Π (P) and B = G (both are closed) gives Π (P) = G.

(c) Set S :=
∞⋃
i=1

Gpτ(1) · · ·Gpτ(i) . For any i ∈ N we have
(
Gpτ(1) · · ·Gpτ(i)

)−1
=

Gpτ(i) · · ·Gpτ(1) . Hence, by definition, cl
(
S−1

)
= Π (Pop). On the other hand,

S ⊆ Π (P), so we have S−1 ⊆ (Π (P))
−1

, and since the map G → G defined by

g 7−→ g−1 is a homeomorphism, (cl (S))
−1

= cl
(
S−1

)
. Therefore

(Π (P))
−1

= (cl (S))
−1

= cl
(
S−1

)
= Π (Pop) .

Proof of Theorem 1.6. (1)-(3) are equivalent for any finite group G (for a finite
group prosolvability is the same as solvability) by [5, Theorem A]. Now the claim
follows from Lemma 4.3 (b).

5. Sylow factorizations in a profinite group

In this section we define the Sylow multiplicity of a given element in a given
Sylow sequence and prove Proposition 1.7.
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Definition 5.1. Let G be a profinite group, let g ∈ G and let P =
(
Gτ(p)

)
p∈Pr

be a complete Sylow sequence of type τ . An element sequence in P is a sequence(
gτ(p)

)
p∈Pr

where for each p ∈ Pr, gτ(p) ∈ Gτ(p). A factorization of g in P is

an element sequence
(
gτ(p)

)
p∈Pr

in P such that g = limk→∞
(
gτ(p1) · · · gτ(pk)

)
. We

denote by MP (g) the set of all factorizations of g in P, and by mP (g) the cardinality
of MP (g).

Remark 5.2. In the notations of Definition 5.1, let
(
gτ(p)

)
p∈Pr

be any element

sequence in P. Then, since G is Hausdorff,
(
gτ(p)

)
p∈Pr

has at most one limit,

and if the limit exists, it belongs to Π (P), since Π (P) is closed. It follows that if
mP (g) = 1 for every g ∈ G then G = Π (P).

Lemma 5.3. Let G be a profinite group, and let P =
(
Gτ(p)

)
p∈Pr

be a complete

Sylow sequence of type τ . Let g ∈ Π (P). Then g has a factorization in P.

Proof. Let Cr
(
Gτ(p)

)
be the Cartesian product of all of the Sylow subgroups of G

which appear in the complete Sylow sequence P. We view Cr
(
Gτ(p)

)
as a topo-

logical space with the product topology (each Sylow subgroup is a closed subgroup
of G). We define a net in Cr

(
Gτ(p)

)
which is based on N (G), in the following

way. First note that since N (G) is a filter base it is a directed system with re-
spect to the partial order relation defined by: N1 ≤D N2 if and only if N2 ≤ N1

(for every N1, N2 ∈ N (G) we have N1 ∩ N2 ∈ N (G) and N1 ≤D N1 ∩ N2 and
N2 ≤D N1 ∩N2). By Lemma 4.3 (a), PG/N :=

(
Gτ(p)N/N

)
p∈Pr

is a complete Sy-

low sequence of type τ of the finite groupG/N , and Π (P)N/N = Π
(
PG/N

)
, for any

N ∈ N (G). Thus, there exists some positive integer kN (which depends on N) such
that Π (P)N/N =

(
Gτ(p1)N/N

)
· · · (Gτ(pkN )N/N) and hence there exist elements

gi,N ∈ Gτ(pi), 1 ≤ i ≤ kN , such that gN = g1,N · · · gkN ,NN . We define our net by

associating to N ∈ N (G) the element (g1,N , . . . , gkN ,N , 1, 1, . . .) ∈ Cr
(
Gτ(p)

)
. Since

each Sylow subgroup is closed and hence compact, Cr
(
Gτ(p)

)
is compact, and there-

fore the net we have just defined has at least one cluster point. Let (gi)i∈N be such
a cluster point, where gi ∈ Gτ(pi) for all i. We claim that g = limk→∞ (g1 · · · gk).
In order to prove this, let U be an open neighborhood of g. We have to show
that there is some positive integer k0 such that for all k ≥ k0 it holds that
gτ(p1) · · · gτ(pk) ∈ U . By [15, Proposition 0.3.3(a)], U is a union of cosets of open

normal subgroups of G. Hence there exists N ∈ N (G) such that g belongs to a
coset of N . This coset is clearly equal to gN . Since (gi)i∈N is a cluster point for

the net we have defined, there exists N1 ∈ N (G), N ≤D N1 (which is equivalent to
N1 ≤ N) such that giN1 = gi,N1

N1 for each i. Since gN1 = g1,N1
· · · gkN1

,N1
N1,

we get gN1 = g1 · · · gkN1
N1. Moreover, for all k > kN1

we have gkN1 = N1, so
gN1 = g1 · · · gkN1, for all k ≥ kN1 , or equivalently, g1 · · · gk ∈ gN1 ⊆ gN ⊆ U for
all k ≥ kN1 .

Proof of Proposition 1.7. If mP (g) = 1 for all g ∈ G then G = Π (P) by Remark
5.2. To prove the other direction suppose that G = Π (P). Then, by Lemma
5.3, mP (g) ≥ 1 for all g ∈ G. It remains to show that if limk→∞ (g1 · · · gk) =
limk→∞ (g′1 · · · g′k), where gi, g

′
i ∈ Gτ(pi) for all i ≥ 1 then gi = g′i for all i ≥

1. By definition of a limit the equality of the two limits implies that for each
N ∈ N (G) there exists some positive integer k0 such that for all k ≥ k0 we have
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(g1N) · · · (gkN) = (g′1N) · · · (g′kN). The factorizations on both sides of the last
equality are Sylow factorizations in the Sylow sequence PG/N of the finite group

G/N which satisfies G/N = Π
(
PG/N

)
. The last equality implies mPG/N (x) = 1

for all x ∈ G/N , and therefore giN = g′iN for all i ≥ 1. Equivalently, g−1
i g′i ∈ N

for all i ≥ 1. Thus, for all i ≥ 1,

g−1
i g′i ∈

⋂
N∈N (G)

N = 1,

and therefore gi = g′i for all i ≥ 1.

6. The prosolvable radical

Here we consider the relationship between the prosolvable radical of G and the
intersection of all complete Sylow products of a profinite group G and their op-
posites, proving Theorem 1.10 and Proposition 1.11. We begin with some basic
properties of the prosolvable radical.

The next Lemma is a consequence of prosolvable groups forming a Mel’nikov
formation and its proof follows from [12, Prop. 2.2.1].

Lemma 6.1. Let G be a profinite group, and let K be a closed normal subgroup of
G such that both K and G/K are prosolvable. Then G is prosolvable.

Corollary 6.2. Let G be a profinite group. Then R (G/R (G)) = 1.

Proof. Suppose by contradiction that R (G/R (G)) > 1. Let K be the inverse image
of R(G/N) in G with respect to the natural map G→ G/N . Then R (G) < K E G,
and since both K/R (G) and R (G) are prosolvable, K is prosolvable by Lemma 6.1,
contradicting K > R (G).

Lemma 6.3. Let G be a profinite group, and let N be a closed normal subgroup of
G. Then:

(a) R (N) = R (G) ∩N .
(b) R (G)N/N ≤ R (G/N).

Proof. (a) Using the properties of R (G) we get that R (G)∩N is a closed prosolvable
normal subgroup of N . Therefore R (G) ∩N ≤ R (N). Suppose, by contradiction,
that R (G) ∩N < R (N). Then R (N) /N ∩ R (G) is a non-trivial, closed, normal,
prosolvable group of N/N ∩ R (G). But N/N ∩ R (G) and R (G)N/R (G) are
isomorphic as profinite groups, therefore, R (R (G)N/R (G)) is non-trivial. Since
R (R (G)N/R (G)) is characteristic, it is normal in G/R (G) and hence R (G/R (G))
is non-trivial, in contradiction to Corollary 6.2.

(b) R (G)N/N E G/N , and R (G)N/N ∼= R (G) /N∩R (G) which is prosolvable.
Hence R (G)N/N ≤ R (G/N).

Note that in Lemma 6.3(b) we can have R (G)N/N < R (G/N), e.g., G =
Sym (5), N = Alt (5).

The following notion was introduced in [2], and the discussion which ensues is
based on its application to Sylow sequences of finite groups in [5].

Definition 6.4. Let S be a non-empty subset of a group G. The (left) kernel of S,
denoted by KL (S), is defined by:

KL (S) := {g ∈ G| gS = S} .
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It is easy to check that KL (S) is a subgroup of G, and that S is a union of right
cosets of KL (S). Furthermore, if 1 ∈ S then KL (S) ⊆ S. Also, for any g ∈ G we
have KL (Sg) = (KL (S))

g
. For the discussion of left kernels of Sylow products the

following characterization of kernels is useful.

Lemma 6.5. Let S be a non-empty subset of a group G. Then

(6.1) KL (S) =

( ⋂
a∈S

Sa−1

)
∩
( ⋂
a∈S

aS−1

)
.

It follows that if G is a topological group and S is closed then KL (S) is closed.

Proof. Let a ∈ S. Then g ∈ Sa−1 if and only if there exists s ∈ S such that
g = sa−1 which is equivalent to ga = s ∈ S. Hence g ∈

⋂
a∈S

Sa−1 if and only if

ga ∈ S for every a ∈ S which is equivalent to gS ⊆ S. Similarly, g ∈
⋂
a∈S

aS−1,

if and only if S ⊆ gS. Therefore, g ∈
( ⋂
a∈S

Sa−1

)
∩
( ⋂
a∈S

aS−1

)
if and only if

S ⊆ gS ⊆ S which is equivalent to gS = S. This proves Equation 6.1.
If G is is a topological group and S is closed, then by continuity of the group

operations, Sa−1 and aS−1 are closed for any a ∈ G, and hence KL (S) is closed,
being the intersection of closed subsets.

Remark 6.6. If G is finite we have KL (S) =
⋂
a∈S

Sa−1 =
⋂
a∈S

aS−1.

Definition 6.7. Let G be a profinite group, and let P = ((P1, ..., Pi))i∈N be a
complete Sylow sequence of G of type τ (so Pi is a pτ(i)-Sylow subgroup of G for
all i ∈ N). Let (ai)i∈N be an element sequence in P such that limi→∞ a1a2 · · · ai
exists. Then P

(
a−1
i

)
i∈N = ((R1, ..., Ri))i∈N is the complete Sylow sequence of G of

type τ which is defined by:

R1 := P1, Ri := P
a−1
i−1···a

−1
1

i ∀i ≥ 2.

We denote the set of all Sylow sequences of G of the form P
(
a−1
i

)
i∈N where

limi→∞ a1a2 · · · ai exists, by R (P), and R (P)
op

:= {Qop|Q ∈ R (P)}.

Lemma 6.8. Let G be a profinite group, and let P = (P1, ..., Pi)i∈N be a complete
Sylow sequence of G of type τ . Let (ai)i∈N be an element sequence in P such that the

limit a := limi→∞ a1a2 · · · ai exists. Set Q = P
(
a−1
i

)
i∈N. Then Π(Q) = Π (P) a−1,

and Π(Qop) = aΠ (P)
−1

.

Proof. Both Π(Q), and Π (P) a−1 are closed, hence it suffices, by Lemma 2.2, to
prove that Π(Q)N/N = Π (P) a−1N/N for every N ∈ N (G). Let N ∈ N (G) be ar-
bitrary. Let ϕN : G→ G/N be the natural projection. By Lemma 4.3(a), ϕN (Q) =
QG/N and ϕN (P) = PG/N are complete Sylow sequences of the finite group G/N ,

and Π(Q)N/N = Π(QG/N ), Π (P)N/N = Π
(
PG/N

)
. Therefore, Π (P) a−1N/N =

Π
(
PG/N

) (
a−1N

)
. Moreover, by finiteness of G/N , there exist distinct positive

integers i1, ..., im such that π (G/N) = {pi1 , ..., pim}. Hence, ϕN (ai) = 1 for all
i with pi /∈ π (G/N) and ϕN (a) = ϕN (ai1) · · ·ϕN (aim) = (ai1N) · · · (aimN) is a
Sylow factorization of ϕN (a) in ϕN (P). We get Π(QG/N ) = Π

(
PG/N

) (
a−1N

)
by

[5, Lemma 8].
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For Π(Qop) = aΠ (P)
−1

, we use Lemma 4.3 (c), and the first part of the proof:

Π(Qop) =
(

Π
(
P
(
a−1
i

)
i∈N

))−1

=
(
Π (P) a−1

)−1
= aΠ (P)

−1
.

Proposition 6.9. Let G be a profinite group, and let P be a complete Sylow se-
quence of G. Then

KL (Π (P)) =
⋂

Q∈R(P)∪R(P)op
Π (Q) .

Proof. By Lemma 6.5 it would suffice to prove that

(*)

( ⋂
a∈Π(P)

Π (P) a−1

)
∩

( ⋂
a∈Π(P)

aΠ (P)
−1

)
=

⋂
Q∈R(P)∪R(P)op

Π(Q).

By Lemma 6.8, for anyQ ∈ R (P)∪R (P)
op

, there exists a ∈ Π (P) (see Remark 5.2)

such that either Π(Q) = Π (P) a−1 or Π(Q) = aΠ (P)
−1

. Conversely, if a ∈ Π (P),
then by Lemma 5.3, a has a factorization (ai)i∈N in P = ((P1, ..., Pi))i∈N, such that

a = limi→∞ a1a2 · · · ai and hence Q = P
(
a−1
i

)
i∈N ∈ R (P), and Qop ∈ R (P)

op
. By

Lemma 6.8, Π(Q) = Π (P) a−1, and Π(Qop) = aΠ (P)
−1

. This proves (*).

Now we can define the main object of interest in this section.

Definition 6.10. Let G be a profinite group, and let τ be any permutation of N.
Denote by CSS (G) (CSSτ (G)) the set of all complete Sylow sequences of G (of
type τ). Then

Hτ (G) : =
⋂

P∈CSSτ (G)

(Π(P)∩Π(Pop))

H (G) : =
⋂

P∈CSS(G)

(Π(P)∩Π(Pop)) .

Note that H (G) = ∩τHτ (G).

Proof of Theorem 1.10. (a) By definition of Hτ (G) and Proposition 6.9 we get:

Hτ (G) =
⋂

P∈CSSτ (G)

(Π(P)∩Π(Pop)) =
⋂

P∈CSSτ (G)

⋂
Q∈R(P)∪R(P)op

Π (Q) =

=
⋂

P∈CSSτ (G)

KL (Π (P)) .

Thus Hτ (G) is a closed subgroup of G. Let α be a continuous automorphism
of G. Using the fact that the image of a p-Sylow subgroup under α is also a p-
Sylow subgroup, it follows that Π(P)

α
= Π(Pα) where, if P = ((P1, ..., Pi))i∈N

then Pα := ((Pα1 , ..., P
α
i ))i∈N. Similarly, Π(Pop)α = Π((Pop)α ). Moreover, if P

is of type τ then so is Pα, and (Pop)α = (Pα)
op

. Hence α induces a bijection
CSSτ (G)→ CSSτ (G). It follows that Hτ (G) is characteristic.

(b) Π(P) is a union of right cosets of KL (Π(P)) (see the remarks following Defi-

nition 6.4). Consequently, Π(Pop) = Π(P)
−1

is a union of left cosets of KL (Π(P)).
Since by definition Hτ (G) ⊆ KL (Π (P)), and by (a) Hτ (G) E G, we get that
KL (Π (P)) is a union of cosets of Hτ (G), and the claim follows.

(c) Let P be a p-Sylow subgroup of G. By [15, Proposition 2.2.3(a)], R (G) ∩ P
is a p-Sylow subgroup of R (G). It follows that if P = ((P1, ..., Pi))i∈N is any
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complete Sylow sequence of G, then Q = ((Q1, ..., Qi))i∈N, where Qi = R (G) ∩ Pi,
is a complete Sylow sequence of R (G). Now, since R (G) is prosolvable, we get
by Theorem 1.6 that R (G) = Π(Q) = Π(Q)−1 = Π(Qop). Clearly, Π(Q) ⊆ Π(P),
and Π(Qop) ⊆ Π(Pop), so R (G) ⊆ Π(P)∩Π(Pop) for every P ∈ CSS (G). This
implies R (G) ≤ H (G). Hence R (G) ≤ R (H (G)). But R (H (G)) is characteristic
in H (G), hence R (H (G)) ≤ R (G), and equality follows.

(d) For all K ≤ G, set K̂ := KHτ (G) /Hτ (G). Note that Ĝ is profinite since

Hτ (G) is a normal closed subgroup of G. Under the natural mapping G→ Ĝ, each

Sylow sequence P is mapped to a unique Sylow sequence of Ĝ, of the same type,

which we denote P̂, and Π (P) is mapped onto Π
(
P̂
)

(Lemma 4.3(a)). Hence:

Hτ

(
Ĝ
)

=
⋂

Q∈CSSτ(Ĝ)
(Π(Q) ∩Π(Qop)) =

⋂
P∈CSSτ (G)

(
Π(P̂) ∩Π(P̂op)

)
.

Let P =
(
Gτ(p)

)
p∈Pr

∈ CSSτ (G). Using:

Ĝpτ(1) · · · Ĝpτ(i) =
(
Gpτ(1)Hτ (G)

)
/Hτ (G) · · ·

(
Gpτ(i)Hτ (G)

)
/Hτ (G) =

=
(
Gpτ(1) · · ·Gpτ(i)Hτ (G)

)
/Hτ (G) ,

we get:

Π
(
P̂
)

= cl

( ∞⋃
i=1

Ĝpτ(1) · · · Ĝpτ(i)
)

= cl

( ∞⋃
i=1

(
Gpτ(1) · · ·Gpτ(i)Hτ (G)

)
/Hτ (G)

)
=

=

(
cl

( ∞⋃
i=1

Gpτ(1) · · ·Gpτ(i)
))

Hτ (G) /Hτ (G) = Π (P)Hτ (G) /Hτ (G) ,

where we have also used the fact that images of closed sets under G → Ĝ are
closed, that Hτ (G) is closed and Lemma 2.2. Part (b) and Hτ (G) E G give:

Π (P)Hτ (G) = Hτ (G) Π (P) = Π (P) .

Hence Π
(
P̂
)

= Π (P) /Hτ (G), and also Π
(
P̂op

)
= Π (Pop) /Hτ (G). We get:

Hτ

(
Ĝ
)

=
⋂

P∈CSSτ (G)

(
Π(P̂) ∩Π(P̂op)

)
=

⋂
P∈CSSτ (G)

((Π (P) /Hτ (G)) ∩ (Π (Pop) /Hτ (G)))

=
⋂

P∈CSSτ (G)

(Π (P) ∩Π (Pop)) /Hτ (G) = Hτ (G) /Hτ (G) = 1.

Finally, R (G/Hτ (G)) = 1 follows immediately fromR (G/Hτ (G)) ≤ H(G/Hτ (G)).
(e) Essentially the same proof as (d).

Lemma 6.11. Let G be a profinite group, K a closed normal subgroup of a group
G, and let τ a permutation of N. Then Hτ (G)K/K ≤ Hτ (G/K), and consequently
H (G)K/K ≤ H (G/K).

Proof. Let Q ∈ CSSτ (G/K), and let P ∈ CSSτ (G) be such that P is mapped
to Q under the natural map G → G/K (see proof of Theorem 1.10(d)). As is
shown in the proof of Theorem 1.10(d), Hτ (G) ⊆ Π (P) and Hτ (G) ⊆ Π (Pop).
Therefore Hτ (G)K ⊆ (Π (P) ∩Π (Pop)). Using the same reasoning as in the proof
of Theorem 1.10(d), this implies Hτ (G)K/K ⊆ (Π (Q) ∩Π (Qop)). Since Q is
arbitrary, it follows that Hτ (G)K/K ≤ Hτ (G/K).
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From the last claim we get H (G)K/K ≤ Hτ (G/K) for any permutation τ
of N, since H (G) ≤ Hτ (G). Taking the intersection over all possible τ , yields
H (G)K/K ≤ H (G/K).

Proof of Proposition 1.11. Set NH(G) :=
{
N ∩H (G) |N ∈ N (G)

}
. To prove our

claim it will suffice to prove that H (G) is prosolvable, and for this it is sufficient to
prove that H (G) /N is solvable for any N ∈ NH(G). Let N ∈ NH(G) be arbitrary.

Let N1 ∈ N (G) be such that N = N1 ∩H (G). Then, by Lemma 6.11, we have:

H (G) /N ∼= H (G)N1/N1 ≤ H (G/N1) = R (G/N1) ,

proving that H (G) /N is solvable.
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