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Rungs 1 to 4 of DFT Jacob’s ladder: Extensive test on the lattice constant,
bulk modulus, and cohesive energy of solids

Fabien Tran, Julia Stelzl, and Peter Blaha
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC,
A-1060 Vienna, Austria

(Received 4 March 2016; accepted 22 April 2016; published online 27 May 2016)

A large panel of old and recently proposed exchange-correlation functionals belonging to rungs
1 to 4 of Jacob’s ladder of density functional theory are tested (with and without a dispersion
correction term) for the calculation of the lattice constant, bulk modulus, and cohesive energy of
solids. Particular attention will be paid to the functionals MGGA_MS2 [J. Sun et al., J. Chem.
Phys. 138, 044113 (2013)], mBEEF [J. Wellendorft et al., J. Chem. Phys. 140, 144107 (2014)],
and SCAN [J. Sun ef al., Phys. Rev. Lett. 115, 036402 (2015)] which are meta-generalized gradient
approximations (meta-GGA) and are developed with the goal to be universally good. Another goal
is also to determine for which semilocal functionals and groups of solids it is beneficial (or not
necessary) to use the Hartree-Fock exchange or a dispersion correction term. It is concluded that for
strongly bound solids, functionals of the GGA, i.e., rung 2 of Jacob’s ladder, are as accurate as the
more sophisticated functionals of the higher rungs, while it is necessary to use dispersion corrected
functionals in order to expect at least meaningful results for weakly bound solids. If results for finite
systems are also considered, then the meta-GGA functionals are overall clearly superior to the GGA

functionals. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948636]

. INTRODUCTION

Starting in the mid 1980s,'2 there has been a constantly
growing interest in the development of exchange-correlation
(xc) functionals Ey. = Ey + E. in the Kohn-Sham (KS) density
functional theory (DFT),>* and the number of functionals that
have been proposed so far is rather huge (see, e.g., Refs. 5-8
for recent reviews). This is understandable since KS-DFT is
the most used method for the theoretical modeling of solids,
surfaces, and molecules at the quantum level, and the accu-
racy of a KS-DFT calculation depends to a large extent on
the chosen approximation for Ey.. Over the years, the degree
of sophistication of the functionals (and their accuracy) has
increased and most of the functionals belong to one of the rungs
of Jacob’s ladder.”'° On the first three rungs, there are the so-
called semilocal (SL) approximations which consist of a single
integral for Ec,

ES = / exe(r)d’r, (1)

and where €., the exchange-correlation energy density per
volume, is a function of (a) the electron density p = 3, fi . Wil
in the local density approximation (LDA, first rung), (b) p and
its first derivative V p in the generalized gradient approximation
(GGA, second rung), and (c) p, Vp, and the kinetic-energy
(KE) density t = (1/2) Zf\il Vit - Viy; and/or V2p in the meta-
GGA approximation (MGGA, third rung). On the fourth rung
there are the functionals which make use of the [full or short-
range (SR)] Hartree-Fock (HF) exchange, like the hybrid func-
tionals,!!

hybrid SL SR-)HF SR-)SL
EZ™ = ESF + ay (ESRHE - ESRISL) (2)
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where ay (€ [0,1]) is the fraction of HF exchange energy
E,((SR")HF which is a double integral,

iZém [ [viwwo

i=1 j=1

xv (e = ey Wi )d’rd’r, 3)

ESROHF _ _

DI —

where the indices i and j run over the occupied orbitals and
v is the Coulomb potential 1/ |r — r’| or only the SR part of
it'>13 (i.e., a screened potential). On the fifth rung of Jacob’s
ladder, there are the functionals which utilize all (occupied
and unoccupied) orbitals, like the random phase approximation
(RPA, see, e.g., Refs. 14 and 15).

The functionals of the first four rungs have been extremely
successful in describing the properties of all kinds of electronic
systems, ranging from atoms to solids.’”” However, a well-
known problem common to all these functionals is that the
long-range London dispersion interactions (always attractive
and resulting from the interaction between non-permanent
multipoles) are formally not included. In the case of two
nonoverlapping spherical atoms, these functionals give an
interaction energy of strictly zero, which is not the case in re-
ality because of the attractive London dispersion interactions.
As a consequence, the results obtained with the semilocal and
hybrid functionals on systems where the London dispersion
interactions play a major role can be qualitatively wrong.'®
Nevertheless, as underlined in Ref. 17, at equilibrium geom-
etry the overlap between two interacting entities is not zero,
such that a semilocal or hybrid xc-functional can eventually
lead to a non-zero contribution to the interaction energy and

Published by AIP Publishing.
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therefore, possibly useful results (see, e.g., Ref. 18). In order
to improve the reliability of KS-DFT calculations for such
systems, functionals including the dispersion interactions in
their construction were proposed. A simple and widely used
method consists of adding to the semilocal or hybrid functional
an atom-pairwise (PW) term of the form

PW 2 : d B
amy n
Ec,disp == fn p(RAB) R" . (4)
A<B n=6,8,10,... AB

where CA8 are the dispersion coefficients for the atom pair
A and B separated by the distance R4z and fo*™ is a damp-
ing function preventing Eq. (4) from becoming too large for
small R,p. The coefficients CA5B can be either precomputed
(see, e.g., Refs. 19-24) or calculated using properties of the
system like the atomic positions or the electron density (see,
e.g., Refs. 25-27). The other group of well-known methods
accounting explicitly of dispersion interactions consists of
adding to Eo~/™™9 3 nonlocal (NL, in the sense of being a
double integral) term of the form?®

Ee=3 / / PO (51) p)rdr, (5)
where the kernel ® depends on p and Vp at r and r’
as well as on |r—r’|. Several functionals of the form of
Eq. (5) are available in the literature’®* and good results
can be obtained if the proper combination Eg-/™" + ElGio
is used (see, e.g., Refs. 29, 31, and 34). Overall, the KS-
DFT+dispersion methods produce results which are more
reliable when applied to systems where the dispersion plays a
major role, and therefore, the very cheap atom-pairwise and
not-too-expensive nonlocal methods are nowadays routinely
applied (see Refs. 16, 35, and 36 for recent reviews).

At this point, we should certainly also mention that truly
ab initio (beyond DFT) methods have been used for the calcu-
lation of geometrical and energetic properties of solids (the
focus of the present work). This includes RPA, which has been
shown during these last few years to be quite reliable in many
situations (see, e.g., Refs. 15 and 37-39 for extensive tests),
the quantum Monte Carlo methods as exemplified in Ref. 40
for the calculation of the lattice and bulk modulus of a set of
solids, and the post-HF methods which, as expected, should
converge to the exact results.*!

Another well-known problem in KS-DFT, which we will
not address in this work, is the inadequacy of the semilocal
functionals (or more precisely of the potential vx. = 0 Ex./dp)
for the calculation of band gaps, while the hybrid functionals
work reasonably well in this respect, thanks to the nonlocal HF
exchange (see, e.g., Refs. 42-44).

In the present work, a large number of functionals of
rungs 1 to 4 of Jacob’s ladder, with or without a disper-
sion term, are tested on solids for the calculation of lattice
constant, bulk modulus, and cohesive energy. A particular
focus will be on the MGGA functionals recently proposed
by Perdew and co-workers, namely, MGGA_MS (MGGA
made simple),'®*4¢ MVS (made very simple),*’ and SCAN
(strongly constrained and appropriately normed semilocal
density functional),*® and by Wellendorft et al.,** mBEEF
(model Bayesian error estimation functional), which should in
principle be accurate semilocal functionals for both finite and
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infinite systems, and to bind systems bound by weak interac-
tions. Two testing sets of solids will be considered. The first
one consists of cubic elemental solids and binary compounds
bound by relatively strong interactions, while the second set
is composed of systems bound mainly by weak interactions
(e.g., dispersion). This extensive study of functionals perfor-
mance on solids complements previous works, which include
Refs. 50-60 for semilocal functionals, Refs. 42—44 and 61-64
for tests including hybrid functionals, Refs. 15, 37, and 38
for RPA, and Refs. 49 and 65-70 for a focus on functionals
including dispersion via an atom-pairwise term or a nonlocal
term.

The paper is organized as follows. The computational
details are given in Sec. II. In Sec. III, the tested functionals are
presented and some of their features are discussed. The results
are presented and discussed in Sec. IV, while Sec. V gives a
brief literature overview of the accuracy of functionals for the
energetics of molecules. Finally, Sec. VI gives a summary of
this work.

Il. COMPUTATIONAL DETAILS

All calculations were done with the WIEN2k code,”’
which uses the full-potential (linearized) augmented plane-
wave plus local orbitals method’” to solve the KS equations.
The parameters of the calculations like the number of k-points
for the integration of the Brillouin zone or size of the basis set
were chosen to be large enough such that the results are well
converged.

In order to make the testing of the numerous functionals
tractable (especially for the hybrids which use the expensive
HF exchange), the results on the strongly bound solids (listed
in Table I) were obtained non-self-consistently by using the
PBE? orbitals and densities. According to tests, the error in the
lattice constant induced by this non-self-consistent procedure
should be in most cases below 0.005 A. The worst cases are
the very heavy alkali and alkali-earth metals (Cs in particular)
for which the error can be of the order of ~0.02 A. Errors
in the range 0.005-0.015 A can eventually be obtained in the

TABLE I. The test set of 44 strongly and 5 weakly bound solids considered
in this work. The space group is indicated in parentheses. With the exception
of hexagonal graphite and h-BN, all solids are cubic.

Strongly bound solids

C (Fd3m), Si (Fd3m), Ge (Fd3m), Sn (Fd3m), SiC (F43m),
BN (F43m), BP (F43m), AIN (F43m), AIP (F43m), AlAs (F43m),
GaN (F43m), GaP(F43m), GaAs (F43m), InP (F43m),

InAs (F43m), InSb (F43m), LiH (Fm3m), LiF (Fm3m),

LiCl (Fm3m), NaF (Fm3m), NaCl (Fm3m), MgO (Fm3m),

Li (Im3m), Na (Im3m), Al (Fm3m), K (Im3m), Ca (Fm3m),
Rb (Im3m), St (Fm3m), Cs (Im3m), Ba (Im3m), V (Im3m),

Ni (Fm3m), Cu (Fm3m), Nb (Im3m), Mo (Im3m), Rh (Fm3m),
Pd (Fm3m), Ag (Fm3m), Ta (Im3m), W (Im3m), Ir (Fm3m),
Pt (Fm3m), Au (Fm3m)

Weakly bound solids
Ne (Fm3m), Ar (Fm3m), Kr (Fm3m), graphite (P63/mmc),
h-BN (P63/mmc)
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case of metals with hybrid functionals (a comparison can be
done with our self-consistent hybrid calculations reported in
Refs. 74 and 75). For the cohesive energy, the effect should not
exceed 0.05 eV/atom except in the eventual cases where self-
consistency would lead to an atomic electronic configuration
for the isolated atom that is different from the one obtained
with PBE. For the very weakly bound rare-gas solids, Ne, Ar,
and Kr, and layered solids, graphite and h-BN, we observed
that self-consistency may have a larger impact on the results
(up to a few 0.1 A in the case of very shallow total-energy
curves), therefore the calculations were done self-consistently
for LDA/GGA, but not for the MGGA functionals (not im-
plemented self-consistently in WIEN2k) as well as the very
expensive hybrid functionals.

The results of our calculations for the strongly bound
solids were compared with experimental results that were
corrected for thermal and zero-point vibrational effects (see
Refs. 43 and 76). For the weakly bound systems, the results
were compared with accurate ab initio results: coupled cluster
with singlet, doublet, and perturbative triplet [CCSD(T)] for
the rare gases’’ and RPA for the layered solids.”®”"

At this point, we should remind that in general, the
observed trends in the relative performance of the functionals
may depend on the test set and more particularly on the
diversity of solids. Since our test set contains elements from
all parts of the periodic table except lanthanides and actinides,
our results should give a rather fair and unbiased overview of
the accuracy of the functionals.

Finally, we mention that we did not include ferromagnetic
bece Fe in our test set of solids, since the total-energy curves
exhibit a discontinuity at the lattice constant of ~2.94 A (same
value as found in Ref. 38), which is due to a change in orbitals
occupation with PBE. This discontinuity is very large when the
HF exchange is used, making an unambiguous determination
of the equilibrium volume not possible with some of the hybrid
functionals.

lll. THE FUNCTIONALS

The exchange-correlation functionals that were tested for
the present work are listed in Table II. They are grouped
into families, namely, LDA, GGA, and MGGA, and their
extensions that use the HF exchange, Eq. (2), [hybrid-...],
a dispersion correction of the atom-pairwise type as given
by Eq. (4) [...+D], or both. Among the GGA functionals,
BLYP?3°* and PBE"? have been the most used in chemistry and
physics, respectively. PBE leads to reasonable results for solids
(lattice constant and cohesive energy), while BLYP is much
more appropriate for the atomization energy of molecules.
More recent GGA functionals are AMO05,%* WC,8! SOGGA,%?
and PBEsol,®* which are more accurate for the lattice constant
of solids (see, e.g., Ref. 54), but severely overbind mole-
cules.? Other recent GGA functionals that were also tested
are PBEint,> PBEfe,” and SG4.%° In the group of MGGA
functionals, there are the relatively old functionals PKZB®’
and TPSS,% as well as the very recent ones MGGA_MS?2,!8:46
mBEEE* and SCAN,* which should be among the most
accurate semilocal functionals for molecules and solids and
also provide (possibly) useful results for weakly bound sys-

J. Chem. Phys. 144, 204120 (2016)

tems. The other recent MGGA MVS* is also among the tested
functionals.

A semilocal functional can be defined by its xc-
enhancement factor Fy.,

€xc(T) x(r) + €(r)
Fy(r) = D)~ dbA) W(r) + F(r), (6)
where €LPA = —(3/4) (3/7)'?p*3 is the exact exchange-

energy density for constant electron densities.*!'%!!! For
convenience, Fy. is usually expressed as a function of
the variables ry = (3/ (47rp))1/ 3 (the radius of the sphere
which contains one electron), s =|Vp|/ (2(3772)1/3;)4/3)
(the reduced density gradient), and @ = (r — V) /t™" where
Y = |Vp|*/ (8p) is the von Weizsiicker''2 KE density (exact
for systems with only one occupied orbital) and
tTF = (3/10) (3712)2/ 3pS/ 3 is the Thomas-Fermi KE den-
sity!!3114 (exact for constant electron densities). Note that
the exchange part Fy does not depend on rg, but only on s (and
a for MGGAS).

Figures 1 and 2 show the enhancement factor of most
GGA and MGGA functionals tested in this work. Now, we
summarize the trends in the performances of GGA functionals
and how they are related to the shape of Fy. (mainly deter-
mined by the dominating exchange part Fx, see upper panel
of Fig. 1). LDA, which has the weakest enhancement factor,
underestimates the equilibrium lattice constant ag of solids.
Since large unit cells contain more density gradient (i.e., larger
s) than small unit cells, then a stronger Fy. (any GGA, see
Fig. 1) will lower the total energy more for large unit cells
than for smaller ones (a stronger Fy. makes the total energy
more negative), and therefore reduce the underestimation of
ap obtained with LDA. A good balance is obtained with weak
GGAs like AMOS or PBEsol (see Fig. 1), which are among the
most accurate for lattice constants. Concerning the cohesive
energy FEon of solids, LDA overestimates the values. Since
an isolated atom contains much more density gradient than
the solid, then a GGA (with respect to LDA) lowers the total
energy of the atom by a larger amount than for the solid, thus
reducing the overestimation of E . In this respect, functionals
with a medium F;like PBE do a pretty good job. GGAs with a
strong Fy.like B88 or RPBE overcorrect LDA and lead to over-
estimation and underestimation of ay and E..,, respectively.
LDA overestimates the atomization energies of molecules as
well, and, using the same argument as for E.., a GGA lowers
(with respect to LDA) the total energy more for the atoms
than for the molecule. However, in this case, functionals with a
strong enhancement factor (e.g., B88) are the best performing
GGAs, while weaker GGAs reduce only partially the LDA
overestimation. One may ask the following question: Why is
it necessary to use a Fy. that is stronger for the atomization
energy of molecules than for the cohesive energy of solids?
The reason is that the degrees of p-inhomogeneity in the solid
and atom (both used to calculate E.p) are very different, such
that the appropriate difference (between the solid and atom)
in the lowering of the total energy (with respect to LDA) is
already achieved with a weak Fy.. Since the atomization energy
of molecules requires calculations on the atoms and molecule,
which have more similar inhomogeneities (slightly larger in
atoms than in molecule), then a stronger Fy. is required to
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TABLE II. The ME, MAE, MRE, MARE, and MAXRE on the testing set of 44 strongly bound solids for the lattice constant a, bulk modulus By, and cohesive
energy Econ. The units of the ME and MAE are A, GPa, and eV/atom for ag, By, and Eqp, respectively, and % for the MRE, MARE, and MAXRE. The solid
for which the MAXRE occurs is indicated in parentheses. All results were obtained non-self-consistently using PBE orbitals/density. Within each group, the
functionals are ordered by increasing value of the MARE of a(. For hybrid functionals, the fraction ax of HF exchange is indicated in parentheses.

ao By Econ
Functional ME MAE MRE MARE MAXRE ME MAE MRE MARE MAXRE ME MAE MRE MARE MAXRE
LDA
LDA®0 -0.071 0071 =15 15 -49(Ba) 101 115 81 94 328(Ni) 077 077 172 172 387 (Ni
GGA
SG4%0 0.005 0026 00 06 -19(V) 17 79 -22 78 -259(Rb) 019 028 35 7.0 19.5(Ni
wcs! 0.002 0029 00 06 -25(MBa) -02 76 -26 74 -238(Rb) 022 026 42 62  20.1 (Ni
SOGGA®? -0.012 0.027 -03 0.6 -2.3(Ba) 41 89 06 74 236(Ni) 039 041 88 92  26.8(Ni
PBEsol®? -0.005 0.030 0.1 0.6 —2.3(Sr) 07 78 -14 70 195®Ni) 029 031 61 69 228(Ni
AMO584 0.014 0.037 02 08 21(NaF) -03 88 -40 92 -259(Rb) 030 045 7.6 126 90.4 (LiH)
PBEint®’ 0.026 0.039 05 08 25(NaF) -3.0 84 -53 87 -255(@Rb) 010 020 15 47 164 (Ni)
PBEalpha8® 0.021 0.042 04 09 20(Sn) -60 84 -50 76 -212(Ge) 0.10 018 18 4.1 145(Ni)
RGE2%7 0.043 0051 08 1.0 36(Cs) —43 90 -73 102 -315®b) 000 020 -12 50 -149(Au)
PW9188 0.053 0059 1.1 12 26(Sn) -11.0 121 -98 109 -253(Ge) -0.12 0.18 -35 4.6 -20.1(Au)
PBE’? 0.056 0061 1.1 12 28(Sm) -112 122 -98 11.0 -255(Ge) -0.13 0.19 -39 50 -21.0(Au)
HTBS® 0.068 0.077 13 1.6 81(Cs) -40 99 -94 127 -477(QRb) -0.14 023 -45 62 =20.1(Cs)
PBEfe” 0.002 0.082 0.1 1.7 -49(Cs) -100 126 -33 112 -27.1(Ge) 0.15 022 34 50 13.5(Sn)
revPBE®! 0.106 0.107 22 22 54(Cs) -17.1 175 -160 164 -343(Rb) -048 048 —-12.6 12.6 -34.2(Au)
RPBE?? 0.119 0.119 24 24  61(Cs) -190 193 -172 175 -351(Au) -0.52 052 -132 132 -36.7 (Au)
BLYP?3%4 0.118 0.120 25 25 52(Sn) -25.1 252 -19.9 203 -44.6(Au) -0.69 0.69 -20.3 203 -52.8(Cs)
MGGA
MGGA_MS2% 0.016 0.029 02 06  4.6(Cs) 41 76 02 68 -237(Rb) 006 021 09 52  20.0(Cu)
SCAN* 0.018 0.030 03 06  3.8(Cs) 35 74 —04 65 -220(Rb) -0.02 0.19 -07 49 -16.6(Cs)
revIPSS?’ 0.023 0.039 04 08 33(Cs) -01 96 -34 94 -258QRb) 005 022 12 51 17.7(Cu)
MGGA_MS0% 0.032 0.044 05 09  6.3(Cs) 42 83 -09 73 -275(@Rb) -0.02 022 -12 52 17.8(r)
MVS* -0.008 0.043 -03 09 53(Cs) 123 133 82 127 569(Al) 021 037 58 93 33.0(Cu)
mBEEF¥ 0.033 0050 05 1.0  6.6(Cs) 14 79 -14 78 -276(Ba) -0.13 021 -3.0 46 -17.0(Au)
MGGA_MS140 0.045 0054 08 1.1 6.8 (Cs) 1.8 81 -31 80 -297(Rb) -0.10 024 -33 59 -155(Cs)
TPSS% 0.045 0.054 09 1.1  41(Cs) -46 96 —67 103 -29.6(Rb) -0.09 020 -23 49 -153(Au)
PKZB?7 0.086 0.088 1.7 1.8 79(Cs) -81 11.0 -10.0 124 =359 (NaF) -0.30 034 -72 8.1 -23.4(Au)
hybrid-LDA
LDA08%8 (0.25) -0.036 0.037 -0.8 09 -3.3(V) 120 126 72 87 356(V) 003 031 01 75 =211(V)
YSLDAO%8 (0.25) -0.041 0.041 -09 09 -3.3(V) 117 122 72 86  35.0(V) 0.16 030 36 68 17.1(Sn)
hybrid-GGA
YSPBEsol0* (0.25) 0.002 0.021 00 05 =27(V) 69 87 15 69 303(V) -0.17 027 -40 60 -26.1(V)
PBEso0l08398 (0.25) -0.011 0.021 -03 0.5 -29(V) 103 11.1 44 79 330(V) -0.13 028 -33 65 -272(V)
PBE0%%190 (0.25) 0.032 0.038 0.6 08  3.7(Cs) 1.7 75 -18 69 264(V) -045 046 -10.7 109 =359 (V)
B3PW91'! (0.20) 0.047 0050 09 1.0 40(Cs) -30 75 -58 83 -289(Rb) -0.55 0.55 —14.1 141 -33.9(V)
YSPBEO’+101 (0.25) 0.054 0056 10 1.1  43(Cs) -33 80 -59 86 -277(Rb) -055 0.55 —129 129 -364(V)
B3LYP!?2 (0.20) 0.082 0084 17 1.7 44(Cs) -133 145 —122 13.1 -394 (Au) -0.84 0.84 -229 229 -51.9(Cs)
hybrid-MGGA
MGGA_MS2h* (0.09) 0.012 0.027 0.1 06  4.9(Cs) 74 88 22 71 241(V) -0.07 021 -20 51 -163(V)
revTPSSh!? (0.10) 0.018 0033 03 07  3.9(Cs) 38 88 -10 81 -265(Rb) —0.09 0.18 -20 41 -10.7(Au)
TPSS0%%8 (0.25) 0.025 0039 04 08  52(Cs) 66 92 05 81 321(V) -041 042 -93 94 -334(V)
TPSSh'%* (0.10) 0.037 0044 07 09 45(Cs) -0.1 77 -38 84 -295(Rb) -022 025 -52 57 -18.6(Au)
MVSh*’ (0.25) -0.013 0.055 —04 12 59(Cs) 195 203 118 162 520(Al) -0.19 039 -34 87 -384(V)
GGA+D
PBEsol-D3!%5 -0.031 0.039 -0.7 09 -3.3(Ba) 59 100 27 73 279(Cu 050 050 11.7 11.7  29.1 (Ni)
PBE-D3%’ 0.022 0042 04 09 22(Sn) -48 87 -50 83 -253(Ge) 0.12 0.16 29 39 14.1(Ni
PBE-D3(BJ)!'% -0.002 0.042 -0.1 09 -3.1(Li) -31 75 21 74 -226(Ge) 020 021 48 52 157 (Ni)
revPBE-D3(BJ)!0° -0.011 0.043 -04 10 -48(Li) -04 85 -14 86 -232(Ge) 0.18 021 42 52 18.7(Cu)
revPBE-D3%7 0.042 0.060 0.7 12 47(NaF) -69 119 -74 134 -49.5(NaF) -0.02 0.18 -03 44  13.9 (Na)
PBEsol-D3(BJ)!% -0.060 0.061 —-13 13 —5.1(Ba) 86 112 62 87 313(Cu) 062 062 149 149 31.5(Ni

RPBE-D3!"7 0.063 0.070 12 14 5.8 (NaF) -139 152 -106 141 -41.6(Au) -0.14 020 -29 50 14.0 (Na)
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TABLE II. (Continued.)
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ago BO Ecoh
Functional ME MAE MRE MARE MAXRE ME MAE MRE MARE MAXRE ME MAE MRE MARE MAXRE
BLYP-D3? 0.043 0.070 0.7 14 -46(Li) -123 161 -105 156 -467(Au) -0.18 024 —66 7.7 -333(Sr)
BLYP-D3(BJ)!° -0.034 0.074 -08 16 -79(i) -57 108 -1.0 106 -354(Ge) 0.11 021 08 6.1 -23.6(Cs)
MGGA+D
MGGA_MS2-D3% 0.002 0.030 -0.1 0.6  4.5(Cs) 75 99 27 81 304(Cu 017 025 37 58 258(Cu)
MGGA_MS0-D3% 0.019 0.040 02 08  6.2(Cs) 7.6 105 15 89 -286(Rb) 008 021 1.5 49 212(Ir)
MGGA_MS1-D3% 0.026 0.047 04 1.0  6.6(Cs) 64 105 02 89 287(Cu) 005 020 05 46 20.0(r)
TPSS-D3%7 -0.004 0.045 -03 1.0 -=3.1(V) 59 140 09 112 375(Cu) 027 030 75 81 26.8(Cu)
TPSS-D3(BJ)!00 -0.042 0.049 -1.0 1.1 —4.1(Li) 87 129 51 103 399(Cu) 042 042 110 11.1  31.1(Cu)
hybrid-GGA+D
PBE0-D327 (0.25) —-0.005 0.027 =03 0.6 -3.2(V) 93 117 40 9.0 377(V) -0.16 023 -29 48 -259(V)
YSPBEO-D3(BJ)!% (0.25) —0.023 0.030 -0.6 0.7 -=3.3(V) 78 99 44 77  354(V) -0.10 022 -09 52 -228(Ni
PBE0-D3(BJ)!% (0.25) -0.030 0.035 —0.7 0.8 -3.3(V) 113 122 72 93 37.0(V) -007 024 —-07 52 -224(V)
YSPBEO-D3'97 (0.25) 0.035 0.042 0.6 08  4.1(Cs) 08 74 -30 75 275(V) -041 041 -93 94 -319(V)
B3LYP-D3%7 (0.20) 0018 0.047 02 1.0 -33(V) -13 105 -3.1 113 -395(Au) -0.38 038 -102 104 -33.5(Sr)
B3LYP-D3(BJ)'% (0.20)  -0.043 0.055 —-1.0 12 —6.1 (Li) 40 87 49 87 365(V) -0.15 022 -46 64 -26.0(Cs)
hybrid-MGGA+D
MGGA_MS2h-D3% (0.09) —-0.002 0.030 —-0.2 0.7 48(Cs) 109 117 47 91 277(V) 0.04 021 08 51 188 (Cu)
TPSSh-D3'% (0.10) —-0.013 0.040 -0.5 0.9 -3.5(V) 106 145 41 11.1  39.2(V) 0.16 0.19 50 57  20.6(Cu)
TPSS0-D327 (0.25) -0.023 0.045 -0.7 1.1 -4.0(V) 176 187 86 134 486(V) —003 020 09 51 -=20.0(V)
TPSSh-D3(BI)!® (0.10)  -0.049 0.054 -12 12 -41(LiH) 135 150 83 114 385(V) 030 030 85 85 247 (Cu)
TPSS0-D3(BI)!% (0.25)  -0.064 0.068 —1.5 1.6 —4.3(V) 209 21.0 140 153  48.2(V) 0.13 024 49 70 17.7(Na)

achieve the desired difference (between the atoms and the
molecule) in the lowering of the total energy (with respect to
LDA).

The above trends hold for GGA functionals that are
conventional in the sense that Fy. does not exhibit a strange
behavior like oscillations or a suddenly large slope 0 Fx./0s
in a small region of s. More unconventional forms for Fj.
are usually obtained when Fi. contains empirical parameters
that are determined by a fit of reference data. The problem of
such functionals is a reduced degree of transferability and clear
failures in particular cases. An example of such a functional is
given by the GGA exchange HTBS® (shown in Fig. 1) that
was an attempt to construct a functional which leads to good
results for both the lattice constants of solids and atomiza-
tion energies of molecules: FITS = FWC for 5 < 0.6 (weak
GGA for s values relevant for solids) and FTBS = FRPBE for
s > 2.6 (strong GGA for s values relevant for finite systems),
while a linear combination of WC and RPBE is used for s €
[0.6,2.6]. The results were shown to be very good except for
systems containing alkali metals whose lattice constants are
largely overestimated,® which is due to the large values of
s in the core-valence separation region of the alkali metals
(see Ref. 115).

Concerning the correlation enhancement factor F, (see
lower panel of Fig. 1), we just note that for LYP it behaves
differently from the others and that the LDA limit is not recov-
ered, since LYP was designed to reproduce the correlation
energy of the helium atom and not of a constant electron
density.?*

In Fig. 2, the total enhancement factor Fy, of MGGAs is
plotted as a function of s for three values of @ (on the left

panels) and as a function of « for three values of s (on the
right panels). The three values of a correspond to regions
dominated by a single orbital (@ = 0), of constant electron
density (@ = 1), and of overlap of closed shells (a > 5).'8
A few comments can be made. As mentioned above, it can
happen for parameterized functionals, like the Minnesota suite
of functionals,''® to have an enhancement factor that shows
features like bumps or oscillations that are unphysical and may
lead to problems of transferability of the functional. Further-
more, such features lead to numerical noise.!'”-'!8 The mBEEF
is such a highly parameterized functional, however, since its
parameters were fitted with a regularization procedure,*’ the
bump visible in Fig. 2 is moderate. A particularity of the
SCAN and MVS enhancement factors is to be much more
a decreasing function of s and « than the other functionals.
Note also the very weak variation of Fy. with respect to «
for the TPSS, revTPSS, and MGGA_MS?2 functionals. For
MGGA functionals, it is maybe more difficult than for GGAs
to establish simple relations between the shape of Fy. and the
trends in the results. Anyway, it is clear that the additional
dependency on the KE density leads to more flexibility and
therefore potentially more universal functionals. Finally, we
mention Refs. 18 and 119, where it was argued that at small s,
the enhancement factor should be a decreasing function of « in
order to obtain a binding between weakly interacting systems,
which is the case for MGGA_MS2, MVS, and SCAN as shown
in Fig. 2.

The hybrid functionals can be split into two groups accord-
ing to the type of HF exchange that is used: the ones that use
the unscreened HF exchange and those using only the SR part
that was obtained by means of the screened Yukawa potential
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FIG. 1. GGA enhancement factors F (upper panel) and F (lower panel, for
rs =1 bohr) plotted as a function of s.

(details of the implementation can be found in Ref. 74). From
a technical point of view, the advantage of screened hybrid
functionals over the unscreened ones is a faster convergence
of the calculation of Eq. (3) with respect to the distance from
the reference unit cell in real space integration or, equivalently,
with respect to the number of k-points in reciprocal space. !
The screened hybrid functionals in Table II are those
whose name starts with YS (Yukawa screened), and among
them, YSPBE(O’* is based on the popular functional of Heyd
et al.'>'%" HSEO06 differs from it by the screening (Yukawa
in YSPBEO versus error function in HSE06) and the way

J. Chem. Phys. 144, 204120 (2016)

the screening is applied in the semilocal exchange (via the
exchange hole'*® or via the GGA enhancement factor'?%). As
noticed in Ref. 121, the error function- and Yukawa-screened
potentials are very similar if the screening parameter in the
Yukawa potential is 3/2 larger than in the error function. In
Ref. 74, it was shown that HSE06 and YSPBEO lead to basi-
cally the same band gaps, while non-negligible differences
were observed for the lattice constants. A comparison between
the YSPBEQ results obtained in the present work and the
HSEOQ6 results reported in Ref. 43 shows that the YSPBEO lat-
tice constants are in most cases slightly larger by 0.01-0.02 A,
while the atomization energies can differ by 0.05-0.2 eV/atom.
Similarly, YSPBEsolO uses the same underlying semilocal
functional (PBEsol®?) and fraction of HF exchange (0.25) as
HSEsol (Ref. 43). For all screened hybrid functionals tested in
this work, a screening parameter 4 = 0.165 bohr™! was used,
which is 3/2 of the value used in HSE06 with the error func-
tion.'%! The fraction ay of HF exchange (indicated in Table II)
varies between 0.09 (MGGA_MS2h) and 0.25 (e.g., PBEO).

Among the unscreened hybrid functionals in Table II, the
two most well-known are B3LYP'"1%2 and PBE0.”%!% Note
that in Refs. 75, 122, and 123, the use of screened and un-
screened hybrid functionals for metals has been severely criti-
cized, since qualitatively wrong results (e.g., incorrect predic-
tion for the ground state or largely overestimated magnetic
moment) were obtained for simple transition metals like Fe or
Pd.

The two variants of atom-pairwise dispersion correction
[Eq. (4)] that are considered were proposed by Grimme and
co-workers.2”19 The two schemes, which use the position of
atoms to calculate the dispersion coefficients C ,‘?B , differ in the
damping function f,‘famp. In the first scheme (DFT-D3, Ref. 27),
the dispersion energy E{\\  goes to zero when Ry — 0, while
with the Becke-Johnson (BJ) damping function'?* that is used
in DFT-D3(BJ),!%¢ Effﬁs , goes to a nonzero value, which is
theoretically correct.'>> All DFT-D3/D3(BJ) calculations were
done with and without the three-body non-additive dispersion
term,?’ which has little influence on the results for the strongly
bound and rare-gas solids. For the layered compounds, how-
ever, the effect is larger since adding the three-body term
increases the equilibrium lattice constant ¢y by ~0.1 A and
decreases the interlayer binding energy by ~10 meV/atom,
which for the latter quantity leads to better agreement with
the reference results in most cases. In the following, only the
results including the three-body term will be shown, except
for Table S22 of the supplementary material'?® which shows
results for the layered compounds without three-body term.
Note that in the case of YSPBEO-D3/D3(BJ), the parameters of
the D3/D3(BJ) corrections are those that were proposed for the
HSEOQ06 functional. The DFT-D3/D3(BJ) dispersion energies
were evaluated by using the package provided by Grimme'"’
that supports periodic boundary conditions.'%127

IV. RESULTS AND DISCUSSION
A. Strongly bound solids

Table II shows the mean error (ME), mean absolute error
(MAE), mean relative error (MRE), mean absolute relative
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FIG. 2. MGGA enhancement factors F. plotted as a function of s for three values of a (left panels) and as a function of « for three values of s (right panels).
rs is kept fixed to 1 bohr. Fy. for LDA is also shown.

error (MARE), and maximum relative error (MAXRE) on the a convenient way to compare the performance of the func-
equilibrium lattice constant ag, bulk modulus By, and cohesive tionals. The values of aq, By, and E, for all solids and func-
energy E.q, for the 44 strongly bound solids. Most of the results tionals can be found in the supplementary material.'*® Since
are also shown graphically in Figs. 3 and 4, which provide the trends in the MRE/MARE are similar as for the ME/MAE,
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the discussion of the results will be based mainly on the ME
and MAE.

We start with the results for the lattice constant and
bulk modulus. These two properties are quite often described
with the same accuracy by a functional, but with opposite
trends (i.e., an underestimation of ag is accompanied by an
overestimation of By or vice-versa), as seen in Figs. S1-S63 of
the supplementary material'>® where the curves for the relative
error for ag (left panel) and By (middle panel) are approxi-
mately like mirror images. The smallest MAE for a, 0.021 A,
is obtained by the hybrid-GGA functionals YSPBEsolO and
PBEsol0, which is in-line with the conclusion of Ref. 43
that combining PBEsol with 25% of HF exchange improves
over PBEsol (one of the most accurate GGA functionals for
this quantity), PBE, and HSE06 (*YSPBEQO). YSPBEsol0
performs rather well also for By with a MAE of 8.7 GPa, but is
not the best method since a couple of other functionals lead to
a MAE around 7.5 GPa, like for example WC, MGGA_MS2,
SCAN, PBEO, and PBE-D3(BJ). Note that four functionals
(PBEsol, MGGA_MS2, SCAN, and YSPBEsol0) lead to a
MARE for By below 7%. The functionals which perform
very well for both ag (MAE not larger than ~0.03 A) and B,
(MAE below 9 GPa) are the GGAs WC, SOGGA, PBEsol, and

SG4, the MGGAs MGGA_MS2 and SCAN, and the hybrids
YSPBEsol0 and MGGA_MS2h.

Turning now to the results for the cohesive energy Ecop,
we can see that the MAE is below ~0.2 eV/atom for a dozen
of functionals, e.g., the GGAs PW91, PBE, and PBEalpha, the
MGGA SCAN, the hybrid-MGGA revTPSSh, and a few DFT-
D3/D3(BJ) methods. The MAE obtained with YSPBEsol0 and
PBEsol0 (the best for the lattice constant) is slightly larger
(~0.27 eV/atom).

Overall, by considering the results for the three properties
(ap, By, and Ep,), the recent MGGAs MGGA_MS2 and SCAN
seem to be the most accurate functionals. They are among the
very best functionals for By and E.., and only YSPBEsolO,
PBEso0l0, and SG4 are more accurate for ag. Other functionals
which are also consistently good for the three properties are
the GGAs WC, PBEsol, PBEalpha, PBEint, and SG4, the
hybrids YSPBEso0l0, MGGA_MS2h, and revTPSSh, and the
dispersion-corrected PBE-D3 and PBE-D3(BJ).

It does not seem to be always necessary to use a functional
with an atom-pairwise dispersion term [D3 or D3(BJ)] for
the strongly bound solids. Actually, adding a dispersion term
does not systematically improve the results (we remind that
adding a dispersion term should, in principle, shorten bond
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lengths since the London dispersion interactions are attractive).
This is, for instance, the case with TPSS, TPSSh, and TPSSO,
for which the addition of D3(BJ) strongly overcorrects the
overestimation of ag, leading to large negative ME (and large
positive ME for By). In the case of PBEsol (very small ME
for ag and By), adding D3 or D3(BJ) can only deteriorate the
results since this functional alone does not overestimate the
lattice constant on average. However, a clear improvement is
obtained with PBE, revPBE, and BLYP. We note that none
of these dispersion-corrected methods lead, for instance, to
MAE below 0.040 A for ap and 8 GPa for By at the same time.
Furthermore, the MAE for By is rather large (above 10 GPa) for
many of the dispersion corrected functionals, including PBEO-
D3, which leads to a large MAE of 11.7 GPa despite its MAE
for ag is only 0.027 A. This shows that the curvature of the
total-energy curve may not be described accurately by some
of the DFT-D3/D3(BJ) functionals.

Regarding the hybrid functionals, it is instructive to look
at how the MRE and MARE for q( and E,,, vary as func-
tions of the fraction ay of HF exchange in Eq. (2). This is
shown in Fig. 5 for most screened and unscreened hybrid

functionals without D3 term, where ay is varied between 0
and 0.5 with steps of 0.05. The trends observed in Fig. 5(a)
for the MRE show two different behaviors. For the LDA-based
and YSPBEsolh functionals, the value of the MRE for a goes
in the direction of the positive values when ay is increased,
while the opposite is observed with the other functionals. Inter-
estingly, in most cases except PBEsolh and MVSh, adding a
fraction of HF exchange reduces the magnitude of the MRE
with respect to the case @y = 0. For the MARE [Fig. 5(b)],
the main observations are the following: the smallest MARE
for ay and Eq, is obtained simultaneously with more or less
the same value of @, in the case of PBEsolh, YSPBEsolh,
revTPSSh, MGGA_MS2h, and SCANh. This optimal @y is ~0
for MGGA_MS2h and SCANh and ~0.15 for the others. For
MGGA_MS2h and SCANN, it can be argued that since MGGA
functionals are more nonlocal than LDA/GGA (in the sense
that the KE density ¢ is probably a truly nonlocal functional
of p), then less HF exchange is required when combined with
a MGGA. For all other functionals except MV Sh, the optimal
ay is larger for ag than for E.,. The exception observed with
MVSh should be related to the behavior of its enhancement
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factor Fy., which has by far the most negative slope as function
of s and «, as noticed above in Fig. 2.

A few words about the functionals that were not consid-
ered in this work should also be added, and in particular about
the so-called nonlocal van der Waals (vdW) functionals,?®
which include a term of the form given by Eq. (5). The first
of these functionals which were shown to be, at least, as accu-
rate as PBE for strongly bound solids, namely, optPBE-vdW,
optB88-vdW, and optB86b-vdW, were proposed in Refs. 34
and 65. In Refs. 38, 40, 65, and 70, it was shown that compared
to PBE, optB88-vdW and optPBE-vdW are slightly better for
the cohesive energy, while optB86b-vdW is slightly better for
the lattice constant. In order to make the SCAN functional
more accurate for the treatment of weak interactions, Peng
et al.'”® proposed to add a refitted version of the nonlocal
vdW functional rVV10.3'3% For a test set of 50 solids,
SCAN+rVV10 was shown to perform similarly as SCAN for
the lattice constant, but to increase by about 1% the MARE for
the cohesive energy.
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The detailed results for every solid and functional are
shown in the supplementary material,'?® and Fig. 6 gathers the
results for some of the most accurate functionals compared
to the standard PBE. In order to avoid a lengthy discussion,
only the most interesting observations are now discussed. By
looking at Figs. S1-S63,'?® which show the MRE (in %) for the
lattice constant, bulk modulus, and cohesive energy, and the
MAXRE in Table II, we can immediately see that for many
functionals, some of the largest MRE for @ and By is found
for alkali metals (K, Rb, and Cs), alkali-earth metals (Ca,
Sr, and Ba), and the transition metal V. For these solids, the
MRE for ag increases with the nuclear charge and can reach
4%-8% for Cs. Such large MRE for ay is negative for LDA
(accompanied by an overbinding) and positive (underbinding)
for several GGAs like revPBE or HTBS and, quite interest-
ingly, all (hybrid)-MGGAs. Such very large overestimations
for the heavy alkali metals with TPSS and revIPSS were
already reported.®339>12% As argued in Ref. 129, the alkali
metals are very soft (By is below 5 GPa) and have a large
polarizable core, such that the long-range core-core dispersion
interactions, missing in non-dispersion corrected functionals,
should have a non-negligible effect on the results. Therefore, it
is maybe for the right reason that a semilocal/hybrid functional,
in particular, if it is constructed from first-principles, under-
binds the alkali metals. Adding a D3/D3(BJ) term reduces the
error for the alkali metals, but overcorrects strongly in some
cases [e.g., BLYP-D3(BJ) in Fig. S47'%6]. The results with the
DFT-D3/D3(BJ) methods could easily be improved by tuning
the coefficients CA2 in Eq. (4). In the case of PBE-D3, for
instance, it would be possible to strongly reduce the errors
involving the Li atoms by using smaller value for the coeffi-
cients, while for all systems with the diamond or zincblende
structures, larger coefficients would be required. On the other
hand, as already mentioned in Sec. III, in the alkali metals,
the value of s in the core-valence separation region is rather
large,''® such that the shape of the enhancement factor at these
large values of s maybe more important than for other solids.
Such underbinding with the semilocal/hybrid functionals is
not observed in the case of the similar alkali-earth metals,
which should be due to the following reasons: they are slightly
less van der Waals like (B, is above 10 GPa) and the addi-
tional valence s-electron should reduce the inhomogeneity in
p, making the semilocal functionals more appropriate. The
ionic solids LiX and NaX are systems for which the MRE can
also be very large.

Looking at the trends for the 3d, 4d, and 5d transition
metals, most functionals show the same behavior for the lattice
constant; from left to right within a row (e.g., from Nb to Ag),
the MRE goes in the direction of the positive values.38>!-63
This behavior is the most pronounced for the strong GGAs
like revPBE or BLYP [also if D3/D3(BJ) is included], while
it can be strongly reduced with some of the MGGA and hybrid
functionals, similarly as RPA does.?

A summary of this section on the strongly bound solids
is the following. Among the tested functionals, about 12
of them are in the group of the best performing for all
three properties (ag, By, and E.op) at the same time. This
includes GGAs (WC, PBEsol, PBEalpha, PBEint, and SG4),
MGGAs (MGGA_MS2 and SCAN), hybrids (YSPBEsolO,
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MGGA_MS2h, and revTPSSh), and dispersion-corrected
methods [PBE-D3/D3(BJ)]. Therefore, as also shown more
clearly in Figs. 3 and 4, for every type of approximations
except LDA, there are a few functionals belonging to the
group of the best ones. Furthermore, we have also noticed
that MGGA_MS2 and SCAN give the best results when they
are not mixed with HF exchange, which is a very interesting
property from the practical point of view since the calculation
of the HF exchange is very expensive for solids.

B. Weakly bound solids

In this section, the results for rare-gas solids (Ne, Ar,
and Kr) and layered solids (graphite and h-BN) are discussed.
Rare-gas dimers and solids, which are bound by the disper-
sion interactions, have been commonly used for the test-
ing of theoretical methods (see Refs. 108, 130, 133, and
137-139 for the most recent works). The same is true for

graphite and h-BN which are stacks of weakly bound hexag-
onal layers,66-0879:132,135,140,141

0 1 2 3 4 -30 -25 -20 -15 -10_ -5 0 5 10
100(EC81o_ poXPYy, goxpt

15 20

coh coh

As mentioned in Sec. II, the results for such weakly bound
systems are more sensitive to self-consistency effects than for
the strongly bound solids. Figure 7 shows the example for
Ar, where the MGGA_MS?2 total-energy curves were obtained
with four different sets of orbitals/density. Actually, this is a
particularly bad case where the spread in the values for a (5.4-
5.7 A) is two orders of magnitude larger than for most strongly
bound solids and the spread for E,q, is of the same magnitude as
Eonitself. We observed that in general, the spread in a is larger
for functionals which lead to shallow minimum. This shows
that there is some non-negligible degree of uncertainty in the
results for the MGGA and hybrid functionals of Tables III
and IV which were obtained non-self-consistently with PBE
orbitals/density instead of self-consistently as it should be.
Thus, for these functionals, the discussion should be kept at
a qualitative level. On the other hand, the main conclusions of
this section should not be affected too significantly, since for
such weakly bound systems the errors with DFT functionals
are often extremely large such that only the trends are usually
discussed.
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FIG. 7. MGGA_MS?2 total energy of Ar plotted as a function of the lattice
constant a. The MGGA_MS?2 total-energy functional was evaluated with or-
bitals/densities generated from various potentials (indicated in parentheses).
The zero of the energy axis was chosen such that the cohesive energy of Ar is
given by the value at the minimum of a curve. The reference CCSD(T) values
for ag and E g, are 5.25 A and 88 meV/atom, respectively.

1. Rare-gas solids

The results for the lattice constant and cohesive energy of
the rare-gas solids are shown in Table III. The relative error
(indicated in parentheses) is with respect to accurate results
obtained from the CCSD(T) method.”” Also shown are results
taken from Refs. 14, 130, 133, and 134 that were obtained with
nonlocal dispersion-corrected functionals [Eq. (5)], the atom-
pairwise method of Tkatchenko and Scheffler,?® and post-PBE
RPA calculations. In a few cases, no minimum in the total-
energy curve was obtained in the range of lattice constants that
we have considered (largest values are 5.6, 6.6, 7.1 A for Ne,
Ar, Kr). This concerns the functionals revPBE, AMO0S5, SG4,
revTPSS(h), and those using B88 exchange (BLYP, B3LYP,
and B3PW91). No minimum at all should exist with the B88-
based functionals (see, e.g., Refs. 20 and 142—-144), while only
a very weak minimum at a larger lattice constant could even-
tually be expected with revPBE (see Ref. 145) and revTPSS
(see Ref. 18). Note that no or a very weak binding is typically
obtained by GGA functionals which violate the local Lieb-
Oxford bound'“® because of an enhancement factor that is too
large at large s (s > 5) like B88 and AMOS (see Fig. 1). The
importance of the behavior of the enhancement factor at large
s for noncovalent interactions was underlined in Refs. 147 and
148.

Unsurprisingly, the best functionals are those which
include the atom-pairwise dispersion term D3/D3(BJ), since
for many of them, the errors are below ~8% for ay and below
~20% for Ep for all three rare gases. Such results are expected
since the atom-dependent parameters in Eq. (4) (computed
almost from first principles®’) should remain always accurate
in the case of interaction between rare-gas atoms, whether it is
in the dimer or in the solid. Note, however, that the error for the
cohesive energy of Ne is above 100% for all MGGA_MSn(h)-
D3 functionals, which may be due to the fact that only the term
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n = 6 in Eq. (4) has been considered for these functionals.*®
All other functionals, without exception, lead to errors for E.qp
which are above 50% for at least two rare gases. These large
errors are always due to an underestimation for Ar and K,
but not for Ne (overestimation with the MGGAs and under-
estimation with the others). For MGGA_MS?2 and SCAN, the
largest errors are —66% (Ar) and 107% (Ne), respectively.
Note that the GGA PBEfe and MGGA mBEEF overestimate
the cohesive energy even more than LDA does. For a, the
values obtained with the GGA PBEalpha and all modern
(hybrid-)MGGAs like MGGA_MS2, SCAN, and mBEEF are
in fair agreement with the CCSD(T) results since the errors are
of the same order as with most dispersion-corrected functionals
(below 8%).

Concerning previous works reporting tests on other
functionals, we mention Ref. 130 where several variants
of the nonlocal van der Waals functionals were tested on
rare-gas dimers (from He, to Kry) and solids (Ne, Ar, and
Kr). The conclusion was that rVV103!3? leads to excellent
results for the dimers and is among the good ones for the
solids along with optB88-vdW?>* and C09x-vdW.!*! However,
with these three nonlocal functionals rather large errors
in E.pn were still observed for the solids (results shown
in Table III), such that overall these functionals are less
accurate than DFT-D3/D3(BJ) for the rare-gas solids. Another
nonlocal functional, rev-vdW-DF2, was recently proposed by
Hamada,'?? and the results on rare-gas solids'? (see Table III)
are as good as the DFT-D3/D3(BJ) results and, therefore, better
than for the other three nonlocal functionals. For the Ar and
Kr dimers, the SCAN+rVV10 functional was shown to be as
accurate as rVV10,'2® however it has not been tested on rare-
gas solids. Finally, we also mention the RPA (fifth rung of
Jacob’s ladder) results from Ref. 14 which are rather accurate
overall, as shown in Table III. Concerning other semilocal
approximations not augmented with a dispersion correction,
previous works reported unsuccessful attempts to find such a
functional leading to accurate results for all rare-gas dimers at
the same time (see, e.g., Refs. 144 and 149).

The summary for the rare-gas solids is the following. For
the cohesive energy, the functionals which include an atom-
pairwise term D3/D3(BJ) clearly outperform the others. It
was also observed that the MGGAs do not improve over the
GGAs for E..n. However, for the lattice constant, MGGAs are
superior to the GGAs and perform as well as the dispersion
corrected-functionals. Among the previous works also consid-
ering rare-gas solids in their test set, we noted that the rev-vdW-
DF2 nonlocal functional'3>!33 shows similar accuracy as the
DFT-D3/D3(BJ) methods.

2. Layered solids

Turning now to the layered solids graphite and h-BN, the
results for the equilibrium lattice constant ¢( (the interlayer
distance is co/2) and interlayer binding energy Ejy are shown
in Table IV. Since for these two systems we are interested
only in the interlayer properties, the intralayer lattice con-
stant a was kept fixed at the experimental value of 2.462 and
2.503 A for graphite and h-BN, respectively. As in the recent
works of Bjorkman et al. 579879 the results from the RPA
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TABLE III. Equilibrium lattice constant aq (in A) and cohesive energy Eon (in meV/atom and with opposite sign) of rare-gas solids calculated from various
functionals and compared to reference [CCSD(T), very close to experiment] as well as other methods. The results for the LDA, GGA, and GGA+D functionals
were obtained from self-consistent calculations, while the PBE orbitals/density were used for the other functionals. Within each group, the functionals are
ordered by increasing overall error. For hybrid functionals, the fraction ax of HF exchange is indicated in parentheses.

Ne Ar Kr
Functional ag E.on agp Econ agp Econ
LDA
LDA30 3.86 (-10%) 87 (234%) 4.94 (-6%) 138 (57%) 5.33 (=5%) 169 (39%)
GGA
PBEalpha®® 4.39 2%) 23 (-10%) 5.59 (6%) 33 (-62%) 5.97 (1%) 43 (=65%)
SOGGA®? 4.52 (5%) 23 (-11%) 5.77 (10%) 29 (-67%) 6.14 (10%) 35 (=71%)
RPBE®? 4.74 (10%) 26 (0%) 6.25 (19%) 28 (—~68%) 6.83 (22%) 29 (=76%)
PBE’? 4.60 (7%) 19 (-26%) 5.96 (13%) 23 (-73%) 6.42 (15%) 27 (—78%)
HTBS® 4.80 (12%) 23 (—12%) 6.34 (21%) 25 (=72%) 6.93 (24%) 26 (—79%)
PW9188 4.62 (1%) 47 (82%) 6.05 (15%) 49 (-44%) 6.55 (17%) 51 (-58%)
PBEsol®? 4.70 (9%) 12 (-54%) 5.88 (12%) 17 (-81%) 6.13 (10%) 23 (-81%)
PBEint% 4.78 (11%) 14 (-46%) 6.21 (18%) 17 (-81%) 6.67 (19%) 20 (—84%)
RGE2%7 4.92 (14%) 14 (-45%) 6.43 (23%) 16 (-81%) 6.99 (25%) 18 (-85%)
wcs! 4.87 (13%) 12 (-54%) 6.34 21%) 14 (-84%) 6.86 (23%) 16 (—87%)
PBEfe”” 3.88 (-10%) 99 (280%) 5.00 (-5%) 152 (73%) 5.42 (=3%) 184 (51%)
SG4%0 5.25 (22%) 9 (—67%) >6.6 (>26%) >7.1(>27%)
revPBE®! 5.31 (24%) 7 (=74%) >6.6 (>26%) >7.1(>27%)
BLYP?3%4 >5.6 (>31%) >6.6 (>26%) >7.1(>27%)
AMO584 >5.6 (>31%) >6.6 (>26%) >7.1(>27%)
MGGA
MGGA_MS240 4.31 (0%) 26 (1%) 5.48 (4%) 30 (—66%) 5.96 (6%) 45 (-63%)
MGGA_MS146 4.34 (1%) 26 (0%) 5.58 (6%) 27 (-69%) 6.10 (9%) 40 (-67%)
MGGA_MS0% 4.16 (-3%) 40 (53%) 5.41 (3%) 46 (-47%) 5.89 (5%) 61 (-50%)
SCAN*8 4.03 (-6%) 54 (107%) 5.31 (1%) 61 (-30%) 5.74 2%) 72 (-41%)
PKZB?’ 4.66 (9%) 27 2%) 6.20 (18%) 26 (=70%) 6.76 (21%) 30 (=75%)
MVS*? 4.02 (—6%) 59 (125%) 5.41 3%) 56 (-37%) 5.79 (3%) 69 (—43%)
TPSS% 4.92 (15%) 11 (-59%) 6.45 (23%) 11 (-87%) 6.98 (25%) 15 (—88%)
mBEEF* 3.92 (-9%) 134 (416%) 5.26 (0%) 142 (62%) 5.75 (3%) 161 (32%)
revTPSS% 5.05 (17%) 7 (=72%) >6.6 (>26%) 7.04 (26%) 12 (-90%)
hybrid-LDA
LDA098 (0.25) 4.00 (=7%) 51 (96%) 5.18 (—=1%) 71 (=19%) 5.57 (0%) 90 (—26%)
YSLDAO% (0.25) 3.96 (-8%) 60 (131%) 5.12 (-2%) 86 (—2%) 5.51 (—1%) 108 (-11%)
hybrid-GGA
PBE0%%190 (0.25) 4.61 (7%) 11 (=57%) 5.96 (14%) 15 (-83%) 6.41 (15%) 19 (-84%)
PBEs0l0%398 (0.25) 4.66 (8%) 7 (=75%) 5.79 (10%) 12 (-86%) 6.06 (8%) 20 (—84%)
YSPBEQ’+101 (0.25) 4.76 (11%) 10 (~=60%) 6.21 (18%) 14 (-84%) 6.69 (19%) 17 (-86%)
YSPBEso0l0* (0.25) 4.93 (15%) 5 (-81%) 6.26 (19%) 8 (-91%) 6.55 (17%) 11 (-91%)
B3LYP!2 (0.20) >5.6 (>31%) >6.6 (>26%) >7.1 (>27%)
B3PW91'! (0.20) >5.6 (>31%) >6.6 (>26%) >7.1 (>27%)
hybrid-MGGA
MGGA_MS2h*® (0.09) 4.31 (0%) 23 (-11%) 5.48 (4%) 27 (-70%) 5.97 (7%) 41 (-67%)
MVSh*7 (0.25) 4.05 (-6%) 40 (55%) 5.44 (4%) 40 (-55%) 5.83 (4%) 52 (-58%)
TPSSh'%* (0.10) 4.93 (15%) 8 (—-67%) 6.46 (23%) 9 (—90%) 6.98 (25%) 13 (=90%)
TPSS0°0%8 (0.25) 4.96 (15%) 5 (—80%) 6.47 (23%) 6 (-93%) 6.98 (25%) 9 (=92%)
revTPSSh!9 (0.10) 5.06 (18%) 5 (=79%) >6.6 (>26%) 7.03 (26%) 10 (-92%)
GGA+D
revPBE-D3(BJ)!° 4.80 (12%) 25 (-2%) 5.67 (8%) 82 (=7%) 5.96 (1%) 126 (3%)
PBEsol-D3(BI)!® 4.59 (7%) 22 (-16%) 5.46 (4%) 71 (=19%) 5.69 2%) 116 (=5%)
revPBE-D3%7 4.73 (10%) 25 (-4%) 5.64 (1%) 68 (-23%) 5.85 (5%) 109 (~11%)
PBE-D3(BJ)!% 4.46 (4%) 37 (42%) 5.49 (5%) 86 (—2%) 5.85 (5%) 117 (—4%)
PBEsol-D3'05 4.53 (5%) 29 (13%) 5.37 2%) 61 (-31%) 5.58 (0%) 102 (-17%)

BLYP-D3% 4.25 (-1%) 16 (-38%) 5.35(2%) 70 (-21%) 5.70 (2%) 127 (4%)
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Ne Ar Kr
Functional ao Econ ap Econ ap Econ
PBE-D3%’ 4.39 2%) 46 (78%) 5.58 (6%) 83 (—6%) 5.90 (5%) 113 (-8%)
BLYP-D3(BJ)!0° 4.58 (7%) 3 (-89%) 5.37 %) 71 (=19%) 5.67 (1%) 134 (10%)
RPBE-D3!7 4.49 (4%) 52 (101%) 5.66 (8%) 91 (3%) 6.03 (8%) 116 (=5%)
MGGA+D
TPSS-D3(BJ)!00 4.69 (9%) 28 (7%) 5.67 (8%) 78 (=11%) 5.97 (1%) 118 (=3%)
TPSS-D3%7 4.53 (6%) 36 (39%) 5.69 (8%) 76 (—14%) 5.99 (7%) 111 (-9%)
MGGA_MS2-D3% 4.19 (-3%) 55 (113%) 5.43 (3%) 83 (—-6%) 591 (5%) 105 (~14%)
MGGA_MS1-D3% 4.14 (—4%) 60 (132%) 5.37 2%) 96 (9%) 5.83 (4%) 121 (-1%)
MGGA_MS0-D3% 4.10 (=5%) 70 (170%) 5.38 2%) 98 (11%) 5.85 (4%) 120 (-2%)
hybrid-GGA+D
PBEO0-D3(BJ)!% (0.25) 4.45 (4%) 28 (7%) 5.46 (4%) 82 (=7%) 5.79 3%) 121 (-1%)
B3LYP-D3%7 (0.20) 4.25 (-1%) 23 (=10%) 5.30 (1%) 68 (=23%) 5.61 (0%) 129 (5%)
YSPBEO-D3(BJ)!%8 (0.25) 4.62 (8%) 23 (-11%) 5.66 (8%) 75 (=15%) 5.98 (7%) 116 (=5%)
PBE0-D3%7 (0.25) 4.39 (2%) 36 (40%) 5.45 (4%) 74 (-16%) 5.71 2%) 114 (-6%)
B3LYP-D3(BJ)!% (0.20) 4.39 2%) 12 (-52%) 5.32 (1%) 78 (=12%) 5.65 (1%) 135 (11%)
YSPBEO-D3'7 (0.25) 4.46 (4%) 33 (25%) 5.75 (9%) 60 (=32%) 6.21 (11%) 74 (=39%)
hybrid-MGGA+D
TPSSh-D3(BJ)!% (0.10) 4.69 (9%) 25 (=3%) 5.65 (8%) 79 (~10%) 5.94 (6%) 122 (0%)
TPSS0-D3%7 (0.25) 4.53 (5%) 29 (13%) 5.64 (7%) 66 (=25%) 5.78 (3%) 108 (~12%)
TPSS0-D3(BJ)!% (0.25) 4.66 (8%) 21 (~18%) 5.57 (6%) 70 (-21%) 5.81 (4%) 112 (-8%)
TPSSh-D3'% (0.10) 4.55 (6%) 33 (28%) 5.70 (9%) 70 (=20%) 5.91 (6%) 108 (—12%)
MGGA_MS2h-D3*¢ (0.09) 4.18 (=3%) 52 (100%) 5.44 (4%) 79 (-10%) 5.91 (5%) 101 (=17%)
Previous works
optB88-vdW3* (Ref. 130) 4.24 (-1%) 59 (127%) 5.24 (0%) 143 (62%) 5.63 (1%) 181 (48%)
C09x-vdW 3! (Ref. 130) 4.50 (5%) 62 (138%) 533 (2%) 128 (45%) 5.64 (1%) 163 (34%)
rVV103132 (Ref. 130) 4.19 (-2%) 49 (88%) 5.17 (=2%) 117 (33%) 5.53 (=1%) 162 (33%)
rev-vdW-DF2!32 (Ref. 133) 4.43 (3%) 30 (15%) 5.35 2%) 90 (2%) 5.71 %) 120 (=2%)
PBE+TS?° (Ref. 134) 4.42 (3%) 43 (65%) 5.51 (5%) 83 (—6%) 5.90 (5%) 97 (—20%)
RPA (Ref. 14) 4.5 (5%) 17 (=35%) 5.3 (1%) 83 (—6%) 5.7 (2%) 112 (-8%)
Expt. (Ref. 77) 4.29 26 5.25 88 5.63 122
CCSD(T) (Ref. 77) 4.30 26 5.25 88 5.60 122

method,”®7® which are in very good agreement with experi-

ment and Monte Carlo simulation' for graphite, are used as
reference. No experimental result for Ey, for h-BN seems to be
available.

The results with the GGA functionals are extremely
inaccurate since for all these methods, except PBEfe, there is
no or a very tiny binding between the layers (underestimation
of E, by more than 90%) and a huge overestimation of ¢y
by at least 0.5 A. The underestimation of E, with PBEfe is
~50% and c is too large by ~0.3 A. LDA also underestimates
Ep, by ~40%, but leads to interlayer distances which agree
quite well with RPA and, actually, perfectly for graphite.
The best MGGA functional is MVS, whose relative error
is —34% for the binding energy of graphite, but below 5%
otherwise. SCAN performs slightly worse since Ej, is too small
by ~50% for both graphite and h-BN, while MGGA_MS2
leads to disappointingly small binding energies. The other
MGGAs, including mBEEF, lead to very small (large) values
for Ey (co). Note that the results obtained with mBEEF show
totally different trends as those for the rare gases (large
overbinding for the rare gases and large underbinding for

graphite and h-BN), which is maybe due to the nonsmooth
form of this functional (see Fig. 2) such that the results are
more unpredictable. Among the hybrid functionals, MV Sh is
the only one which leads to somehow reasonable results, with
errors for Ey that are slightly larger than for the underlying
semilocal MVS. Let us remark that all functionals without
dispersion correction underestimate the interlayer binding
energy of graphite and h-BN, while it was not the case for
the cohesive energy of the rare-gas solids.

Adding the D3 or D3(BJ) dispersion term usually
improves the agreement with RPA, such that for many of
these methods, the magnitude of the relative error is below
20% and 3% for E, and cy, respectively. Such errors can be
considered as relatively modest. Among the computationally
cheap GGA+D, the accurate functionals are PBE-D3/D3(BJ),
RPBE-D3, and PBEsol-D3.

The results obtained with many other methods are
available in the literature6®-687%.132,135.140.141 (gee Ref. 141 for
a collection of values for graphite), and those obtained from
the methods that were already selected for the discussion on
the rare gases are shown in Table IV. The nonlocal functionals
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TABLE IV. Equilibrium lattice constant cg (in A) and interlayer binding energy E}, (in meV/atom and with
opposite sign) of layered solids calculated from various functionals and compared to reference (RPA) as well
as other methods. The results for the LDA, GGA, and GGA+D functionals were obtained from self-consistent
calculations, while the PBE orbitals/density were used for the other functionals. Within each group, the functionals
are ordered by increasing overall error. For hybrid functionals, the fraction ax of HF exchange is indicated in
parentheses. The results for the DFT-D3/D3(BJ) functionals without the three-body term can be found in Table
S22 of the supplementary material.'?

Graphite h-BN
Functional co Ey, co Ey,
LDA
LDA®0 6.7 (0%) 24 (-50%) 6.5 (-3%) 28 (-28%)
GGA
PBEfe?” 7.0 (5%) 21 (=57%) 6.9 3%) 24 (-39%)
SOGGAS? 7.3 (9%) 4 (-91%) 7.0 (5%) 7 (-83%)
PBEsol®? 7.3 (9%) 4 (=92%) 7.0 (6%) 6 (—84%)
PBEalpha®® 7.6 (14%) 4 (-91%) 7.3 (10%) 6 (—84%)
PBE”? ~8.8 (31%) 1 (=97%) ~8.5 (28%) 2 (=94%)
PW9188 ~9.3 (38%) 2 (-95%) ~9.0 (36%) 3 (-93%)
PBEint® ~9.3 (39%) 1 (-98%) ~9.0 (35%) 2 (-96%)
wcs! ~9.7 (45%) 1 (-99%) ~9.5 (42%) 1 (-97%)
RPBE®? ~9.8 (46%) 1 (=97%) ~9.8 (47%) 2 (-96%)
HTBS® ~9.9 (48%) 1 (-98%) ~9.9 (49%) 2 (-96%)
RGE2% ~10.0 (49%) 1 (=99%) ~10.0 (49%) 1 (=97%)
$G460 ~11.0 (64%) 0 (-99%) ~11.0 (65%) 1 (-98%)
revPBE’! ~11.3 (69%) 0 (=99%) ~11.3 (70%) 1 (-98%)
AMO5%4 >19 (>176%) >19 (>188%)
BLYP?3%4 >19 (>176%) >19 (>188%)
MGGA
Mvs* 6.6 (~1%) 32 (=34%) 6.4 (—4%) 38 (-4%)
SCAN*8 6.9 (3%) 20 (—59%) 6.8 (2%) 21 (—46%)
mBEEF¥ 7.8 (16%) 13 (-72%) 7.7 (16%) 14 (-63%)
MGGA_MS24% 7.2 (1%) 8 (—83%) 7.0 (5%) 10 (—74%)
MGGA_MS0% 7.4 (11%) 8 (-83%) 7.3 (9%) 9 (=76%)
MGGA_MS140 7.8 (16%) 5 (=90%) 7.7 (16%) 6 (—86%)
PKZBY’ 7.9 (19%) 4 (-91%) 7.9 (18%) 5 (~88%)
revTPSS™ >19 (>176%) ~9.8 (47%) 1 (-98%)
TPSS% >19 (>176%) ~9.9 (49%) 1 (-98%)
hybrid-LDA
YSLDAOS8 (0.25) 7.0 (4%) 15 (=70%) 6.7 (1%) 18 (=53%)
LDA038 (0.25) 7.1 5%) 12 (=74%) 6.8 2%) 16 (=60%)
hybrid-GGA
PBEs0108398 (0.25) 7.3 (9%) 5 (=90%) 7.0 (5%) 7 (—-81%)
YSPBEso0l0*? (0.25) ~7.8 (17%) 1 (=97%) ~7.3 (10%) 3 (=92%)
PBE0%190 (0.25) ~8.4 (25%) 2 (-97%) ~8.0 (20%) 3 (—=94%)
YSPBEO+101 (0.25) ~9.3 (39%) 1 (-98%) ~9.0 (36%) 1 (-97%)
B3LYP!2 (0.20) >19 (>176%) >19 (>188%)
B3PW91'! (0.20) >19 (>176%) >19 (>188%)
hybrid-MGGA
MVSh*7 (0.25) 6.7 (0%) 25 (—48%) 6.5 (—3%) 31 (-22%)
MGGA_MS2h*® (0.09) 7.2 (1%) 8 (—83%) 7.0 (5%) 10 (—74%)
revTPSSh!? (0.10) >19 (>176%) ~9.4 (41%) 1 (-98%)
TPSSh'%* (0.10) >19 (>176%) ~9.8 (48%) 1 (-98%)
TPSS0%%%8 (0.25) >19 (>176%) ~9.6 (44%) 1 (-98%)
GGA+D
RPBE-D3'7 6.8 (1%) 39 (—19%) 6.7 (0%) 39 (0%)
PBE-D3(BJ)!0° 6.8 2%) 43 (=10%) 6.7 (0%) 44 (12%)

PBEsol-D3!%3 6.7 (0%) 38 (-20%) 6.6 (—2%) 42 (8%)
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TABLE IV. (Continued.)
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Graphite h-BN
Functional co Ey co Ey
PBE-D3%’ 7.1 (5%) 39 (-=19%) 6.8 3%) 41 (5%)
PBEsol-D3(B])!0 6.7 (—1%) 52 (8%) 6.5 (—3%) 53 (36%)
revPBE-D3?7 6.6 (—2%) 53 (10%) 6.5 (—2%) 52 (33%)
BLYP-D3?%7 6.8 (1%) 59 (22%) 6.7 (0%) 58 (49%)
revPBE-D3(BI)!%° 6.5 (=4%) 67 (41%) 6.3 (=5%) 69 (77%)
BLYP-D3(BJ)!% 6.6 (—2%) 70 (46%) 6.5 (—3%) 71 (83%)
MGGA+D
MGGA_MS1-D3% 6.9 2%) 46 (—4%) 6.8 (2%) 44 (12%)
MGGA_MS2-D3% 6.8 (2%) 45 (—6%) 6.6 (—1%) 46 (17%)
MGGA_MS0-D3% 7.0 (5%) 42 (-13%) 6.8 (3%) 42 (7%)
TPSS-D3%7 6.7 (0%) 47 (-1%) 6.5 (=2%) 50 (28%)
TPSS-D3(BJ)!00 6.5 (=3%) 58 (21%) 6.3 (=5%) 60 (53%)
hybrid-GGA+D
YSPBEO-D3(BJ)!%® (0.25) 7.0 (4%) 46 (-5%) 6.8 2%) 46 (19%)
PBE0-D3?7 (0.25) 6.9 2%) 41 (-14%) 6.7 (0%) 45 (16%)
PBEO-D3(BJ)!% (0.25) 6.7 (0%) 50 (3%) 6.5 (—2%) 51 (31%)
B3LYP-D3% (0.20) 6.8 2%) 50 (5%) 6.7 (1%) 54 (38%)
YSPBEO0-D3'97 (0.25) 7.3 (9%) 30 (=36%) 7.1 (6%) 30 (-23%)
B3LYP-D3(B])!% (0.20) 6.7 (-1%) 62 (29%) 6.5 (=3%) 64 (64%)
hybrid-MGGA+D
MGGA_MS2h-D3* (0.09) 6.8 (2%) 45 (=7%) 6.6 (—1%) 46 (18%)
TPSSh-D3'% (0.10) 6.7 (0%) 47 (-2%) 6.5 (—2%) 51 (30%)
TPSS0-D327 (0.25) 6.6 (—1%) 48 (0%) 6.5 (=3%) 53 (35%)
TPSS0-D3(BJ)'% (0.25) 6.5 (=3%) 56 (17%) 6.2 (—6%) 60 (54%)
TPSSh-D3(BI)'% (0.10) 6.5 (=3%) 61 (28%) 6.3 (—5%) 63 (62%)
Previous works
optB88-vdW>* (Ref. 68) 6.76 (1%) 66 (38%) 6.64 (1%) 67 (72%)
C09x-vdW 3! (Ref. 68) 6.54 (=2%) 71 (48%) 6.42 (=3%) 73 (87%)
VV103132 (Ref. 67) 6.68 (0%) 71 (48%) 6.57 (0%) 70 (79%)
rev-vdW-DF2!32 (Ref. 132) 6.64 (=1%) 60 (25%) 6.56 (=1%) 57 (46%)
PW86R-VV10s01%7 (Ref. 67) 6.98 (5%) 44 (-8%) 6.87 (4%) 43 (10%)
AMO5-VV10s0l%7 (Ref. 67) 6.99 (5%) 45 (—6%) 6.84 (4%) 41 (5%)
PBE+TS?° (Ref. 135) 6.68 (0%) 82 (71%) 6.64 (1%) 87 (123%)
PBE+TS+SCS!30 (Ref. 135) 6.75 (1%) 55 (15%) 6.67 (1%) 73 (87%)
RPA (Refs. 78 and 79) 6.68 48 6.60 39

optB88-vdW, C09x-vdW, VV10, and rev-vdW-DF2 as well
as PBE+TS(+SCS) lead to very good agreement with RPA
for the interlayer lattice constant (errors in the range 0%-2%);
however, in most cases there is a non-negligible overbinding
above 40%. Also shown in Table IV are the results obtained
with the nonlocal functionals PW86R-VV10sol and AMO5-
VV10sol which contain parameters that were fitted specifically
to RPA binding energies of 26 layered solids including
graphite and h-BN.%7 Unsurprisingly, the errors obtained with
PW86R-VV10sol and AM05-VV10sol for Ey are very small
(below 10%), but the price to pay are errors for ¢y that are
clearly larger (~5%) than with the other nonlocal functionals.
The nonlocal functional SCAN+rVV10 has also been tested
on a set of 28 layered solids, and according to Ref. 128, the
MARE (the detailed results for each system are not available)
for the interlayer lattice constant and binding energy amounts
to 1.5% and 7.7%, respectively, meaning that SCAN+rVV10

leads to very low errors for both quantities, despite no
parameter was tuned to reproduce the results for the layered
solids.

In summary, among the methods which do not include an
atom-pairwise dispersion correction, only a couple of them
(MVS, LDA, and PBEfe) do not severely underestimate the
interlayer binding energy. Adding a D3/D3(BJ) atom-pairwise
term clearly improves the results, leading to rather satis-
fying values for the interlayer spacing and binding energy.
In the group of nonlocal functionals, the recently proposed
SCAN+rVV10 seems to be among the most accurate.'?8

V. BRIEF OVERVIEW OF LITERATURE RESULTS
FOR MOLECULES

The results that have been presented and discussed so far
concern exclusively solid-state properties and may certainly
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not reflect the trends for finite systems, as mentioned in Sec. I1I.
Thus, in order to provide to the reader of the present work a
more general view on the accuracy and applicability of the
functionals, a very brief summary of some of the literature
results for molecular systems is given below. To this end, we
consider the atomization energy of strongly bound molecules
and the interaction energy between weakly bound molecules,
for which widely used standard testing sets exist.

A. Atomization energy of molecules

The atomization energy of molecules is one of the most
used quantities to assess the performance of functionals for
finite systems (see, e.g., Refs. 46, 48, 58, 69, 118, and 151
for recent tests). Large testing sets of small molecules like
G3'52 or W4-11'33 usually involve only elements of the first
three periods of the periodic table. For such sets, the MAE
given by LDA is typically in the range 70-100 kcal/mol (atom-
ization energies are usually expressed in these units), while
the best GGAs (e.g., BLYP) can achieve a MAE in the range
5-10 kcal/mol. MGGAs and hybrid can reduce further the
MAE below 5 kcal/mol. At the moment, the most accu-
rate functionals lead to MAE in the range 2.5-3.5 kcal/mol,
e.g., mBEEF* (see also Refs. 58 and 118), which is not far
from the so-called chemical accuracy of 1 kcal/mol. Concern-
ing the best functionals for the solid-state test sets that we have
identified just above, the MGGAs MGGA_MS?2 and SCAN,
as well as the hybrid-MGGAs MGGA_MS2h and revTPSSh
are also excellent for the atomization energy of molecule
since they lead to rather small MAE around 5 kcal/mol.#648:103
With the hybrid YSPBEsolO (~HSEsol), which was the best
functional for the lattice constant, the MAE is larger (around
10-15 kcal/mol*?). The weak GGAs WC and PBEsol improve
only slightly over LDA since their MAE is as large as 40-
60 kcal/mol,*®% while the stronger GGA PBEint leads to a
MAE around 20-30 kcal/mol.">*

Therefore, as mentioned in Sec. III, it really seems that
the kinetic-energy density is a necessary ingredient in order
to construct a functional that is among the best for both solid-
state properties and the atomization energy of molecules, and
some of the modern MGGAs like SCAN look promising in this
respect. With GGA:s, it looks like an unachievable task to get
such universally good results. Hybrid-GGAs can improve upon
the underlying GGA, however we have not been able to find
an excellent functional in our test set. For instance, YSPBEsol
(~HSESsol) is very good for solids, but not for molecules, while
the reverse is true for PBEO (small MAE of ~7 kcal/mol for
molecules,'™ but average results for solids, see Table II).

B. S22 set of noncovalent complexes

The S22 set of molecular complexes,'>® which consists
of 22 dimers of biological-relevance molecules bound by
weak interactions (hydrogen-bonded, dispersion dominated,
and mixed), has become a standard set for the testing of
functionals since very accurate CCSD(T) interaction energies
are available.' 8190 A large number of functionals have already
been assessed on the S22 set, and Table V summarizes the
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TABLE V. Results from the literature (reference in last column) for the MAE
(in kcal/mol) on the S22 testing set.

Functional MAE Reference
LDA

LDA®0 2.3 48
GGA

PBEsol® 1.8 48
PBE"? 2.8 48
RPBE®? 5.2 49
revPBE’! 5.3 27
BLYP%:%4 48,88 106, 48
MGGA

MO06-L!%5 0.7 156
MVSsY 0.8 47
SCAN* 0.9 48
mBEEF¥ 14 49
MGGA_MS0% 1.8 49
MGGA_MS24% 2.1 49
revTPSS% 34 49
TPSS® 3.7 48
hybrid-GGA

HSE!? 24 156
PBE(%-100 2.5 156
B3LYP!02 3.8 27
hybrid-MGGA

MVSh*’ 1.0 47
MO06!1° 1.4 156
TPSS0%0-98 3.1 27
GGA+D

BLYP-D3%’ 0.2 106
BLYP-D3(BJ)!0° 0.2 106
PBE+TS%0-2 0.3 156
PWS86PBE-XDM(BR)'?’ 0.3 157
revPBE-D3%7 0.4 106
revPBE-D3(BJ)!0® 0.4 106
PBE-D3?%’ 0.5 106
PBE-D3(BJ)!% 0.5 106
MGGA+D

TPSS-D3%7 0.3 106
TPSS-D3(BJ)!0° 0.3 106
MGGA_MS0-D346-2 0.3 46
MGGA_MS1-D3%6-2 0.3 46
MGGA_MS2-D346-2 0.3 46
hybrid-GGA+D

B3LYP-D3(BJ)!0¢ 0.3 106
B3LYP-D3%’ 0.4 106
PBEO-D3(BJ)!%0 0.5 106
PBE(-D3%7 0.6 106
hybrid-MGGA+D

MGGA_MS2-D3%6-2 0.2 46
TPSS0-D3?7 0.4 106
TPSS0-D3(BJ)!06 0.4 106
GGA+NL

optB88-vdW3+2 0.2 34
C09x-vdW!3! 0.3 131
vVv103ha 0.3 31
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TABLE V. (Continued.)

Functional MAE Reference
rev-vdW-DF2132 0.5 132
vdW-DF?8 1.5 34
MGGA+NL

SCAN+rvVV10!28 04 128
BEEF-vdW® 1.7 49

2One or several parameters were determined using the S22 set.

results taken from the literature for many of the functionals
that we have considered in the present work. Also included
are results for nonlocal van der Waals functionals (groups
GGA+NL and MGGA+NL), two atom-pairwise dispersion
methods [PBE+TS?® and PWS6PBE-XDM(BR)'7], and the
highly parameterized Minnesota functionals MO06 and
MO6-L'"® (results for other highly parameterized functionals
can be found in Refs. 118, 161, and 162). Since all these recent
results are widely scattered in the literature, it is also timely to
gather them in a single table (see also Ref. 35). As indicated
in Table V, some of the functionals contain one or several
parameters that were fitted using the CCSD(T) interaction
energies of the S22 set.

From the results, it is rather clear that the dispersion-
corrected functionals are more accurate. The MAE is usually
in the range 0.2-0.5 kcal/mol, while it is above 1 kcal/mol
for the methods without dispersion correction term, except
MO06-L, MVS, and SCAN (slightly below 1 kcal/mol). As
already observed for the layered compounds in Sec. IV B 2,
MYVS is one of the best non-dispersion corrected functionals,
which is probably due to the particular form of the enhance-
ment factor that is a strongly decreasing function of s and «
(see Fig. 2). The same can be said about SCAN, which is also
one of the semilocal functionals which do not completely and
systematically fail for weak interactions. The MAE obtained
with MGGA_MS?2 is rather large (2.1 kcal/mol), despite that
it was the best MGGA for the rare-gas solids. Among the
GGAs, PBEsol represents a good balance between LDA and
PBE which overestimate and underestimate the interaction
energies, respectively,*® but leads to a MAE which is still
rather high (1.8 kcal/mol). In the group of nonlocal vdW
functionals, the early vdW-DF and recent BEEF-vdW are
clearly less accurate (MAE around 1.5 kcal/mol) than the
others like SCAN+rVV10. The largest MAE obtained with an
atom-pairwise dispersion method is only 0.6 kcal/mol (PBEO-
D3).

By considering all results for weak interactions discussed
in this work (rare-gas solids, layered solids, and S22 mole-
cules), the most important comments are the following. For the
three sets of systems, the atom-pairwise methods show a clear
improvement over the other methods. Such an improvement is
(slightly) less visible with the nonlocal vdW functionals, espe-
cially for the rare-gas and layered solids, where only rev-vdW-
DF2 seems to compete with the best atom-pairwise methods.
In Ref. 128, the recent SCAN+rVV10 nonlocal functional has
shown to be very good for layered solids and the molecules of
the S22 test set, but no results for rare-gas solids are available
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yet. Among the non-dispersion corrected functionals, only a
few lead occasionally to more or less reasonable results. This
concerns mainly the recent MGGA functionals MGGA_MS2,
MYVS, and SCAN; however, their accuracies are still clearly
lower than the atom-pairwise methods.

VI. SUMMARY

A large number of exchange-correlation functionals have
been tested for solid-state properties, namely, the lattice con-
stant, bulk modulus, and cohesive energy. Functionals from the
first four rungs of Jacob’s ladder were considered (i.e., LDA,
GGA, MGGA, and hybrid) and some of them were augmented
with a D3/D3(BJ) term to account explicitly for the dispersion
interactions. The testing set of solids was divided into two
groups: the solids bound by strong interactions (i.e., cova-
lent, ionic, or metallic) and those bound by weak interactions
(e.g., dispersion). Furthermore, in order to give a broader view
of the performance of some of the tested functionals, a section
was devoted to a summary of the literature results on molecular
systems for two properties: the atomization energy and inter-
molecular binding.

One of the purposes of this work was to assess the accuracy
of some of the recently proposed functionals like the MGGAs
MGGA_MSn, SCAN, and mBEEF, and to identify, eventually,
a universally good functional. Another goal was to figure out
how useful it is to mix HF exchange with semilocal exchange
or to add a dispersion correction term. An attempt to provide
a useful summary of the most important observations of this
work is the following:

1. For the strongly bound solids (Table II), at least one func-
tional of each rung of Jacob’s ladder, except LDA, belongs
to the group of the most accurate functionals. Although it
is not always obvious to decide if a functional should be a
member of this group or not, we can mention the GGAs
WC, PBEsol, PBEalpha, PBEint, and SG4, the MGGAs
MGGA_MS2 and SCAN, the hybrids YSPBEsolO,
MGGA_MS2h, and revTPSSh, and the dispersion cor-
rected methods PBE-D3/D3(BJ).

2. Thus, from point 1 it does not seem to be really neces-
sary to go beyond the GGA approximation for strongly
bound solids since a few of them are overall as accurate as
the more sophisticated/expensive MGGA and hybrid func-
tionals. However, the use of a MGGA or hybrid functional
may be necessary for several reasons as explained in points
3 and 4 below.

3. As well known (see Sec. V A), no GGA can be excellent for
both solids and molecules at the same time. MGGAs like
MGGA_MS?2 or SCAN are better in this respect. Thus, the
use of a MGGA should be more recommended for systems
involving both finite and infinite systems as exemplified in,
e.g., Ref. 163.

4. If a qualitatively more accurate prediction of the band gap
of semiconductors and insulators is also required, then a
hybrid functional should be used since GGA band gaps are
usually by far too small compared to experiment.**~** Note,
however, that hybrid functionals are not recommended for
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metallic systems.”>!?>12> MGGAs do not really improve
over GGAs for the band gap (see Refs. 164—166).

5. The use of a dispersion correction for strongly bound solids
is recommended for functionals which clearly overestimate
the lattice constant (usually more pronounced for solids
containing alkali atoms). However, it is only in the case of
PBE-D3/D3(BJ) that the overall accuracy is really good. We
also observed that many of the DFT-D3/D3(BJ) methods
lead to large errors for the bulk modulus, despite small
errors for the lattice constant.

6. Among the functionals that were not tested in the pres-
ent work, SCAN+rVV10 should be of similar accuracy as
SCAN for strongly bound solids, but significantly improves
the results for weak interactions according to Ref. 128.

7. For the weakly bound systems, namely, the rare-gas solids
(Table III), layered solids (Table IV), and intermolecular
complexes (Table V), it was observed that none of the non-
dispersion corrected functionals is able to give qualitatively
correct results in most cases. This is expected since the
physics of dispersion is not included in the construction of
these functionals. At best, good results can occasionally be
expected with some of the MGGAs (MGGA_MS2, MVS,
SCAN, or M06-L).

8. For weak interactions, many of the DFT-D3/D3(BJ)
methods (and some of the nonlocal ones) are much more
reliable. The results from the literature obtained with the
recent SCAN+rVV10'? or B97M-V'8 are promising, but
since these functionals were proposed very recently, more
tests are needed in order to have a more complete view of
their general performance.

Finally, from the present and previously published works, a
very short conclusion would be the following. At the present
time, it seems that the only functionals, which can be among
the most accurate for the geometry and energetics in both finite
and infinite systems and for both strong and weak bondings,
are MGGAs augmented with a dispersion term. These are not
bad news, since MGGAs functionals are barely more expensive
than GGAs and the addition of a pairwise or nonlocal disper-
sion term does not significantly increase the computational
time. However, in order to avoid problems of transferability,
a MGGA should preferably be constructed with a relatively
smooth enhancement factor. If qualitatively accurate band gaps
are also needed, then such functionals should be mixed with
HF exchange, but with the disadvantage of a significantly
increased computational cost, especially for large molecules
or periodic solids.
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