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In this second part of the paper the Wigner distribution is adapted to the
case of discrete-time signals. It is shown that most of the properties of this
time-frequency signal representation carry over directly to the discrete-time
case, but some others cause problems. These problems are associated with
the fact that in general the Wigner distribution of a discrete-time signal
contains aliasing contributions. It is indicated that these aliasing com-
ponents will not be present if the signal is either oversampled by a factor of
at least two, or is analytic.
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case of discrete-time signals. It is shown that most of the properties of this
time-frequency signal representation carry over directly to the discrete-time
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contains aliasing contributions. It is indicated that these aliasing com-
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1. Introduction

In part 1 of this paper ') the Wigner distribution (WD) of continuous-time
signals was discussed, and it was shown that this function has some very
interesting properties. The determination of this distribution function
requires, like the spectrum, an integral of the Fourier type to be evaluated.
Ideally this requires the signal to be known for all time, but in practice
windowing techniques can be used to relax this requirement. The effects of
windowing on the WD were discussed in part I.

In general two different approaches can be distinguished to compute these
Fourier-type integrals. The first is by means of analogue signal processing,
and recently optical signal processing methods have been proposed for deter-
mining suitable approximations to the WD ?). The second approach is based
on digital signal processing. This opens the way to apply computationally
efficient methods for evaluating the discrete Fourier transform, but requires
the concept of the Wigner distribution to be transferred to the case of discrete-
time signals. This is the aim of this part of the paper.

As can be expected, the WD for discrete-time signals shows much similarity
with that for continuous-time signals, but in some respects it has characteristic
differences.

To emphasize the similarities and point out the differences we will try to
follow as closely as possible the same lines as in part 1, and give comments
only on those results that differ from that of the continuous-time counterpart.
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Also the numbering of the equations is made such that corresponding
equations have the same number. This has the consequence that sometimes
equation numbers are not successive if equations have been deleted, and that
equations that do not occur in part I have a special numbering. If reference is
made to an equation in part I the equation is given the prefix I.

All sections, except sec. 7, have the same topic and heading as in part I.
Section 7, which in part I deals with the WD of band-limited signals, now
deals with the WD of finite duration sequences. Equations in this section do
not correspond in general with an equation of part I.

2. The Wigner distribution for discrete-time signals

2.1 Preliminaries

In this paper we consider in general complex valued, discrete-time signals
f(n), feC, neZ for which the (Fourier) spectrum is defined by ?)

FO) = (Faf)® = Y fmye 2.1.2)

n=—0o0

The inverse transform is given by

n

_ 1 :
fn) = (FF)(n) = o / F(8) e’ de. (2.1.b)
Inner products are defined for the signals and spectra by
o= Y fem (2.2.2)
and 1 x
(F, G) = 211/ F(&)YG*(8)do (2.2.h)

-7
respectively. Norms and Parseval’s relation are then the same as in eqgs (1.2.3)
and (I.2.4) respectively.
The following operators will be used.
The shift operator for the signals

(ALY =fn—-k), keZ (2.5.a)
and for the spectrum
(FF)(0) = F(8 - &), ¢eR, (2.5.b)

(complex) modulation in the time domain
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(A f) () = f(n) e teR (2.6.a)
and in the frequency domain -
(A, F)(8) = F(®) e’ nez, (2.6.b)

differentiation of the spectrum

1
(DF) (0) = J.—F’(f?), 2.7)
multiplication by the running variable
(2f) (n) = nf(n), (2.8)
time reversal
(RSf) () = f(—n). (2.9)

There are several different ways to link analogue and digital signals and
systems, and hence a variety of ways to define a discrete-time version of the
Wigner distribution. What one would like with such a definition is

(1) to obtain a simple concept;

(2) to retain as many as possible of the properties of the WD of continuous-
time signals;

(3) to find a simple relation between the discrete-time and continuous-time
WD’s for discrete-time signals that are obtained by sampling of analogue
signals.

The definition which, in our opinion, best matches these requirements is the

one suggested by eq. (1.7.10).

2.2. Definition of the Wigner distribution

The cross-Wigner distribution of two discrete-time signals f(#) and g(n) is
defined by

Wien, 0 =2 ) e 0rn 4 kyg=(n — k). (2.10)

k=—o0

The auto-Wigner distribution of a signal is then given by

Wi(n, 0) = Wrr(n, 0) = 2 i e L+ k) fEn — k). (2.11)

k=—co

Both functions will be called a Wigner distribution (WD). Aiming at obtaining
a relation similar to (1.2.13) the WD for the spectra must be defined by
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m

Wr,c(8, n)= % f e @ + &) G — &) dE (2.12)

i ¢

so that
We,c(0, n) = Wy g(n, 6). (2.13)
2.3. Properties of the Wigner distribution
For the WD as defined in (2.10) the following properties hold.

2.3.0. Periodicity

The WD is a function of the discrete variable n and the continuous variable
8. With respect to the latter variable the function is periodic with period =

Weo(n, 8) = Wrg(n, 8 + n), Y n, 8. (b.1)

The period r is distinct from the period 2n that all spectra of discrete-time
signals have. This discrepancy could have been avoided by deleting the factor
2 in the exponent in eq. (2.10), but this has the disadvantage that frequency
components in f at # will occur at 28 in the WD.

2.3.1. Symmetry

Wte(n, 6) = ngf (n, 0) (2.14)
W (n, 0) = W (n, 0) is real, (2.15)
Wi(n, 8) = Wp=(n, —6). (2.16)
2.3.2. Time shift
Wars, she (1 0) = Wig(n = k, 6). (2.17)
2.3.3. Modulation
Wottf, Alg(n, 0) = Wrg(n, 6 — &). (2.18)

2.3.4. Inner product
From the definition of the WD and that of the inner product it follows that

Wi e(0,0) = 2(/, Rg) (2.21)
which, combined with (2.17) and (2.18), yields
Wre(n, 0) = 205 M_ofs R S A_p 8). (2.22)

2.3.5. Sum formula

Wrirer, freea(ts 0) = Wi g,(n, 0) + Wiy g,(n, 0) + Wryei(n, 0) + W, (1, 0)
(2.23)
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and in particular

Wiig(n, 0) = Wi(n, 6) + Wi(n, 0) + 2Re W, (n, 0). (2.24)

2.3.6. Multiplication by n or ¢
2n Wie(n, 0) = War,e (1, 0) + Wrag (n, 6). (2.25)

The relation corresponding with (I.2.26), i.e. the multiplication by the
frequency variable, cannot simply be copied. Because the WD is a periodic
function with period m, the multiplication of the WD by a function of @ can
only be expressed in terms of WD’s if this function is periodic with this period
as well. The most elementary such function is e/, yielding

e Wig(n, 0) = Wz, 5, 4(n, 0). (2.26)

2.3.7. Inverse transform in the time

The WD evaluated at frequency 6/2 can be considered as the Fourier
transform of the sequence 2f(n + k) g*(n — k) with fixed n. Hence, from the
inverse transform relation (2.1.b) we find

L4
1 i
5= ] e W o(n, 0/2)d0 = 2.1 (n + k) g*(n — k).

This can be written in the form

n/2

1 . £
el el —n)0 W g(”l > e y ,9) do = f(n) g*%(ny), 2.27)

2n ’
-n/2

where (1, + ny)/2 must be an integer.
Three special cases are:
(1) n; = n, = n, yielding

n/2

1
B / W,g(n, 8) d6 = f(n) g*(n) (2.28)
-n/2

and in particular
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2

n/
1
Tf Wi(n, 0)do = | f(m)|*. (2.29)
T
=R/2

This shows that the integral over one period of the WD in its frequency
variable is equal to the instantaneous signal power.

(ii) n, = 2n, ny, = 0 gives

n/2
1

I e/ W o (n, 6) d6 = £ (2n) g%(0). (2.30a)

-n/2
(iii) n, =2n—1, n, = 1 gives

n/2
1

== g2 -D0 g (n, 0)d8 = F2n — 1) g*(1). (2.30b)

-n/2

Recovery of the signals from the WD up to constant factors is thus possible,
but requires a different procedure for the even and odd numbered samples.

2.3.8.
Summation of eq. (2.28) over n yields
@ /2
% f W,g(n, 0)do = (f, &) (2.31)

n=—0 -gx/2

which has the same special case as (1.2.33).

2.3.9. Recovery of the spectrum

Using the fact that the WD of the signals is equal to that of the cor-
responding spectra (eq. (2.13)) it follows from (2.12) that the WD can be con-
sidered as the inverse Fourier transform of F(8 + &) G*(0 — &) considered as a
function of & for fixed 0, and evaluated at 2n. This means that only the even
numbered samples of this function are available, from which the function

F(@+ & G*(0— &) cannot simply be recovered in general. Nevertheless it
holds that

i e W (1, 0) = FO+OG*O - O+ FO+E+m)G*@ — &+ 7)

n=—00

(2.34)
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which means that an aliased version can be reobtained from the WD. Equa-
tion (2.34) can be rewritten as

Y, OB [0, (6 + 6,)/2] = F(6) G*(6,) + F(6, + 1) G*(8, + ).

n=—oo

(2.35)

Again three special cases are of importance.

(i) 6, = 0, = 9, yielding

Y Wialn, ) = F(6) G*(6) + F(0 + 1) G*(0 + m) (2.36)

n=—oQ

and in particular

w
Y. Win, 0) = |F@)|* + |F(6 + m)|2. 2.37)
ne—co
The aliasing term in (2.37) is necessary to make both sides of the equation
periodic with period n. This term will cause some problems later on in various
equations. There are two important situations, however, where the aliasing
does not cause any problems, because in these situations the spectrum F(6)
occupies only an interval of length © and is zero in the remaining part of one
period of the spectrum. The first case is that of an “oversampled” signal, i.e.
a signal with a band-limitation to less than 7t/2. Such a signal can be obtained
cither from an analogue signal by sampling it with a sampling frequency that
is larger than twice the Nyquist rate or by interpolation of a discrete signal by
a factor 2 (ref. 4). It should be remarked that the definition of the WD was
inspired by a formula that was derived for this case (eq. (I.7.10)) and it there-
fore need not surprise us that for such a signal the WD behaves in the same
way as that of an analogue signal.

A second situation where only one of the terms on the right hand side in eq.
(2.37) differs from zero arises if we consider analytic signals, the spectrum of
which vanishes for negative values of 8 over the period of the spectrum. The
WD of these signals will be discussed in sec. 5.

(i) 6, = 4, 6, =0, which gives

i " W o(n, 6/2) = F(0) G*(0) + F(0 + m) G*(n).  (2.38a)

n=—00
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(iii) 6, = 8 + m, B, = 0 which gives

jnfl o 1yn o+m — * #
e (=1)" Wl n, 5 = F(@ + ©) G*(0) + F(8) G*(m).
=00 (2.38b)

If |G(0)| # | G(m)| these two equations permit the recovery of the spectrum
of f. For interpolated or analytic signals only one of the two equations suffices
for recovering the spectrum.

2.3.10.

Integration of (2.36) with respect to @ yields

/2 e n

L / Z W g(n, 6)do = ——L f F(0) G*0)do = (F, G) (2.39)
2n 27

/2 n=—o -

which is the same result as (2.31).

2.3.11. Moyal’s formula

The discrete-time analogon of Moyal’s formula is somewhat more com-
plicated than the original version (eq. (1.2.40)). It reads

n2  ®

1 .
o f E Wy g, (1, 6) Wi gy, 6) dO
71

-n/2 n=—ow
= (S, [2) (&1, 82)* + (S1, Mr o) (81, M 82)* (2.40a)
= (F, F2) (G, Go)* + (Fl! %Fz) (G, 'g;t G)*. (2-40b)

The operation #x in (2.40a) is defined by (2.6) and changes the sign of the
odd numbered samples, which is equivalent to a shift of the spectrum over r,
expressed by the operation % in (2.40b).

2.4. Effects of time- and band-limitations on the WD

2.4.1. Time-limited signals

If both fand g are time-limited (finite duration) signals, i.e.

Jm)=gmn) =0, n<n, or n>n (2.43)
then

o 0%
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Ws e, 8) =0, n<ng, Or N >HnHp. (2.44)

2.4,2, Band-limited signals

In the definition of the WD no restriction on the spectra of the signals was
assumed, but discrete-time signals have a spectrum that is periodic with period
2n. On the other hand, the WD was found to be periodic with period 7, and as
discussed in the previous subsection this causes aliasing to occur, i.e.
frequency components that are 7t apart have the same influence on the WD. In
fact we have

Wra(n, 0) = Wottys, ttng (1, 6). (b.2)

If, however, the signal spectrum is nonzero only over an interval of length less
than rt, then aliasing will not occur. Thus if there exist 8, and 8, such that

F@) =G =0, O <0 <0 (2.45)

and
Oy — a>m (b.3)

then
We,e(n, 8) = 0, 0. <8< — 7. (2.46)

This is illustrated in fig. 1, where the shaded areas indicate the frequency
regions where the corresponding functions differ from zero.

The two cases that we discussed before, i.e. oversampled signals and
analytic signals, have 0, = n/2, 6, = 3n/2 and 6, = 7, 8, = 2x, respectively,
and hence have 8, — 6, = n so that generally the WD of these signals has no
gap in the frequency domain, but no aliasing either,

F(8). G(a
V77 . _ N\
0 8, T & 27
—_— g
We o (n,8)
5’ Bb T i + T Bb 27;
Fig. 1. Hlustration of the areas where the WD has zero contributions in the frequency direction, if

the spectra have no contributions in the range 8, < 6 < 8j,.
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2.5. The WD of sampled analogue signals

If £ (n) and g(#) are obtained by sampling the analogue signals f,(¢) and g.(¢)
respectively with a sampling period T, then the WD of fand g can be related to
that of f, and g, according to

[+o]

1 8+ km
Wr,g(n, 0) = T Wraea| BT, T . (b.4)

k=—c0

This formula resembles very much the relation between the input and output
spectra of a uniform sampler (eq. (1.28) in ref. 3), but differs in one important
respect, namely that the folding (aliasing) in the frequency occurs around n/ T
rather than 2n/7. This means that to avoid aliasing in the WD the signals
must be sampled at twice the Nyquist rate at least. For signals that are
sampled at this rate eq. (b.4) reduces to

1 b
Wre(n, T) = T Wy ean T, w), lw]| < prg (b.5)
3. Examples

Most of the examples given in part I carry over rather straightforwardly to
the discrete-time case. Therefore we will discuss only two simple examples
here

£
r-f I @3.1)
n) = .
0 [n| = N,
for which the WD is given by
—_— B i
2s1n[6'(]\;n6!n|+2)] nl <N
Wy (n, 0) = 6:2)
0 ln| = N
3.2. .
fln) = A&,
i.e. the discrete-time version of a chirp signal. This signal has the WD
Wi(n, 0) = |A|*2r ) 6(0 — an — km) (3.6)
k

which has been plotted in fig. 2 for the case that ¢ is non-rational. In this
figure each dot represents a J-function. This chirp signal has only one
frequency component lying at nemod 7 in a period of its WD.
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Fig. 2. Wigner distribution of a discrete-time chirp signal.

4. Effects of linear operations on the WD

4.1. Linear filtering

In this section the effect of filtering of the signals f and g on their WD will
be described. In general, i.e. if neither fand g nor the filters are band-limited
to m/2, a relation similar to (I.4.2) cannot be obtained. If we consider both the
outputs of the original filters, i.e.

Jelm) = (e () = X f (1 = K) (k) 4.1.a)
8e(n) = (g *hg) (1) = X 801 — B) heth) (4.1.b)

and the outputs of two complementary filters, obtained by changing the sign
of the odd numbered samples of the impulse responses A and A, i.e.

fo(n) = (f xhf) (n) = ;f(n — k) (= DF he(k) (d.1.a)
gin) = (g = hg) (n) = ;g(n — k) (—1)* hg(k) (d.1.b)

we can derive that
Wie,ge(n, 8) + Wpo,g0(n, 6) = ; Wielk, 0) Whpn(n — k, 6).  (4.2)

From (d.l.a) and (d.1.b) it follows that the spectra of the output of the
complementary filters are given by

2(0) = F(0) He(6 + m) (d.2.2)
GL(6) = G(6) Hy(6 + 7). (d.2.b)
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Hence if fand g and also /s and A, are band-limited to /2 or less, the outputs
of these complementary filters are zero, in which case eq. (4.2) gets the simpler
form

Wre,ge(n, 0) = 3 Wy gk, 6) Wapn,(n — k, 6). (4.2)
k

4.2. Multiplication in the time domain

If fand g modulate the carriers my and m, respectively we get
Jm(n) = f(n)me(n) (4.3.2)
gm(n) = g(n) mg(n). (4.3.b)
The WD of the modulated signals is given by

n/2

1
W, gm(ht, 0) = . f We(n, &) Wing,my(n, 0 — &) d&. (4.4)
-n/2

4.3. Windowing in the time domain, the pseudo-Wigner distribution

For computational purposes windowing has to be applied in the discrete-
time case as well in order to evaluate the WD. Therefore sliding windows are
applied to both signals fand g, yielding

Ja) = FW) Fwr(v) = fF (V) we(v — n) (4.5.a)
g (V) = g(vV) S we(v) = g(v) we(v — n). (4.5.b)

The corresponding WD according to (4.4) is equal to

n/2

1
Werenlv, 6) = e / Wre(v, &) Wopw (v — n, 0 — £)dE.  (4.6)
-n/2

Again considering this WD only at the instant v = n the pseudo-Wigner
distribution for discrete-time signals is obtained

W,o(n, 6) = Wi, (v, 6)

V="n
/2

1
o f Weg(, &) Wy, (0, 8 — &) dE. 4.7)
b

-m/2
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5. The Wigner distribution for analytic signals

A discrete-time analytic signal is of the form ?)
Jaln) = f(n) + ] (), (5.1)

where f(n) is real and f(n) is the discrete Hilbert transform of f, defined by

S _ sinzn(m—f?)/z_
Jn) = (FHaf)(n) Z S (m) n(m — n)/2 (5.2)

mFER

This means that the spectrum of the analytic signal is given by

2F(0) 0<f6<n
Fa(0) = F(®) =0 (5.3)
0 -1 <8<0.

Equation (5.2) describes the ideal case, but the corresponding filter is not
realizable. Realizable approximations are described in the literature, however,
and approximations of analytic signals are therefore easily obtainable by
means of digital signal processing *¢). Here we will restrict the discussion to
the ideal case in which the analytic signal is related to the original signal by a
linear filtering with the transmission function

2 0<é8<nm
H() = 1 =0 (e.1)
0 - <0<0.

Apart from the usefulness of the analytic signal for describing single-side-
band modulation systems and in other system and signal analysis applications,
the analytic signal plays an important role.in the framework of the WD. As
was demonstrated already in sec. 2, the spectral occupancy of the analytic
signal as given by (5.3), taking nonzero values only over an interval of length
7, assures that the WD of the analytic signal does not contain aliasing com-
ponents.

We can now make a comparison between the two types of signals that have
a WD without aliasing, i.e. the interpolated signal and the analytic signal.
Both can be obtained from the original signal by a linear filtering operation.
This is shown in fig. 3, where the boxes with an arrow indicate sampling rate
increase and decrease by a factor of 2 (ref. 7). The interpolated signal is real if
the original signal is real, but has the double rate, while the analytic signal is
complex but has the same rate as the original signal. The number of real
valued samples per second is therefore the same for both signals. Also, in
general, the complexity of the low-pass filtering to obtain the interpolated
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A~
real interpolated signal Fiffl

rate 2/t filn) ,_% g_(

: = I

low-pass
filter

real original signal

rate 1fr fin) Z§—

Y - T

Hilbert
transform lz;e

F
complex analytic signal aft)
rate Tj1 faln/ .

-7 aC

Fig. 3. Relations between a discrete-time signal, the corresponding interpolated version and the
corresponding analytic signal.

signal is quite comparable to that of the Hilbert transformer if the same
attenuation in the stopband is required.

6. Global and local moments of the WD

6.1. General remarks

In this section local and global central moments of the WD for discrete-time
signals are discussed. These moments allow a coarse characterization of the
WD without the need to evaluate it. For discrete-time signals, however, we are
confronted with the fact that the WD has a different behaviour with respect to
its time and frequency variable, i.e. its time variable is discrete, while it'is a
periodic function of the continuous frequency variable. This will require some
special care in defining the different moments.
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6.2. Central moments
6.2.1. Central moments of a periodic function

Let K(6) be a periodic function with period © and a positive mean given by
n/2

1 / K(6)dd = M, > 0. (6.1.a)
. -n/2
In part I the moments were obtained by the minimization of a weighted
integral of the function K. Pursuing the same approach, we have to search for
an expression that satisfies the following conditions.
(1) Weighting functions that it contains should be periodic with period n.
(2y It should have a unique minimum.
(3) For positive valued functions K the value of the minimum should be
smaller if K(#) is more concentrated.
From a number of candidates for such an expression that satisfy these criteria
we will choose the following one

/2
[ sin® (0 — 6,) K(0) @
1) = == . (6.2.2)
[ cost (8 — 6,) K(0) df
-n/2

This choice is rather arbitrary and a justification for it can only be found in
the results that are obtained and that satisfy our expectations reasonably well.
However, replacing in the denominator cos®(@ — 6,) by 1 does not have a
dramatic influence on the results. In fact the position of the minimum will not
be changed at all by this replacement.

The expression (6.22a) has a unique minimum in the interval under the con-
dition (6.1.a) at 6, = g, where

n/2

Ok = yarg [ f e K (9) d@] (6.3a)
-n/2
and the value of the minimum is given by
n/2
M, - 1 % f el K(0) d9!
1(6x) = - (6.4a)
M, + Hf eszK(B)dB‘
-n/2
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From (6.1a) and (6.4a) it follows that
—1<I(fx) =1 (f.1)

and if, moreover, K(#) is positive then

n/2
1 )
‘— / eﬂ”K(f))de‘ < M, (f.2)
b
-m/2
so that
0= I(fg) = 1. (£.3)

The lower bound is only attained if K(8) is fully concentrated in the point O,
ie. K(6) = 8(0—6x), |0] =n/2.

6.2.2. Central moments for discrete-time functions

Let k(n) be a function of the discrete variable ne Z with
Y k(n) = my > 0. (6.1b)
In this case the central moments are found by minimization of the expression

i(ne) = Y. (n — no) k(n) / mo. (6.2b)

In principle it is possible to restrict n, to Z , but this is not necessary and it is
easily seen that the location of the minimum is then not unique. Minimizing
(6.2b) for ny e R yields a minimum at ny = nx, With

ne =), nkn) / m (6.3b)
and the minimum equals

i(ng) =Y. (n — nk)zk(n)/ Wiy = ). 1 k(n)/ My — hE. (6.4b)

6.3. Moments of the WD in the frequency variable

6.3.1. Local moments

For a fixed time n the WD is a periodic function of @ with period =, for
which we know from (2.29) that

n/2

1
= f Wi(n, 6)d6 = |f(n)|? = pr(n) = 0. (6.5)

-n/2
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Hence, for values of n for which f(n) # 0 we can define the average frequency
O¢(n) of the WD at time n as the first-order moment with respect to the
frequency of the WD. From (6.3a) we find

n/2

Bp(n) = barg [ [ e Wi, B)de]. (6.6)
-n/2
From (A2) in the appendix it follows that
Or(n) = rarg (f(n + 1) f*(n - 1)). (6.7)

For real valued signals this value is zero or /2 and contains therefore no in-
formation. Considering complex valued signals f(n) can be written in the form

f(n) = v(n) e, (6.8)

where v(n) and @(n) are real functions. Using this representation of f we find
from (6.7)

8 (n) = [q’(" *+ 1) - v = 1)] mod 7 (6.9)

where [-]modn means that the expression must be evaluated modulo .
(Arbitrarily it has been assumed that 6 takes values in the interval (0, i), but
any other interval of length m could have been taken).

In the continuous-time case the counterpart of eq. (6.9) has the interpreta-
tion that the average frequency of the WD is equal to the instantaneous
frequency of the signal. For discrete-time signals we are faced with the
problem that a notion like the instantaneous frequency is not defined. Both
the forward difference

(Arp)(n) = [p(n + 1) — @(n)] mod 2n (f.4)
and the backward difference
(b @) (n) = [p(n) — @(n — 1)] mod 2% (£.5)

are candidates for such a definition, but suffer from the fact that they are
asymmetrical. (If for example ¢(n) = cos né,, then one would like the instan-
taneous frequency to be zero in a maximum of ¢(r) like n = 0).

Equation (6.9) yields the result that the average frequency of the WD is the
arithmetic mean of the forward and backward differences, taken modulo n
because the period of the WD is equal to nn.Thus

MMZF&mmwummmqmmW e

2
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For arbitrary complex valued signals the ‘“instantaneous frequency’ can
assume values over an interval of length 2n. Taking the average modulo 1 in
(f.6) reflects the inability of the WD to discriminate between frequencies in the
interval (0, ) and those in the interval (m,2n) because of the aliasing that
occurs (see sec. 2). If, however, the signal f is either band-limited to n/2 by
interpolation or is an analytic signal, then the instantaneous frequency is also
constrained to an interval of length 7; see table I. In both cases the sym-
metrical difference

pn+ 1) —on - 1)
2

is a suitable candidate for the instantaneous frequency. Since this frequency
must lie in the intervals indicated in table I, a restriction modulo 1t instead of
modulo 27 is possible. From equations (f.6) and (f.7) it then follows that the
average frequency of the WD is again equal to the instantaneous frequency of
the signal.

s ) (n) = I: ] mod 2n {7

TABLE I

Intervals of the instantaneous frequency for various complex valued types
of signals

interval of instantaneous
S (n) f
requency
arbitrary (—-m, m
interpolated (—m/2, n/2)
analytic 0, m)

The local second-order moment with respect to @ is

n/2

1 i20
pr(n) — p e We(n, 0) do
-n/2
/2

1 §20 w7 i
pr(n) + o e'™ We(n, 6) d6

-m/2

me(n) = (6.11)
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This can be expressed in terms of the signal according to

lfmI* =1/ + D f*@n - D)
LS + 1+ D f*(n = 1

6.3.2. Global moments

mg(n) = (6.12)

The global average of the WD is equal to

n/2
- 1
Pf=g/- Z We(n, 8)d6 = || f11* = || Fl|* (6.18)

-n/2 n

The global average frequency is given by

o n/2 ;
b = Farg [ Y e Wn, 6) da] (6.19)
-n/2 h
o
= barg [ i s IF(H)IZdH:I, (6.20)

where use is made of (2.37) and the periodicity of ¢/ to derive the last
equation. Using Parseval’s relation yields

O = garg [y f(n + 1) f*(n — 1]
= Farg [y, !V OHDSC =D | £n 4+ 1) 2 - 1]
=farg [Y " | f(n + 1) f*(n - DI, (6.21)

where the latter expression follows from (6.7). Therefore the global average
frequency of the WD is on the one hand equal to the average frequency of
the spectrum of f (eq. (6.20)) and on the other is the weighted average of
the instantaneous frequency, where | f(n + 1) f*(n — 1)| is the weighting
function.

The global second-order moment is given by

n/2
_ 1 .
P — */ E 2% Wi (n, H)dﬁ‘
27

= —n/2 n
fitg = ”m (6.22)
Pr + Ll el Win, 6) do
f i A,
—-m/2 n
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which can be written in the form

J sin? (8 - )| F(9))* do
g = ; (6.23)
[ cos* (8 — 6) | F(8)|*de

6.4. Moments of the WD in the time variable

6.4.1. Local moments

For a fixed frequency 6 the average of the WD over the time is

PO) =Y Win, 0) = | FO)I* + | F(8 + m)|2 = 0. (6.25)

The average time is given by the first-order moment

THO) = 3 n Win, 0) / Py(6). (6.26)

It is rather straightforward to derive an expression in which 7;(8) is expressed
in terms of the spectrum of the signal. For the general case this expression is
somewhat complicated and not easy to interpret. This is due to the presence of
aliasing in the WD of arbitrary signals. If the discussion is restricted to signals
with a spectrum that occupies an interval of length x only, then the aliasing
terms vanish. Therefore considering interpolated or analytic signals the
expression simplifies to
T:(6 I F'O) I ¢ In F (0 27
F(0) = mF(g)— mdgn(), (6.27)
which holds for #e(—n/2,n/2) in the case of interpolated signals and
fe (0, n) for analytic signals.
Writing F(0) in terms of amplitude and phase

F(0) = A(0) e!"® (6.28)
this yields
IO) = —yw'(0) (6.29)

with the same restriction for @ as in (6.27).

For these signals we obtain again the result that the average time of the WD
is equal to the group delay of the signal.

The second-order moment is given by

My(0) =} [n — THOF Wi(n, 6) / Px(0). (6.30)
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For interpolated or analytic signals this can be brought into the form

4 Fe)
40 FO)

My(®) = - 7R

2

d
N S,
2 g In |A(0)] . (6.31)

6.4.2. Global moments
The global average time of the WD is given by

n/2
= 1 =
T = E o / n W(n, 0)d0 / Py (6.32)
T

-n/2

=S nlfmi*/I1fI1% (6.33)

For interpolated or analytic signals this can be written as

_ 1 )
7 = Ef () | F(6)*de/ || Fl|? (6.34)

which means that f} is equal to the weighted average of the group delay of the
signal.
The global second-order moment with respect to the time is equal to

n/2
3 1 = g
My = z = f (n — Tp)* Wi(n, 6)d6/ Py (6.33)

-/2

=z (n— I/ 1LfI1E = 0. (6.36)

6.5. Inequality for the global second-order moments

The global second-order moments of the WD of a continuous-time signal
satisfy a Heisenberg type of uncertainty relation, given by (1.6.39). Such an
inequality generally does not hold for the moments of the WD of discrete-time
signals. This can simply be demonstrated by the example f(n) = d(n) for
which 7y = 1, M; = 0. For functions that are band-limited to n/2 an equality
of this type can be derived, however, using the inequality
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/2 n/2
f sin® § | F(6)|*de j 6% | F(0)|*do
—#/2 4 _in
= — (£.7
/2 1'[2 n/2
[ cos*@| F(0)|*de [ 1F(@®I*d8
-/2 -n/2
Hence, using the same arguments that led to (I.6.39) we obtain
g + My = 2 (g My) = 2/m.
7. Wigner distribution of finite duration signals
If the signals f and g have a finite duration, i.e. if
f)=¢gn)y=0 |nl =L b
then it follows from (2.44) that
Weeln, 8) =0 |n| = L. (7.2)

As remarked in sec. 2, the WD W} 4(n, 8/2) can be interpreted as the Fourier
transform of the sequence f(n + k) g*(n — k) considered as a function of & for
fixed n. It is known that the Fourier transform of a finite duration sequence
can be recovered from its samples taken at a sufficient number of equidistant
points on the interval (-, n), by means of interpolation. The interpolation
formula is %)

sin M(6 — Ou)/2

N-1
We(n, 6/2) = Z Wi o, m6r/2)

. ; (7.3)
Msin (8 — 6y)/2
m=—N+1
where
v = 2n/M (7.4)
and
M=2N -1 (7.5)

with M taken larger than or equal to the duration of the sequence. For the
sequence f(n + k) g*(n — k) this means that

N=L - |n|. (7.6)
To compute the WD of two finite duration sequences it therefore suffices to

determine the samples occurring in (7.3). These samples are given by
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N-1

Wr.e (n, m L) =2 Z e Wm@M r(n 4 Kyg*in - k). (1.7)

k=—N+1

The right-hand side of eq. (7.7) can be interpreted as the M-point discrete
Fourier transform (DFT) of the sequence f(n + k)g*(n — k), ke(-N+1,
..., N — 1) for fixed » (see ref. 3). This means that the evaluation of the WD of
a finite sequence is equivalent to determining one DFT for each value of n,
which can be done efficiently using fast transform algorithms like the FFT %)
or Winograd algorithm ).

The above reasoning can also be applied to find a computationally efficient
way to determine the pseudo-Wigner distribution that was introduced in
section 4.3. From its definition it follows that it can be computed according to

Wi, 0) =2 Y e 0w f(n + k)ywH(—K) g*(n — k). (7.8)

k=—o0
If the windows have a duration 2L — 1, i.e. if
w(k) =0 |kl = L 7.9

then the same reasoning as before can be applied to show that the PWD can be
determined from the samples

L-1
Wy.e (n, m f}) =2 Z e KM CQRM) kY wrE(— k) f(n + k) g*(n — k)
i (7.10)
with M =2L -1, (7.11)

and using the interpolation eq. (7.3). This means that to compute the PWD at
a certain instant n#, a DFT of length at least M = 2L — 1 must be computed.
If w(k) w*(—k) is stored, then for each n such a computation requires 2M
multiplications to determine w(k) w*(—k)f(n + k) g*(n — k) and M log, M
to perform the DFT by means of an FFT, where it is assumed that its length is
taken a power of 2, Exploiting the fact that the PWD of any function is real it
is possible to compute simultaneously the values of the PWD for two distinct
values of n using only one FFT. This results in a further reduction of the com-
putational complexity by a factor of 2.

8. Conclusions

The concept of the Wigner distribution has been introduced for the case of
discrete-time signals, and has been shown to share most of the properties of
the WD for continuous-time signals. Deviations from this behaviour were
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observed at some points, however, due to the fact that the WD cannot dis-
criminate between high and low frequencies because of aliasing components
that are present in the general case. It was shown that these aliasing terms
vanish in two important cases, namely in the case of oversampling by a factor
of at least 2, and in the case of analytic signals. Oversampling can be realised if
the discrete-time signal is obtained by sampling an analogue signal at a rate of
at least twice the Nyquist rate. It can also be accomplished by means of an
interpolation process applied to a digital signal. For such signals the average
frequency and average time that were defined for the WD could be given the
same interpretation as for the continuous-time WD. This led to a useful defini-
tion of the instantaneous frequency of a discrete-time signal, which was then
again equal to the average frequency of the WD. The average time of the WD
was shown to be equal to the group delay of the signal. Finally it was shown
that the WD of a finite duration sequence at a fixed time # could be determined
from a finite set of samples taken in the frequency interval (—m, m). These
samples of the WD can be determined from the signals by means of a discrete
Fourier transform, so that efficient algorithms like the FFT can be used. A
particular example of such a WD is the pseudo-Wigner distribution (PWD)
which was defined for arbitrary (infinite duration) sequences by means of
windowing. This PWD was shown to be a filtered version of the WD of the
signals, where filtering takes place in the frequency variable. If finite length
windows are used this PWD is not only computable, but can be computed with
a complexity of the order of M (log, M + 4), where M is the length of the
window. This complexity is of the same order of magnitude as that of the short-
time Fourier transform, for which the PWD forms a viable alternative.

The relation between these two notions will be clarified in part III of this
paper, where different time-frequency signal representations will be con-
sidered and will be related to the WD.

Philips Research Laboratories Eindhoven, May 1980
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Appendix

In this appendix several relations for the moments of the WD will be stated
without proof. The proofs follow easily by using the properties of the WD

given in sec. 2.3.
n/2

1
2n f Wy,g(n, 0) dO = f (n) g*(n)
ri

-n/2
2

n/
1 A
o / e W gn, 6)d6 = f(n + 1) g*(n — 1)
-n/2

Y Wien, ) = 3 F(0 + kn) G*(0 + km)
n k=0

il

S nWign, ) = =+ Y [(DF) (0 + kn) G*O + kn)

k=0

+ F(6 + kn) (DG)* (0 + km)]

N 0 Wign, 0) =+ Y [(DPF) (6 + km) G*(0 + km)
n k=0

(A

(A2)

(Ad)

(A5)

(A6)

+ 2(YF) (8 + km) (DG)* (0 + kn) + F(8 + kr) (D°G)* (8 + kn)]

/2
1
= [ Z Wi.o(n, 6)d0 = (f, g)
-m/2 n
/2
1
= / Z n W5, 6) d6 = (2f, )
-n/2 n
n/2
1 ) )
E;T,_ ,/ Z 6129%’8(1% 0)do = ('?—1f’ cgl)g)
-n/2 n
| n/2
g / Z n® Wee(n, 0) d0 = (2f, Dg)
-R/2 ]

(A7)

(A8)

(A9)

(A10)
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