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THE WIGNER DISTRIBUTION — A TOOL FOR
TIME-FREQUENCY SIGNAL ANALYSIS

PART I: CONTINUOUS-TIME SIGNALS

by T. A. C. M. CLAASEN and W. F. G. MECKLENBRAUKER

Abstract

The paper deals with the Wigner distribution which is a signal transforma-
tion that is particularly suited for the time-frequency analysis of non-
stationary signals. Several of its properties are summarized. The usefulness
of the concept is indicated in some examples. This first part deals with the
Wigner distribution of continuous-time signals.

1. Introduction

In many cases of practical importance one is interested in having a mixed
time-frequency representation of a signal. This is particularly so if the signal
under investigation is nonstationary, which means that at different instants
the signal has a different “frequency content”. Such an approach is very
popular, for example, in the analysis of speech signals. More than 30 years
ago a vivid interest in the visualisation of speech led to the development of the
sound spectrograph which is a device that produces an intensity pattern that is
found to be characteristic for the frequency content of the speech as a
function of time'). These spectrograms are nowadays computed in a much
more sophisticated way and still form a useful tool of speech analysis 2:%+4).

A second example is that of a piece of music for which De Bruijn®) has
remarked the following.

For example, if f represents a piece of music, then the composer does not produce f itself; he
does not even define it. He may try to prescribe the exact frequency and the exact time interval of
a note (although the uncertainty principle says that he can never be completely successful in this
effort), but he does not try to prescribe the phase. The composer does not deal with f; it is only the
gramophone company which produces and sells an f. On the other hand, the composer certainly
does not want to describe the Fourier transform. This Fourier transform is very useful for solving
mathematical and physical problems, but it gives an absolutely unreadable picture of the given
piece of music.

What the composer really does, or thinks he does, or should think he does, is something
entirely different from describing either f or #f. Instead, he constructs a function of two
variables. The variables are the time and the frequency, the function describes the intensity of the
sound. He describes the function by a complicated set of dots on score paper. His way of
describing time is slightly different from what a mathematician would do, but certainly vertical
lines denote constant time, and horizontal lines denote constant frequency.
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Although all signals for which such a time-frequency analysis is desired are
nonstationary, all methods for such an analysis that have been used exten-
sively are based on the assumption that on a short-time basis the signals are
stationary. This has the important drawback that the length of the assumed
short-time stationarity determines the frequency resolution which can be
obtained. To increase the frequency resolution one has to take a longer
measurement interval (window), which means that nonstationarities occurring
during this interval will be smeared out in time and frequency.

A time-frequency characterization of a signal that overcomes this drawback
is the Wigner distribution 7). This signal transformation has some important
properties that make it an ideal tool for time-frequency signal analysis.
Although the concept as such is not new, it is little known in the area of signal
processing.

The concept of the Wigner distribution (WD) was introduced in 1932 by
Wigner ) in the context of quantum mechanics. Although the concept was
reintroduced in 1948 by Ville ®), this time for signal analysis, it has received
little attention in this field. A review of the history of the WD has been given
by De Bruijn 7), who also gave a mathematical basis for this new signal trans-
formation. Recently the WD has obtained considerable attention in
optics ¥-%).

In our opinion the properties of the WD justify more widespread know-
ledge of this concept, notably in the area of signal analysis and processing.
Therefore in this paper the emphasis is mainly on properties, and not on
mathematical subtleties. Also we will use sometimes a notation which is
slightly different from that in ref. 7 but which, in our opinion, is more adapted
to engineering practice. In this first part the WD for continuous time signals is
considered. In a companion paper the WD for discrete time signals will be
introduced.

In section 2 of this paper the definition of the WD and some of its proper-
ties are given. The concept is illustrated with several examples in sec. 3. The
effect of linear signal operations, like modulation and filtering, on the WD is
the subject of sec. 4. Like the Fourier transform the WD requires the signal to
be known for all time. As a first step towards a more realistic approach the
issue of windowing of the signals is considered in this section.

For analysis of narrow-band signals the analytic signal has been intro-
duced ®) and shown to be of considerable importance. Therefore in sec. 5 the
WD for analytic signals is discussed. Roughly speaking, the WD of a signal
can be interpreted as a function that indicates the distribution of the signal
energy over time and frequency. However, this is not strictly true because, for
example, the WD is not always positive. As pointed out by De Bruijn7),
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suitably taken averages of the WD will always be positive, Furthermore he has
shown that this property of the WD is intimately connected to Heisenberg’s
uncertainty relation, which is reflected in the behaviour of the WD. He has
also indicated that the consideration of the moments of the WD gives a coarse
characterization of the energy distribution over time and frequency.

In contrast to De Bruijn’s approach, who only considers the global
moments of the WD (i.e. they are taken over the whole time-frequency plane),
we will consider locally defined moments as well. This will be done in sec. 6. It
is shown there that the average frequency of the WD at a certain instant is
equal to the instantaneous frequency of the signal, and the average time at a
certain frequency is equal to the group delay. This demonstrates that these
local moments are useful characterizations of the WD.

In section 7 the WD is considered for band-limited signals. It is shown that
the WD can be expressed easily in the samples of the signal if these samples are
taken at a rate higher than twice the Nyquist rate of the signal. This expression
forms the basis for the discussion of the WD of discrete-time signals, which is
the topic of part II.

2. The Wigner distribution for continuous-time signals

2.1. Preliminaries

In this section we will consider (in general complex) continuous-time
functions defined for all time: f(1)e C, teR.
The (Fourier) spectrum of these signals is given by

F(w) = (Z)(w) = [ f(H)e e ds (2.1.a)

where & denotes the operation of Fourier transformation. The inversion
formula corresponding to (2.1.a) is given by

S =(F'F)() = zin/ Flw)el“dw. (2.1.b)

For the moment we assume that we are dealing with well-behaved signals
(quadratically integrable or smooth *) so that all signal operations can be per-
formed in the ordinary sense. If this assumption is not true, we will consider
the signals as generalized functions. For more details we refer to ref. 7.

In subsequent discussions it will turn out to be useful to work with inner
products and norms of functions. For two signals fand g the inner product is
defined by
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(o= [ fOg*)de (2.2.2)
while the inner product of two spectra F and G is defined *) similarly apart
from a factor 1/2m:

(F,G) = 2%: / F(w) G*(w) dw. (2.2.b)

-0

The asterisk denotes complex conjugation. As the norm of a signal f we take

Al = () 23.2)
and similarly for the spectrum

Il FIl = (F, Fy. (2.3.b)
With this notation Parseval’s theorem '%) then reads

(/&) = (F, G). (2.4)

Several more operations on signals will be introduced:
the shift operation

(N0 =ft -, (2.5)
the (complex) modulation
(AMaf) () =" f(0), 2.6)
differentiation
(2N (1) = Jif’(f). 2.7
multiplication by the running variable
(21)() = 1/() (2.8)
and reversal of the running variable
(RN ) =f(-1). (2.9)

*) In most of the mathematical literature signals and spectra are treated in an identical way and a
more symmetrical definition of the Fourier transform is used 7). Because in engineering
practice a non-symmetrical definition of the Fourier transform is common we prefer to extend
this asymmetry to the definition of inner products, norms and later also to the Wigner distri-
bution.
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The unusual definition of the operation & for differentiation has been taken
because in this case the inner product

1
(D))= J—f S0 de

is real.

When presenting a new concept like the Wigner distribution there are in
general two approaches. The first, which has been followed by Ville ®) and
Mark ?), starts with some heuristic considerations about the properties which
such a time-frequency representation is supposed to have. Subsequently, from
these properties a suitable form for the Wigner distribution is derived.

Following De Bruijn 7) we will adopt an axiomatic approach that starts with
a rather formal definition. The usefulness of the concept is then indicated by
deriving the corresponding properties. Such an approach is more lucid but has
the disadvantage that it does not immediately reveal the uniqueness of the
concept, i.e. other definitions might have led to concepts with similar or even
more desirable properties. Therefore, in part III of this paper the connection
between the Wigner distribution and other time-frequency signal representa-
tions will be discussed. It will be shown there that many more such representa-
tions exist but they can all be derived from the Wigner distribution.

2.2. Definition of the Wigner distribution
The cross-Wigner distribution of two signals f and g is defined by "):

Wy, gl, w) = f eIt + 1/2) g*(t — ©/2) d. (2.10)

The auto-Wigner distribution of a signal is then given by

Wilt, @) = Wig(t, @) = | €90 + U f*(t — v/2)dr. @.11)

—w
When no confusion can arise we will call both functions a Wigner distribution
(WD).

The above definitions are given for time functions. Its usefulness as a time-
frequency characterization of signals is underlined by the fact that a similar
expression also exists for the spectra.

If we define the WD for the spectra F and G by

]

We,cw, 1) = ﬁ / el Flw + £/2) G*(w — £/2)d¢ (2.12)

-0
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we obtain the important relation
Wr,c(w, 1) = Wy g1, w). (2.13)

This means that the Wigner distribution of the spectra of two signals can
simply be determined from that of the time functions by an interchange of
frequency and time variables. This illustrates the symmetry between time and
frequency domain definitions.

The form of the WD is reminiscent of that of the ambiguity function of a
signal '"). In fact the ambiguity function can be obtained from the WD by a
two-dimensional Fourier transformation and scaling with respect to the signal
power.

2.3. Properties of the Wigner distribution

In this subsection a number of properties of the WD are given. Proofs are
omitted because these properties either follow directly from the definition or
the proofs can be found in ref. 7.

2:.3.1.
For any two signals f and g we have

Wy, e(t, ) = Wes(t, ). (2.19)
Hence the WD of any (real or complex) function will be real:

Wi, w) = Wy (1, w). (2.15)
Moreover, the WD of a real signal is an even function of the frequency:

Wi, w) = W1, — ). (2.16)
2322

A time shift in both signals corresponds to a time shift of the WD:
Waiy, 9:5(t, ) = Wit — 7, 0). (2.17)
2.3.3.

Modulating both signals f and g with ¢! results in a frequency shift of the
WD:

Woitaf, Alag(l, @) = Wy g(t, @ — ). (2.18)

2.3.4,
Combining (2.17) and (2.18) yields

Woito 9., Mo Si(l, W) = Whitlof, Srllog (, @) = We(t — 1,0 — Q). (2.19)
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This result can be used to express the WD by
Wy olt, w) = WLl f, S 1A ,(0, 0). (2.20)

Using the definition of the inner product in (2.3) and of the operator % in
(2.10) we get

Wr,e(0,0) = 2(f, Ag). (2.21)
From (2.20) and (2.21) it then follows that
PV:f,g([, Ct)) = 2 (cg/_t !/%_u)j; % 'git!%—(})g)- (2.22)

The value of the WD at a certain time ¢ and frequency  can thus be deter-
mined by the inner product of the shifted and modulated signals, the second
of which has undergone a time reversal.

235

The WD of two signals is a bilinear functional of fand g. This means that
the WD of the sum of two signals is not simply the sum of the WD’s of the
signals. From the definition it follows that

m#fz,gl*'gz(tr CU) = Ml!gl(t’ (J)) & W%l-gz(r’ {.U) & przsgl(l’ 61)) + Ifo'z»gz(Ix (l)) (223)
and as a special case

Wrealt, @) = Wi(t, ) + Wy(t, @) + 2Re Wyt ). 2.24)

2.3.6.

The product of the WD with ¢ can be expressed as a sum of two WD’s
according to

2t Wi g(t, w) = Wy g(l, ) + Wy, 2,(1, w), (2.25)

where the operator 2 is defined in (2.8). Similarly the multiplication of the
WD by @ can be expressed as

20 Wi glt, @) = Waygg(t, @) + Wy ue(l, w), (2.26)
where the differentiation operator % is defined in (2.7).

2.3.7.

According to (2.10) the WD is the spectrum of the signal
F(t+ 1t/2)g*(t — 1/2) considered as a function of 7 with ¢ as a fixed parameter.
Therefore the inverse Fourier transform yields
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= el Wy o, w) dw = f(t + 1/2) g*(t — ©/2),
n

-0

which can be written in the form

o

1

o e

Two special cases of this equation deserve special attention.
(i) #, = ¢, = tin (2.27) yields

f1+t‘2

1
z_f Wre(l, w)daw = (1) g*(1)
T

and in particular

1
—ﬂf Wi(t, w) dw = | f(2)|2.
2n

w) dw = f (1) g¥(5).

(2.27)

(2.28)

(2.29)

This means that the integral of the WD over the frequency variable at a

certain time ¢ yields the instantaneous signal power at that time.

(i) £, = 4, £, = 0in (2.27) gives

1 ;
2—/ Wy (172, w) dw = f(1) g*(0).
T

(2.30)

This relation is very remarkable. It shows that f(f) can be recovered from
the WD at time #/2 by the inverse Fourier transform up to the constant

factor g*(0). A similar relation holds for g(z).

2.3.8.

Integration of eq. (2.28) with respect to time yields

1
- / / Wy, o(t, @) dt do> = / SO ndi=(fg)  (2.31)

and of eq. (2.29)
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i b o iy
o [/ Wy (2, w)dw] dt—/ | F(D)]* de. (2.32)
T

This relation shows that the integral of the WD of the signal f over the infinite
vertical strip —o0 < w < %0, I, < { < I is equal to the energy contained in
F(t) in the time interval ¢, < ¢ < #p. The total energy in fis therefore given by
the integral of the WD over the whole plane (¢, w):

-0 -0

1
ﬁ/f Wi (t, w)dz‘dw:f lf@)12de = (£0) =IA1I% (2.33)

2.3.9.

A similar discussion as in 2.3.7 applies to (2.12), but in this case Wg g(w, f)
is the inverse Fourier transform of F(w + £/2) G*(w — £/2), considered as a
function of &. Hence,

[ &% Wy olw, 1) dt = Flo + £/2) G*w — &/2). (2.34)

-

Using (2.13) and changing the variables yields

oo

. +
/ W(t wzw) dt = Fo) G*wp). @39

-0

Equation (2.35) shows that the Fourier transformation of the WD with respect
to time gives information on the spectra of fand g. Two special cases of (2.35)
are of interest.

(i) w, = wy, = w yields

[ Wralt, ) df = F(w) G*(w) (2.36)
and in particular
[ W, w)dt = |Flw)l®. (2.37)

This means that the integral of the WD over the time variable at a certain
frequency w yields the energy density spectrum of f at this frequency.
(i) w; = w,w, = 01in eq. (2.35) gives
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o0

/ emiwt I/Vf,g (, C{)/Z)dl = F(w) G*(0). (2.38)

This relation shows that the spectrum of f can be recovered from the WD
by the Fourier transform of the WD at frequency w/2, up to the constant
factor G*(0).

2.3.10.

Integration of eq. (2.36) with respect to frequency vields

1
L / / W e(t, w)dtdw = — f F(w) G¥(w) dw = (F, G), (2.39)
2m 27

which is identical to eq. (2.31).
Integration of (2.37) over a finite frequency interval gives

W [+
1 1
— Wet, w)dt| dw = —
o [ f (¢t ) ] .
(.ua -0 C

This relation shows that the integral of the WD of the signal f over the infinite
horizontal strip —eo < < o0, W, < w < wy is equal to the energy contained
in fin the frequency interval w, < w < wp. This relation is complementary to
(2.32). Taking w, = —co and wp = oo results again in eq. (2.33).

f | F(w)|* dw. (2.40)

)

2.3.11. Moyal’s formula

Moyal’s formula ”) is concerned with the integration of the product of two
WD’s. It reads

1 .
% f / I/Vflsgl('ts (.l)) I/szjg'z(t’ O’J) dfd(,() = (f]) f2) (gh gz)* (241)

and can be considered as the counterpart of Parseval’s relation for WD’s.
Special cases of Moyal’s formula can be obtained for suitable choices of
Sis Jos 81, g2 In particular if we take all these signals equal to f we get

1
Z—f / Wit w) dtde = || £1]*. (2.42)
s
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2.4, Effects of time or band limitations on the WD
2.4.1. Time-limited signals
If f(¢) and g(¢) are restricted to a finite time interval only and
f)y=g)=20 <ty Or t>1p (2.43)
then the WD is restricted to the same time interval, i.e.
Wiell, w) =0 [<lg0r t>1 Vo (2.44)

It should be noted that this property is a distinct difference from other time-
frequency characterizations, which normally give contributions over a larger
time interval than belonging to the signals themselves.

2.4.2. Frequency-limited signals

A similar conclusion as in 2.4.1 can be made if f and g are both band-
limited. If

Flw)=G(w)=0 W< e O W> wp (2.45)
then from (2.13) it follows that
Wre(t, ) =0 W< W, OF W> wp, VI. (2.46)

2.4.3. Causal and analytic signals

In analogy with causal systems for which the impulse response vanishes for
t < 0 signals with the property that

fn=0 (<0 (2.47)

are sometimes called causal signals '), If fand g are two causal signals then it
follows from (2.44) that

Wre(t, ) =0 t<0, Y. (2.48)
Similarly a signal is called analytic ®) if its spectrum vanishes for w < 0, i.e.
Flw)=0 w < 0. (2.49)

From (2.46) it then follows that if fand g are analytic signals then

Wiglt, ) =0  w<0, V1. (2.50)
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3. Examples

In this section some examples will be worked out to illustrate the concept of
the WD,

3.1.

f(r—{ lt|< T
) = 0 ] 2 T

%sinZw(Tf 1t ltl<T

WHt, w) = { (3.1)

0 |t > T.

This WD has a sin x/x shape with respect to frequency. The width of its main
lobe becomes wider with increasing values of |¢|. The WD attains its
maximum at (4, w) = (0,0) and has the value Wf(0,0) = 47. Also it can be
observed that W} is negative in certain regions of the (¢, w) plane.

32

gi®ot [T

f(f):{ 0 | = T.

The WD of this signal can most easily be obtained by making use of (2.18)
and the result (3.1):

2.
Wf(:,w)—{ o Sin2@ - w) (T =1t []<T 6

0 |t > T.

3.3,
f() = Ael®t V.

From the definition it follows that

Wi (t, w) = 7 eUT 4 i@t T/2) g omion(t-U/2) (g
- (3.3)
=|A|? [ e Tdr = | 4|2210 (0w — wy).
This means that for this stationary signal the WD is independent of ¢ and is
confined to the line w = w;,.
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3.4.
We take as our next example
F(t) = A, &0, g(t) = A, &9
and determine

M/},g(f, CO) _ f efjerl ejwl(t+T/2) A; eijz(zwrfz) dr

-0

. w, + w
= A, Af e"“l"“ﬂ”ZnJ(w - 122) .

(3.4)

3.5
This result can be used to evaluate the WD of a sinusoidal signal
S = Acos(wy t + @) = A el?ed®" 4 L4 73?1,

Using eqs (2.24), (3.3) and (3.4) we obtain

Wi(t, w) =1 Al? g [5(w —y) + w + wy) + 20(w) cos 2w, { + w{l . (3.9)

We see that apart from stationary (time-independent) contributions at fre-
quencies =+ w,, a contribution at w = 0 occurs which fluctuates with a
frequency 2 w,. This contribution represents the nonstationarity in the signal
caused by the fluctuations of the instantaneous power of the signal.

3.6.
f(I) = A e+jm2/2_

This is a so-called chirp, i.e. a signal, whose instantaneous frequency increases
linearly with time. For this signal we find

el
W}(i‘, w) = | A2 f eI ai a(t+7/2)%/2 e o(t-1/2)%/2 dr

—-co

=1AI* 2 §(w — ar).
This is an extremely satisfactory result which shows that for a chirp the WD is
concentrated at any instant around the instantaneous frequency.

(3.6)

3.7.
f(t) = A ej((uur+ﬁs‘1n wmr)_

This signal represents another form of frequency modulation, this time with a
sinusoidal input. For the WD we find
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Wf(fs w) — |A|2 Te—jwrej[wo(wr.’z)ﬂ’f sin wp (t+7/2)—wy(e-1/2)-f sin w (1-7/2)] dr

(3.7

o0
— ]A ‘2 f e—jwr e](u)uf+2|ﬁ' cos wt sin w, 1/2) drt.

—@

Equation (3.7) allows the following interpretation: the WD of this FM signal
at time ¢ equals the spectrum of an FM signal with phase deviation
A" = 2fcos wm! and modulation frequency wm = wm/2. Since we know that
the spectrum of an FM signal with deviation ' and modulation frequency w
is a line spectrum given by !9).

r0;9"[3]'(u.’(,r+;'3' sin iy r}:i (CO) = 2n Z JI(B’)J(CU = €0y — [wrln) (3.8)

== o0

we find for the WD of eq. (3.7)

Wilt, w) = | A1221 Y Ji(2Bcos wmt) 8w — wy — [ wm/2).  (3.9)
I=— w0
From equation (3.9) it follows that the WD shows a line structure with lines at
@y + lom/2, i.e. separated by half of the input frequency. The contribution
on each of these lines varies periodically in time with frequency wm.

This WD is sketched in fig. 1, for the case § =7, for different instants
taken over half a period of the modulation frequency wm. In this figure the
dashed line indicates the instantaneous frequency of the signal, i.e.
wy + fwmcoswmi. We see from fig, 1 that in the neighbourhood of the
instantaneous frequency the WD has all positive contributions, whereas at
frequencies mirrored with respect to w, the contributions are precisely as large
but alternate in sign. The WD is totally concentrated when the instantaneous
frequency passes through cy.

3.8.

As a final example we consider the Gaussian signal f(f) = e ", For this
signal we have

Ifo(l‘, 0:)) - J,‘ e-jwre—[a(r+ri2)2+a(:-r/2)ﬂ] dr

o (3.10)
= 2_ne—2a12 e
o

—w2f2
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w |
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Fig. 1. Schematic representation of the WD of the FM signal f (1) = exp (jwyg { + jfsin @y 1) for
A = 7. Indicated are slices of the WD taken at various instants over half a period of the modula-
tion frequency. The dashed line indicates the instantaneous frequency w, + ffwm COS Wy .

The WD of this signal has the same shape in both the time and the frequency
direction.

4. Effects of linear operations on the WD

In this section the effects of linear operations on the WD will be investi-
gated. The two most important linear operations occurring in signal
processing are filtering and modulation. Filtering corresponds in the time
domain to a convolution and modulation to a multiplication. In the spectral
domain this situation is reversed. This duality between the two operations will
manifest itself clearly in their effects on the WD.
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4.1. Linear filtering

If both signals f and g are processed by linear, time-invariant systems with
impulse responses 4y and A,, respectively, then the output signals of the
systems are given by the convolution integrals

S8y = (f=hp) () = [ F(2) bt — 1) dr1, (4.1.a)

g(t) = (g% hy) (1) = [ g(1) he(t — 7) d1. (4.1.b)

The WD of f; and g, is most easily determined in the frequency domain. The
result is

Wreell, @) = [ Wy g(T, @) When(t — 1, w) dr. 4.2)

— o0

Wt . is therefore the convolution of Wy, and Wi, 5, in the time variable.

4.2. Multiplication in the time domain

Modulation of the signals f and g with carriers my and mi,, respectively,
results in

Jm(8) = f(£) mg(1), (4.3.2)
Em(8) = g(2) my(). (4.3.b)

The WD of fi and gn is then given by

1
Wingn(l, @) = - f Wi.s(t, 1) Wongom (£, 0 — 1) dny. (4.4)
The WD W, ... is therefore the convolution of W, and W,,m, in the
frequency variable.

4.3. Windowing in the time domain; the pseudo-Wigner distribution

For computational purposes it will be necessary in general to weight the
signals f and g by functions wy and w,, respectively, before evaluating the
WD. These weighting functions are often called windows and will slide along
the time axis with the instant f where the WD has to be evaluated. This means
that, rather than considering the functions f and g, a family of functions f;
and g, is considered given by

Ji(©) = f(1) F we(D), (4.5.2)
&(7) = (1) H wy(7). (4.5.b)
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For each fixed f we can now compute the WD of the functions f; and g, and
express it in terms of W%, and the WD of the window functions wy and w,.
According to (4.4) this yields

1
Wf,,g,(‘f, (U) . ﬂ f H/f,g(‘l', ’7) WW_fIWg(T - t: w — ’7) d?’] (46)
In this relation ¢ appears as a parameter that indicates the position of the
window as it slides over the time axis. It is therefore natural not to consider
the whole family of WD’s given by (4.6), but of each of the members of this
family to consider only the values on the line 7 = ¢, i.e.

1
Wreedt, w)|m = 21:/ Wr,e(ts 1) Wao (0, 0 — 1) dig. (4.7)

Considering this expression for different values of ¢ we obtain
Wity @) = Wyt )| _ 4.8)

which is a function of ¢ and e that resembles, but in general is not, a WD.
This function will be called a pseudo-Wigner distribution (PWD) of fand g. It
will be clear that the PWD of two functions depends on the windows wy and
wg that are used, although this will not explicitly be indicated by the notation.

From equation (4.7) it follows that the PWD W} , is equal to the original
WD Wy, convoluted with respect to its frequency variable by a time-
independent function. Considering for fixed ¢ the WD as a function of w, the
effect of windowing on the WD can be interpreted as a filtering operation of
this function with a filter with impulse response Wi, (0, w). (In comparison
with conventional filtering the role of time is now played by w.) If wy = wg
is a real even function then this impulse response equals

W0, w) = [ e wi(z/2) dr. 4.9)

Hence the “transmission function” of this filter has the form of the square of
the window, and will therefore always be of the low-pass type. The PWD of a
function is therefore always a smoothed version with respect to frequency of
the original WD. For example, a rectangular window with length T has the
effect of an ideal low-pass filter that attenuates all variations of the WD in the
cw-direction above 7/2.

As an example of the influence of windowing on the WD, consider the FM
signal f(f) of example (3.7). If this signal is windowed with the Gaussian
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window w(f) of example (3.8), the PWD of the function will be

0o

e 2 5
Wilt, w) = ]/ =PI E Ji(2f cos wm ) €7@l @n/M2e (g 1)
o

I=—co

This PWD is sketched in fig. 2 for 8 =7, & = 2.5wk for the same values of
t as in fig. 1. The effect of the low-pass filtering is clearly visible. It has the
result that the highly varying contributions on the opposite side of «w, of the
instantaneous frequency have vanished, and the PWD has become con-
centrated around this frequency.

T
[S5) wo+ 10¢w,,

Fig. 2. Schematic representation of the PWD of the FM signal of fig. 1. The window was taken to
be w(f) = exp(—af®) with @ = 2.5 w},. The dots indicate the instantaneous frequency of the
original FM signal.
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5. Wigner distribution for analytic signals

The signals which are dealt with under normal circumstances are real. While
this fact certainly facilitates the implementation of many signal-processing
schemes, it involves on the other hand special peculiarities which complicate
the analysis of these signals. A consequence of the realness of the signals is
that their spectrum is always symmetric. Thus only one half of the spectrum
contains information, while the other half increases the redundancy. This
redundancy is eliminated by the use of the notion of the analytic signal.
The analytic signal is defined by #)

fult) = (1) + i f (), (5.1)

where f is the Hilbert transform of f:

4 1 (7)
&) = (FNH(D = — v.p. / 2 dr. (5.2)
b f— T
(v.p. indicates the Cauchy principle value.)
The analytic signal has a spectrum given by
2F(w) w>0
Fi(w) = F(0) w=0 (5.3)
0 w < 0.
From (2.50) it therefore follows that
Wi (t, w) =0 w < 0. (5.4)

The relation between Wy, and W can best be determined by the use of (2.13)
and (2.14). For the definition of the WD in the frequency domain we have

oo

We(w, 1) = ﬁ ] & Fy(w + &/2) B (w — €/2) dE. (5.5)

Using equation (5.3) we get
2

Wrlw, 1) = % / & Flw + E/2) F*(w — £/2)dE, @ >0. (5.6)

—2w

Incorporating relation (2.34) leads to
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4 sin 2T
Wr(w, t) = =1 We(w, t — 1) e dr, w=>0 (5.7

and thus for W},

4 sin 2wt
= Wit — 1, w) ———dt, w>0
Wi (t, w) = n T
—oo (5.8)

0 w < 0.

Equation (5.8) can be interpreted in the following way: the WD of the analytic
signal at a fixed frequency value w >0 can be obtained by considering
W;(t, w) for this frequency value as a function of time and passing this time
function through an ideal low-pass filter with cut-off frequency 2w. This
means that W (¢, w) with w fixed is a time function whose highest frequency is
at most 2w.

As a simple example consider the sinusoidal signal of example (3.5). It’s
WD has three contributions, two of which at w = + w, are stationary, while
the contribution at w = 0 is varying with a frequency 2w, . For this sinusoidal
signal the analytic signal is e’“o*, the WD of which was given in example (3.3).
It can be seen that this WD contains only one stationary contribution at
w = wy. The stationary contribution in the original WD at w = —w, 1s
suppressed since it occurs at a negative frequency, while the contribution at
w = 0 is eliminated because it varies in time, which is prohibited at this
frequency according to (5.8).

6. Global and local moments of the WD

6.1. General remarks

From the properties of the WD one might have gained the impression that
the WD of a signal f can be interpreted as the energy distribution of fin time
and frequency:

(a) The total energy in f is given by the integral of W} over the whole (i, w)
plane, see (2.33).

(b) The energy in f contained in a certain interval of time (%, ) is given by
the integral of Wy over the infinite strip —co < w < 0, o < < lp; Se€
(2.32).

(¢) The energy in f contained in a certain frequency interval (we., ws) is given
by the integral of W} over the infinite strip —oo < f < 0, We < W < Wp,
see (2.40).
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However, this interpretation of the WD of a signal must be used with care,
because we have already seen in the examples that W can attain negative
values, locally.

For a specific signal we can compute its WD and from an analysis of this
function we can get an idea of how the energy in this signal is distributed in
time and frequency. It may be concentrated in certain time or frequency inter-
vals, or may be spread over the whole (f, w) plane, etc.

It is possible, however, to characterize this distribution more specifically
without giving the values of the WD for all (¢, w) values. For this we use the
notion of (central) moments of the WD. These moments allow the specifica-
tion of e.g. averages and the spread of the WD.

We can distinguish several different approaches. First a distinction can be
made between local and global moments. The local moments are determined
by considering the WD as a function of time for a fixed frequency w or as a
function of frequency for a fixed time ¢. The corresponding moments will then
of course be dependent on frequency or time, respectively. Therefore these
moments may still contain some information regarding variations in time or
frequency. The global moments are found by integration over the whole
plane, and are therefore independent of time and frequency.

A further distinction that can be made is that the moments can be con-
sidered not only for the WD, but also for its square. Taking the WD itself has
the advantage that the WD is then considered truly as a distribution, but has
the disadvantage that the resulting second order moments are not necessarily
positive, since the WD is not always positive. This disadvantage can be over-
come if instead of W} the distribution of W;* is considered. It turns out that
in this case only the global moments have a simple interpretation, for which
reason this approach will not be pursued in this paper. The corresponding
discussion can be found in ref. 7.

6.2. Central moments
Let K(x) be a function of a continuous variable x on (— o0, ) with
J K(x)dx = my, > 0. (6.1)

Because it was not assumed that K(x) is positive for all values of x, the con-
clusion from (6.1) is that at least K(x) has an average m, that is positive. To
get an impression of the value distribution of K(x) we consider the expression

[ (x = xp)* K(x) dx/my (6.2)

-0
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as a function of x, and seek to find the value of x, at which eq. (6.2) is
minimized. The minimum is attained for x, equal to

m, = }o x K(x) dx/m 6.3)

and has the value

my = Ofc (x — my)? K(x) dx/my, = ? X K(x)dx/my — mi.  (6.4)

The values m;, and m, may be interpreted as follows: m, is the centre of
gravity of K, i.e. it is that value of x for which K will be in balance if K is
considered as a mass distribution along a straight line (allowing negative
masses for K(x) < 0). Similarly m, can be considered as the spread or variance
of K (if K(x) is non-negative), i.e. m, gives an indication about the spread of
the masses along the real line and is small if K is mainly concentrated around
x = m,. If K is not always positive this interpretation of m, must be handled
with care, because then m, too can become negative.

6.3. Moments of the WD in the frequency variable

In this and the following section we will apply the notion of moments to the
WD. In this section the moments with respect to the frequency variable w will
be considered, while in the next section the moments with respect to the time
variable ¢ are discussed. Although there exists a large amount of similarity
between the two concepts their interpretations have characteristic differences.

6.3.1. Local moments

If we fix the time we get for the average of the WD with respect to frequency

1
pi(l) = o f Wi(t, w)dw = | f(0)]* (6.5)

and we see that p(r) is the instantaneous power of f, which is non-negative.
This means that we can define the higher order moments only for those ¢ for
which py(£) > 0.

The first-order moment is then given by (see (6.3))

o

1
Q1) = i / w Wi(t, w) dw/pr(t) (6.6)

-

and can be interpreted as the average frequency of the WD at time ¢. From
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(A2) in the appendix it follows that

S0 d
Qi) =Im—— = Im — In f(#). 6.7
¢ (1) 70 r S (6.7)
It will be clear that for real-valued signals the average frequency is identically
zero, since the WD is then an even function of w. For real signals the average
frequency as defined in (6.6) therefore provides no information. Let us there-

fore assume that f(¢) is complex-valued. Then f(#) can be written in the form:
S = v(g) g (6.8)

where v(f) and ¢(¢) are real functions. Using this representation of f we find
from (6.7)

Q1) = @' (). (6.9)

In (6.8) f(¢) is given by its envelope v(¢) and phase ¢(¢). Therefore we can
conclude from (6.9) that the average frequency of the WD at time ¢ is equal to
the derivative of the phase. In section 5 the analytic signal was discussed as a
particular example of a complex valued signal. If the analytic signal is written
in the form of (6.8) then the derivative of the phase is called the instantaneous
Jfrequency®-'?). From eq. (6.9) the remarkable fact follows that for these
signals the average frequency of the WD is equal to the instantaneous
frequency of the signal. But what is more, eq. (6.9) holds for any complex
valued signal, and therefore opens the possibility to extend the definition of
the instantaneous frequency to general complex valued signals.

Using (6.8) and (6.9) it follows that if f(¢) modulates a carrier m(¢) then the
instantaneous frequency of the modulated signal is given by

This is clear for a carrier of the form m(f) = e/“*, in which case it follows
immediately from the frequency-shift property (2.18) of the WD, but
according to (6.10) it holds for any function m(f). In particular if m(¢) is a real
function then ,,(f) = 0 and (6.10) tells that the average frequency does not
change. Recalling the definition of the PWD in section 4.3 it thus follows that
the average frequency of the PWD is equal to that of the WD independent of
the particular (real-valued) window that is chosen.
The local second-order moment with respect to w is defined by (see (6.4))

1
mi(t) = 5 f [ — QHOT Wi(t, w) dw/pi0). (6.11)
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Since, as remarked before, Wy is not always positive ms(¢) is not necessarily
positive either and hence cannot simply be interpreted as the variance of the
WD in the e direction for a given time £. With the aid of (6.7) and (A3) in the
appendix it follows that

d f'Q)
me(t) = —5Re — ——= 6.12
f() 2 e f(f) ( )
which in case f(#) has the form of (6.8) can be written as
mey = - 2O L& e 6.13
I % v T Tae MY (6.13)

and thus only depends on the envelope of the signal. It can be seen from (6.13)
that mg(f) = 0 if and only if

lv(f)] = Ae” (6.14)
for arbitrary 4 and yp.
Considering again the case of modulation it follows that

Myom(f) = ms(E) + Mu(). (6.15)

From this equation and egs (4.5) and (4.8) it can be derived that the second-
order moment mi(¢) of the PWD W} is equal to

mg(t) = me(t) + mw(0). (6.16)

As an example we may again consider the FM signal f(7) = A e*(@or+fsin o)
from example 3.7, for which a sketch of a part of the WD was shown in fig. 1.

For this signal the average frequency Q¢(¢) at time ¢ is equal to the instan-
taneous frequency:

Q¢(t) = wy + Pfwmcos wmt (6.17)

which has been indicated by the dashed line in fig. 1. The second-order
moment mg(?) for this signal is equal to zero for all ¢, which follows simply
from (6.14) with y = 0. This may violate our intuition because inspection of
fig. 1 shows us that for instants where Q¢(¢) # w, the WD has non-zero con-
tributions at frequencies that differ from £¢(¢). If ms(¢) could have been inter-
preted as the variance of the WD, it would certainly have had to be larger at
t = O0than at t = T;./2. (If instead of W; we had taken W;® as the kernel in the
definition of the moments, this would indeed have happened. In that case,
however, the average frequency would have been equal to w, for all ¢, since
the square of the WD is symmetrical around this value.)
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How then are we to interpret the result that m(¢) = 0, ¥ ¢? The clue is given
by eq. (6.16). This equation tells us that if the FM signal is windowed, then the
second-order moment of the PWD of the function is equal to that of the WD
of the window at # = 0. For example for the gaussian window of example (3.8)
we have m.,(0) = ¢. This means that the second-order moment of the PWD of
the FM signal is equal to «, ¥ . The effect of this windowing operation was
shown in fig. 2 to make the PWD non-negative for almost all . Then this
must necessarily mean that the PWD becomes concentrated around the mean
frequency (which according to (6.21) is not affected by the window) with a
spread equal to « for all time. [t is interesting to see from fig. 2 that the spread
of the PWD is indeed constant in time, and not larger for ¢ = 0 than for
t = T,,/2, as fig. 1 could have led us believe.

6.3.2. Global moments

Global moments of the WD are obtained by integration over the whole
plane. They are therefore constants, characterizing the WD in a global sense.
For the average of the WD we have

= 1
Pfizn//”G(f,w)dfdw—|f||2—||F|2- (6.18)

Py is the total energy of the signal f, which is positive for all f # 0, so that the
global average frequency can be given by

- 1 -
Qf = T f f w Wi(t, w) dt dew/ Py. (6.19)
T

Recognizing the fact that the integration with respect to ¢ can be performed
first it follows directly from (2.37) that

= 1
Q= ﬂf w| Flw)l* dw/|| F|*. (6.20)

Furthermore, using Parseval’s relation and eq. (6.7), this can be rewritten as

Q = [ GO FO1 A/ 112, (6.21)

The interpretation of these equations is that the global average frequency of
the WD is on the one hand equal to the average frequency of the spectrum of
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the signal and on the other hand to the weighted average of the instantaneous
frequency of the signal, where the instantaneous power of the signal is used as
the weighting function. The link between the latter two notions has been
recognized before by Franks '?), but it is interesting to see how naturally it
arises in the context of the WD.

The global second-order moment with respect to the frequency variable is
given by

my = % / / (w — Qf)z We(t, w) dew df/ﬁf (6.22)
l r _
_ hf (@ — 8 | Fw)l? da/ || FII* . 6.23)

From (6.23) it follows that /i is always non-negative and can be interpreted as
the spread of the spectrum of the signal. Similarly as is done in (6.21) for the
first-order moment, it is possible to relate /my with the local moments
according to

-]

S mIFOI2dr [ (2(0) — Q)? | f(D)]? de
IGIE * GE

Considering this form for the case of the FM signal of example (3.7) we find
that the first term is zero, and that the spread 77 of the spectrum is due only to
the variations of the instantaneous frequency.

my =

(6.24)

6.4. Moments of the WD in the time variable

6.4.1. Local moments

For a fixed frequency w the average of the WD with respect to the time is

Piw) = | Wit ) dt = | F@)I™. (6.25)

-0

The average time at this frequency is given by the first-order moment

THw) = [ ¢ Wilt, ) di/ Pr(e). (6.26)

— o

From (AS5) in the appendix it follows that

Ti(w) = —1 M—flmilF) (6.27
() = mF(w)_ dwn(cu. .27)
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Hence, if we write for F(w)
Flw) = A(w) el (6.28)
where A(w) and w(w) are real, we find for (6.27)
THw) = —y'(w). (6.29)

Thus the average time of the WD at frequency w is equal to the negative of the
derivative of the phase of the spectrum of the signal.

This relation leads to a peculiar result if f(¢) is taken to be the impulse
response of a linear time-invariant system. In that case F(w) is the trans-
mission function of this system and the negative of the derivative of the phase
is known as the group delay of the system ''). Hence (6.29) has the interpreta-
tion that the average time of the WD of the impulse response of a linear
system is equal to its group delay.

The local second-order moment with respect to ¢ is defined by

My(@) = [ (t - Tr@))® Wi(t, w) dt/ Py(e). (6.30)

-0

From (A6) in the appendix it follows that

d F'(w)
M, = —-}Re— ———=
/() 2 dw Flw)
which in case F(w) is of the form (6.28) can be rewritten as
d A'(w) d?
M, =—-F— —— = -1 In| A 31
1 (w) i ? 0 n| A(w)l (6.31)

and thus only depends on the amplitude of the spectrum of f.

6.4.2. Global moments

The global average I_)f of the WD is given by (6.18). We are now concerned
with the first-order global moment with respect to ¢, given by

_ 1 -
T = B / / t Wi(t, w) dt dw/ Py. (6.32)
m

-0 -0

Integrating first with respect to w yields

T

[t @O de/ 1 f112. (6.33)

Applying Parseval’s theorem to (6.33) we obtain
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_ 1 r
7 - ﬂ/ THw) | F@)|? do/|| FII2. (6.34)

Similarly as was the case with the global average frequency (6.33) and (6.34)
give two additional interpretations of the global average time. The first
indicates that f} is equal to the average time of the signal, the second that it is
the weighted average of the group delay with the energy density spectrum as
the weighting function.

As remarked before these concepts can also be applied to the impulse
response of a linear system. In particular if a causal system is considered it
follows directly from (6.33) that 7y > 0. Therefore, although the group delay
of a causal system is not necessarily positive, its weighted average (6.34) is
non-negative. Because the weighting function in this case is the square of the
modulus of the transmission function, the group delay has to be positive in the
major part of the passband of the system.

The global second-order moment is equal to

My = ;nf f(r T7)* Wy(t, w) dw dt/ Ps (6.35)
= f (t = TS (O e/ f1I2 (6.36)

—-co

which has clearly a positive value,
It is related to the local moments according to

1 1 _
= f Mi(w)| F(w)* dw  — [ (Ti(w) — T)* | F(w)* dw
27 21

Ms = =h
4 VIR I Fl|?

(6.37)
6.5. Inequalities for the global second-order moments of the WD

It is well known that a signal cannot simultaneously be arbitrarily concen-
trated in time and frequency. A signal concentrated in time must necessarily
have a wide spectrum and vice versa. Since the WD contains both the time
information and the frequency information of a signal, this fact must reflect
also on the WD, and in particular on the global second-order moments 77y and
Mjy. From Heisenberg’s uncertainty inequality ®-7)
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21 1 DAl = 11A17 (6.38)

the shift property (2.17) of the WD and the definition of /; and My we can
derive ®)

1 5 =
T* iy + — My =20 Mp)' =1 VT (6.39)

The inequality 72 /7y + (1/T?) Ms = 1 can be brought into the form

w00

[ [ (@ T+ /T W(t, w)dtdw = [ [ Wit, o) didw = 0, (6.40)

-0 - -0 —co

where use is made of the shift properties of the WD, eqs (2.17) and (2.18).
This means that the WD cannot be totally concentrated in an ellipse with axes
(T,1/T) in the (¢, ) plane.

In (6.40) we see that the WD is weighted by a weight function
w?T? + (*/T*. This weight function accentuates remote contributions of the
WD, so that (6.40) could still be satisfied by a WD that is extremely
concentrated at the origin, but has a very small contribution for large values
of 7 or w. That such a concentration of the WD is not possible either follows
from the inequality derived in ref. 5

1
| — e~/ T2+a2/ )] . twydidw = ———— f Wil(t, drd
/f[ ) Wil @)dtdo = =7or AL

oo lo lw (6.41)

where the WD is weighted with a function that saturates to 1 for large values of ¢
orw.
Several different inequalities concerning the WD can be found in ref. 5.

7. Wigner distribution for band-limited functions

If the signals f and g are band-limited to we, the spectra of both signals
vanish outside the frequency band |w| < w.

Flw)=Gw) =0, |wl >w.. (7.1)

From section 2.4.2 we know, that in this case the WD vanishes also outside of
thisinterval:

Wrelt, ) =0, |w|> .. (7.2)
To get an expression for the WD inside the interval, we start with eq. (2.21):

Wr,0(0,0) = 2/, HAg). (7.3)
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Both signals f and g can be represented by their samples taken at #; = kT

SlI’l‘."I:(I/T k) n
S0 —Z Sk ——— Y for T< o (7.4)

k=—c0

and a similar interpolation formula holds also for g. Because of the following
orthogonality relation'!)

fsmﬂ:(t/T—n) sinw (¢/T — k)
n /T —n n@T -k

df = Takn (75)

the inner product in (7.3) can be written as

Wis0,0) = 2T 5 f(kT)g*(—kT) for T< - (7.6)

k=- We

With eq. (2.20) this result can now be used to evaluate the WD
Weelt, ) = W .o il 5, %l 60, 0). (7.7)

It should be observed, however, that the signals &#; A4 f and &, A _.g
are band-limited to the larger bandwidth w. + |w|. For the application
of eq. (7.6) it is therefore required to use the smaller sampling period
T' = n/(w: + |wl|). We have

(Lol of) (1) = e T f(1 + 1), (7.8)

where ¢ is to be considered as a fixed parameter and t is the running variable.
As a result we get from (7.7)

IKVf.g(t: CU)

Z e—jwte~j<ukT'f(t - kT') ejwz e—jwk‘f' g*(t _ kT’)

k=-c

T gkl £ & BT~ &

k=—c0

for T' = n/(we + |wl). (7.9

In principle this means that for different values of w different sampling rates
of fand g have to be used in (7.9). However, we know from (7.2) that w can
be restricted to the interval |w| = w. and consequently (7.9) can be used for
all |w| = w:if T' = n/2w. is chosen. If fand g are sampled with at least twice
their Nyquist rate, (7.9) represents for |w| < w,. and all ¢ the WD of f and g.
From (7.9) it is seen that for w fixed the time dependence of the WD is con-
tained in the products f(r + &T") g*(t — kT"). Since f and g are band-limited
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to w. these products are band-limited to 2cw.. Therefore it can be concluded
that Wy (1, w) for fixed w considered as a function of # is band-limited to 2w,
and may thus be sampled with 7" < n/2w. without causing any aliasing
effects. Combining this fact with the remarks following eq. (7.9), we can
choose

Tt = T 7
2.

and obtain for the time samples of W} (1, w)

WisnT, @) = 2T Y 98T f[(n + KT] g*{(n — k) 71,

k=—co

for Tszi. (7.10)

c

From these samples the WD can be recovered by using the interpolation
formula as in (7.4):

sinm(t/T — n)

We,ell, w) = Z Wee(nT, ) ———— r/T — n)

]

for T=

(7.11)

(4

Remarks

It is not at all surprising that the WD of band-limited signals can be
expressed in terms of the samples of these signals. In fact it is possible to do so
even if we take the samples at any rate that is larger than the Nyquist rate.
However, the corresponding relations will be much more complicated than
(7.9) and (7.10). Sampling the WD in any case requires a rate larger than twice
the Nyquist rate of the signal. The surprising thing is that if the signals are also
sampled at this rate, then a simple relation like (7.10) results, which contains
all the information that is contained in the WD of f and g. Relation (7.10) is
very important, and will form the basis for the definition of a WD for discrete-
time signals, which will be discussed in part II of this paper.

8. Conclusions

The Wigner distribution for continuous time signals and a number of its
properties have been discussed. This bilinear signal transformation gives a
mixed time-frequency characterization of the corresponding signal. It was
shown to have some marked advantages over other time-frequency charac-

Philips Journal of Research  Vol,35 No.3 1980 247



T. A. C. M. Claasen and W. F. G. Mecklenbriuker

terizations. Noteworthy in this respect is that the WD of a time-limited signal
is restricted to the same time interval, and similarly the WD of a band-limited
signal has the same band limitation. Furthermore, integration of the WD over
the frequency variable at a certain time yields the instantaneous power of the
signal, and integration over the time at a certain frequency yields the energy
density spectrum at this frequency.

The average frequency at a certain time that could be defined for the WD
was shown to coincide with the well-known concept of instantaneous
frequency. The latter, however, is usually only defined for harmonic signals
with (slowly) varying frequency. Similarly the average time at a certain
frequency of the WD was defined and shown to be equal to the group delay of
the signal, and this too is normally only introduced for linear systems. The
definition of these notions can thus be extended to more general signals by
making use of the WD.

The WD of a harmonic signal with constant frequency was shown to have a
contribution at this frequency only. More remarkable, however, is that the
WD of a chirp signal, i.e. a signal with linearly increasing frequency, also
gives a contribution only at the instantaneous frequency.

All these properties indicate the suitability of the WD for time-frequency
analysis of a signal. Unfortunately the WD, as it is, is not very amenable for a
hardware or software implementation. Its determination requires the signal to
be known for all time, and requires the computation of a Fourier integral for
every frequency of interest. The problems associated with the infinite time
interval can be solved by using windows. This led to the definition of the
pseudo-Wigner distribution which was shown to be a smoothed version of the
WD with respect to the frequency variable.

The necessity of evaluating the Fourier integrals hints at a discretization of
the signal in the time domain, so that DFT and in particular FFT techniques
and the like will become applicable.

The conversion of the concept of the Wigner distribution to discrete-time
signals is not trivial, and forms the subject of part II of this paper.

Philips Research Laboratories Eindhoven, March 1980

Appendix

In this appendix several relations for the WD are given. Their proofs can be
found in ref. 7, or are easily derived from the properties of the WD.
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1
2—/ Wie(t, w) dew = f(1) g*%(0) (A1)
Y
1 : .
ﬂf w Wrelt, ) dow = F (D) (1) g*(t) + f () (D g)* ()] (A2)

1
ﬂf @’ Wr,g(t, ) dw =+ (D f) (1) g*(1)
Yo (A3)
+291) ()@ g* (1) + f (1) (Pe)* (]

? Wre(t, w) dt = F(w) G*(w) (Ad)
|t Wre(t, ) df = —3(DF) (w) G*(w) + F) (ZG)* (w)]  (AI)

[ Wrelt, ) dt = {{(9*F) (w) GH(w)

(A6)
+ 2D F) () (DG)* (w) + Flw) (P G)* (w)]
1
zf f Wrelt, w) ditdw = (f, g) (A7)
T
. BB
5 / f t Wy olt, w)ydtdo = (2F, g) (AB)
ilE f f w Wy g1, w) dt dw = (Df, g) (A9)
Zi f / 2 Wi olt, w) dt dw = (2, 2g) (A10)
T
5‘7.{ f / o Wy, @) dt do = (D, De). (A11)

-0 —c0
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