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Abstract

A comparison is made between the Wigner distribution and several other
time-frequency signal transformations. Amongst these are the ambiguity
function, well-known from radar and sonar, and the spectrogram used in
speech analysis. It is shown that all these signal transformations are related
to the Wigner distribution by a two-dimensional transformation with dif-
ferent kernel functions.

1. Introduction

The previous parts of this paper have primarily dealt with the description of
the Wigner distribution and its properties. The aim of this part is to discuss
the connection of the Wigner distribution with other time-frequency signal
transformations. First the relation between the Wigner distribution and the
ambiguity function is investigated. A comparison of some of the fundamental
properties of these two transformations will be made.

Next, in section 3, a class of time-frequency signal transformations is con-
sidered. This class has been discussed before in the context of quantum
mechanics by Cohen '»#). Each member of this class is uniquely determined by
a two-dimensional kernel function. The class is rather broad and contains,
apart from the Wigner distribution itself, other known representations such as
the one proposed by Rihaczek ) and the spectrogram *°) as will be shown in
sec. 4. Furthermore a number of properties of such a transformation will be
considered that are of interest in the context of signal analysis. In this applica-
tion these transformations are used to represent the distribution of the signal
energy in time and frequency. All properties that are investigated derive their
importance from this interpretation. The restrictions these properties impose
on a particular representation will be discussed. Although the discussion will
be restricted to continuous-time signals, the results are easily extendable to
discrete-time signals, using the methods described in part I1. Moreover, only
auto-Wigner distributions are considered since only these can be interpreted as
an energy distribution.
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2. Wigner distribution and ambiguity function

As was already remarked in part 1 of this paper, the definitions of the
Wigner distribution (WD) and the ambiguity function (AF) look very much
alike at first glance. In this section we will discuss the relations between these
two time-frequency signal representations, and point out the similarities and
the differences. The ambiguity function has been widely used in the context of
radar and sonar, and its properties are very well understood ®"%). The
discussion here will therefore be focussed only on those properties that are of
importance for a better understanding of the WD.

As before, we denote the signal by f(¢) and its spectrum by F(w).
Introducing the functions y#(t, ) by

ye(t, 1) = £t + 1/2) f5(t — T/2) 2.1)
and (¢, w) by

T, w) = Flw + &/2) FH(w — &/2), 2.2)
the WD can be written as

o«

Wi(t, w) = f e i9Ty(f, 1) d1 (2.3a)
1 .
= o f eI T3(E, w) de. (2.3b)
Similarly the AF is given by ®)
A€, 1) = f eI (e, 7) dt (2.4a)
1 )
= o | UL ) do. (2.4b)

Relations (2.3) and (2.4) are represented in fig. 1, where the operator %
represents the Fourier transform with respect to the variable ¢, and similarly
for the other variables.

It follows immediately that the WD and the AF are related by the two-
dimensional Fourier transform

Philins Tournal of Research Vol 35 No 6 1980 172



T. A. C. M. Claasen and W. F. G, Mecklenbriuker

Ve (L. T)
F !
ArlE.T) We (t, w)
\\ ?‘t s;—g-i‘

[z (E, w)

Fig. 1. Diagram indicating the relation between the signal, the spectrum, the Wigner distribution
and the ambiguity function.

1 ‘
A& = 5o f f e~I¢1=0 Wi (1, w) dr do. 2.5)
¥
In general eq. (2.5) indicates that the WD and the AF are different signal
representations. A noteworthy difference is for example that the WD of any
signal is real, while the AF, even of a real-valued signal, will in general be
complex. However, for signals that are even or odd functions of time, i.e.

f@O) = £f(=0 (2.6)

the AF and the WD are the same up to scale factors, i.e.?)

We(t, w) = £ 2452w, 21). (2.7
As an example the chirp signal
1) = et (2.8)
has WD and AF given by
We(t, w) = Ag(w, t) = 2n d(w — ai). (2.9

The differences between the two signal representations become most pro-
nounced if shifts in time or frequency of the signal are considered. While such
shifts lead to corresponding shifts in the WD, the effect on the AF is a phase
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factor only, as can be seen from table I. This illustrates clearly that the inter-
pretation of the time and frequency variables of the WD corresponds to that
of the signal, while this is not the case for the AF. In fact the magnitude of the
AF is completely insensitive to shifts in time or frequency of the signal. In
table I, the effects of filtering and modulation on the WD and the AF,
respectively, have been indicated too. Although the corresponding relations
look very similar, their effect on the two functions will in general be very
different, as already shown for the two special cases discussed above.

3. A generalized class of time-frequency signal representations

In part I the WD was introduced in a rather axiomatic way and was shown
to have some interesting properties. Such an approach leaves the question
unanswered whether the WD is the only such representation, i.e. whether
other representations exist that have similar or even more desirable properties.
This question will be addressed in some detail in this section.

The starting point is a generalized class of time-frequency signal represen-
tations that was introduced by Cohen *+%). This class is given by

o oo

1 .
Cr(t, w; P) = 5 / f fel(‘f’““‘:”) D(E, 7)f(u+1/2) f*(u—1/2)dudrdé,
i
Yo vham g (3.1
where @ is at present an arbitrary kernel function, determining the particular

representation in the class. Using the definition of the ambiguity function of f
it is easy to see that (3.1) can be rewritten as

Cr(t, w; D) = %//.ej(é’w”@(f,r)/lf(f, 7)dédr. (3.2)

-0 -0

Alternatively Cr can be expressed in terms of the WD according to

1
Gl o ®) = f ] ot — 1,0 — & Wyr, O)dede.  (33)

-0 —co

where

oth ) = - / / oiEr-00) (¢, 7) dé d. G.4)
27

—00 =00

The interpretation of eq. (3.3) is that all members of this class of signal
representations can be obtained by a linear transformation of the WD charac-
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terized by the kernel ¢(f, w) that is related to the kernel @(&, ) by a two-
dimensional Fourier transformation according to (3.4).
Clearly the identity kernel

Pw(E,1)=1 V¢ (3.5a)
or

pw(T, &) = 21 (1) 4(¢) (3.5b)
leads to the WD, Allowing the kernel @ to depend on ¢ and w and setting

DA, T3 F, ) =20 0(T — 1) 6(¢ — w) (3.6a)
or

Pa(T, & 8, @) = el@T=¢0 (3.6b)
the AF is obtained:

Af(w, 1) = Cr(t, w; Pa). (3.7

In the remaining part of this section several properties of time-frequency
signal representations are stated that are desirable in signal analysis. Each of
these properties has associated with it one or more constraints on the kernels.
In this way it is possible to analyse the properties of a particular representa-
tion in a systematic way once its kernel is given. The various constraints will
henceforth be labelled “Ck” and the corresponding property “Pk”.

The first two properties to be discussed are that shifts in time or frequency
of the signal result in corresponding shifts of the representation:

P1: Ca,f(t, w; ) = Ge(t — 1o, w; D) (3.8)
P2: C ot f1, w; ) = Cr(t, w0 — wy; D), (3.9
where the shift operator .%, and the modulation operator ., are defined in
sec. 2.1. in part I. Since the WD satisfies both of these properties, it is easily

seen from (3.3) that these properties hold for any Gy (¢, w; @) if the kernel @
is independent of ¢ or w. Using the notation of eq. (3.6) we get the constraints

Cl: D&, 1,1, w) does not depend on ¢, (3.10)
2 @&, 1,1, w) does not depend on w. (3.11)

Henceforth only representations with kernels that are independent of both ¢
and e will be considered. This excludes, for example, the ambiguity function
whose kernel does not satisfy either of the constraints C1 and C2. Both prop-
erties are essential if we wish the time and frequency variables of the signal
representation to correspond to those of the signal and its spectrum,
respectively.
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The next two properties of interest have already been considered by
Cohen '), namely

B3 % / Cit, w; @) dw =| f(O (3.12)
and -
P4: /Cf(t, w; D) dt = |F(w)®. (3.13)

— 00

These properties are obtained by representations with kernels satisfying the
constraints

C3: BEN) =1 V& (3.14)
Cd: o0,71) =1 V. (3.15)

Properties P3 and P4 are attractive in view of the desire to interpret the
time-frequency representation as an energy distribution of the signal over time
and frequency. P3 states that the integral over all frequencies at time ¢ is equal
to the instantaneous power, while P4 states similarly that the integral over all
time at a certain frequency w is equal to the value of the energy density
spectrum at that frequency. An immediate consequence is that if either of the
two properties is satisfied then the integral over the whole (¢, w)-plane

= f /Cf(r,w;ﬁb)dtdm:IIJ"II2 (3.16)
2n

is equal to the signal energy.
Apart from the WD for which P3 and P4 were demonstrated in part I to
hold, the representations obtained by taking

Do, T) = 1T (3.17)

have these properties as well. For o = 3 this kernel leads to the representation
proposed by Rihaczek %):

Ci(t, w; By) = f(1) F(w) eI, (3.18)

This representation has the charm of being simple, but, in general, it is com-
plex valued which is not very convenient in view of our interpretation of Cy
as an energy distribution. If we wish the representations to be real, i.e.
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P5: Ci(t, w; B) = Cf'(t, w; D) (3.19)
then we must put the constraint

C5: D, 1) = PH(=&, —1) (3.20)

on the kernel of the representation.

It would of course be even more desirable for such a representation to be
positive for all time and frequency, because then it could truly be interpreted
as an energy distribution over time and frequency. However, such an inter-
pretation would even then be questionable, as Heisenberg’s uncertainty rela-
tion prohibits an arbitrarily sharp frequency discrimination from being pos-
sible in an arbitrarily short period of time.

Moreover, as will be shown at the end of this section, the positivity require-
ment is incompatible with other requirements to be introduced subsequently,
and which in our view are more preferable than positivity. In any case suitable
averages of the WD, incorporating values over a portion of the (¢, w) plane
that has a dimension that is in accordance with Heisenberg’s uncertainty rela-
tion, can be shown to yield positive values '°). This means that locally negative
values of such a representation need not necessarily be disturbing.

A kernel related to that of Rihaczek, but satisfying all constraints C1 to C5
is given by

DAE, 7) = cos (aéT) (3.21)

of which the particular case & =4 has been considered by Cohen 2). For this
value of o the corresponding representation is equal to the real part of the
Rihaczek representation of eq. (3.18).

In section 6 of part I it was shown that the WD has two more properties that
are of importance in signal analysis. Firstly, the average frequency Q(r) of
the distribution at a certain time is equal to the instantaneous frequency of the
signal. It should be remembered that this holds for complex-valued signals,
and that the instantaneous frequency of a real-valued signal is defined as that
of the corresponding analytic signal. Secondly, the average time T;(w) at a
certain frequency is equal to the group delay. These properties of the
generalized distributions can be expressed by

[ wCe(t, w; D) dw q
P6: — =90 =Im_Inf(@), (3.22)
[ Cr(t, w; @) dw
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[ tCe(t, w; @) dt d
P7: ’“’m = Tiy(w) = —Im d—ln F(w), (3.23)
w
[ Ce(t, w; @) dt

-0

Property P6 holds if the following contraints are met:

D0 =1 Ve
Cé: (3.24)

0
EQM&,T)IT:O:O Y £

Similarly, to have P7 we must require:

@0,7) =1 V1

C7: (3.25)
0
-O—é;df'(é, Dleo=0 Y 1.

It should be observed that the first parts in C6 and C7 are identical to the con-
straints C3 and C4 respectively.

While the kernel @, in (3.21) satisfies all these conditions, the kernel @4 in
(3.17) does not. This means that the Rihaczek representation does not have
properties P6 and P7, but its real part does.

Finally we will consider the finite support properties. By this it is meant that
for a signal which has a finite extent (support) in time or frequency its
representation has the same finite support in the corresponding variable.
Hence

P8: if fO=0 |t>T (3.26)
then Crt,0;8) =0  |t|>T, (3.27)
P9: whileif Fw) =0 |wl>0 (3.28)
then Ci(t,w; @) =0 lw]| > Q. (3.29)

Property P8 leads to a constraint on the kernel @ of the form

C8: [ eiePpE, ndé=0  |7] <2|¢]. (3.30)
This constraint is equivalent to the requirement that @(&, ) must be an entire

function of & of exponential type 7). More specifically this requires that func-
tions A(7) and a(7) exist such that A(7) is bounded,
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a(1) = |7]/2 (3.31)
and

| D&, T)| <A(z) ekl (3.32)

for all complex values of &. Similarly P9 leads to

C9: [m e 1T @, 1)dr =0 €] <2|w] (3.33)

-
which is equivalent to the requirement that @ must be an entire function of 1

of exponential type. Hence, functions B(¢) and (&) must exist such that B(&)
is bounded,

o(8) =[¢él/2 (3.34)
and

| B, 7)| <B(&)ee@l (3.35)

for all complex values of 7.

As an example we may consider the kernel @, from (3.17) which satis-
fies C8 and C9 only if |a| <+4. The same conclusion holds for the kernel
tf’a(ﬁ, 7) = cos(aét) as well. With this restriction on ¢ all representations
based on this kernel satisfy each of the properties P1 to P9 discussed so far.
For & = 0 the WD is obtained and for & =% the real part of the Rihaczek
representation results. It is interesting to note that such a variety of time-fre-
quency signal representations share this large number of desirable properties.

To conclude this section it will be indicated that the properties P7 and P8
are incompatible with the requirement that the representation is nonnegative
for all time and frequency values. One of the ways to see this is to consider
a causal signal, i.e. a signal that vanishes identically for negative times.
Property P8 guarantees that Cr too will vanish for negative 7. Assuming Cy
to be nonnegative, it follows from property P7 that for such a signal the
group delay has to be nonnegative for all frequencies. This contradicts the
well known fact that causal signals can have a negative group delay for certain
frequencies '*).

Similarly it is possible to prove that properties P6 and P9 cannot hold for
signal representations Cr(f, w) that are nonnegative. This follows from the
fact that analytic signals may have negative values for the instantaneous
frequency during certain periods of time. Observations related to the above
have been made by Friberg in the context of radiance functions in optics '%).

4. Investigation of methods for spectral analysis

In this section various methods for spectral analysis of signals will be
investigated in relation to the Wigner distribution. First in sec. 4.1 it will be
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indicated that the spectrogram of the signal *°) is a special case of the time-
frequency representations introduced in sec. 3. Secondly in sec. 4.2 this fact is
also shown for the pseudo-Wigner distribution that was introduced in part 1.
Finally it is shown that the output signal of a spectrum analyser that uses a
chirp signal to sweep the signal past a fixed tuned narrow-band filter can be
described elegantly by means of the WD.

4.1. The spectrogram

Spectrograms are used extensively for time-frequency analysis of speech
and other signals *-*'*), They are two-dimensional density functions that are
derived from the signal and are considered to represent the energy distribution
of the signal in time and frequency. The aim of this section is to show that
these spectrograms are special cases of the signal representations discussed in
sec. 3, and hence are a weighted version in time and frequency of the WD (see
eq. (3.3)). We will concentrate on the case that the spectrogram is obtained by
a short-time Fourier transform *¢). It has been shown in the literature that
different techniques for obtaining the spectrogram, such as by means of a
filterbank, vield exactly the same result '*).

The short-time Fourier transform requires the use of a sliding window A(¢)
and computation of the Fourier transform of the windowed signal. Although
in the bulk of the applications these computations are performed on discrete-
time versions of the signals, so that computationally efficient algorithms for
the discrete Fourier transform can be applied, we will restrict the discussion to
the case of continuous-time signals. The results of part II of this paper give the
means for the necessary modifications to deal with discrete-time signals.

Letting /(1) denote the signal whose spectrogram is to be determined and
h(7) the window function, windowing generates the signal

J(D) = f(D (- 1), (4.1)

where 7 is the time instant indicating the position of the window on the time
axis.
The short-time Fourier transform (SFT) is given by

Fiw) = fo e IOTf () h(t — 1) dr. (4.2)

The spectrogram S¢(#, w) is obtained by taking the magnitude squared of
this SFT for all possible positions of the window, i.e. by considering 7 as a
running variable:

S¢(t, w) = |F(w)l*. (4.3)
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Using eq. (1.2.37), eq. (4.3) can be written as

St w) = | Wit ) dr. (4.4)

The Wigner distribution W%, of the windowed signal is given by eq. (1.4.6),
which yields

0 o

1
S¢(t, w) = 2;/ /V%(r, ) Wa(t — t, 0 — n)drdy. 4.5)

-0 -0

Interpreting this equation in the sense of eq. (3.3) it is seen that S¢(z, @) is
a member of the class of representations given by (3.1) and is generated by
the kernels

¢s(1, ) = Wi(—1,¢) (4.6)
or

D5(&,7) = An(= ¢, 7) 4.7

i.e. by the WD or the AF of the window function.

The fact that the spectrogram is a representation generated by a kernel that
is itself a WD excludes certain properties discussed in sec. 3 for this represen-
tation. Clearly, independent of the window that is used the spectrogram has
the properties P1, P2 and PS5, but properties P3 and P4 can never be obtained
since

1
Py /Sf(t, w)dw = f;f(r)|2|h(r—r)|2dr (4.8)
and o o
1
fo(f, w)dr = o / [Fm) | |H(w — )| dn, 4.9)

where H(w) is the spectrum of the window.

Instead of obtaining the instantaneous power in (4.8) one obtains the
average power over the duration of the window with the square of the window
as weighting function. A similar conclusion holds for the energy density
spectrum in (4.9). Furthermore, since by definition Sy is nonnegative, it can-
not simultanecously have properties P7 and P8 nor P6 and P9 as was shown in
sec. 3. In fact none of these properties is satisfied by the spectrogram. The
average frequency of the spectrogram £s,(f) is given by
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[ G@F @1k - 0l de

Q5 (t) = —— ; (4.10)
J @A — ]2 dr

l.e. it is an average of the instantaneous frequency of the signal with the
instantaneous power of the windowed signal as the weighting function.
Similarly the average time of the spectrogram is equal to

[ GIFmI* | H(w — m)|? dy

-0

Ty(w) = (4.11)

o0

[ NFm 2| H(w - n)|*dn

Hence P6 and P7 cannot be obtained.

Additionally, condition C8 requires yx(t, 7) to vanish for |¢| >|7|/2, which
in particular for 7 = 0 requires A(t) = 0, ¢ # 0. It is obvious that no window
fulfils this condition and hence P8 is never obtained. Similarly C9 would
require H(w) = 0, w # 0, which is not realizable.

In conclusion, of the properties stated in sec. 3, only the shift properties and
the realness are satisfied by the spectrogram of a signal. As regards the other
properties, an average of the desired quantities is obtained taken over the
duration of the window. This means that for signals for which these quantities
do not vary appreciably over the effective length of the window (short-time
stationary signals) the spectrogram provides useful information. If this short-
time stationarity cannot be guaranteed, then it may be advantageous to use
the pseudo-Wigner distribution (PWD) which is better able to cope with non-
stationarities, as will be shown in the following section.

4.2. The pseudo-Wigner distribution

In part I the pseudo-Wigner distribution was introduced as the concatena-
tion of slices of the WD of the windowed signal f;(z). It can be computed from
the signal according to

Wit w) = [ e 395 f(t + 1/2) F(¢ 1/2) h(t/2) h*(—1/2) dr. (4.12)

Moreover it was shown that this PWD is related to the WD by

- 1
Wyt ) = o f Wity ) WalO, © — m)d, “.13)
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where as before W, is the WD of the window. Clearly therefore the PWD is a
member of the class of representations of eq. (3.3) as well. The corresponding
kernels are

(1, §) = o(1) Wa(0, &) (4.14)

and
Dp(&, 1) = h(1/2) h*(—1/2). (4.15)

Thus the constraints C1, C2, C3 and CS5 are satisfied for all windows and
hence the PWD has properties P1, P2, P3 and P5. C6 is satisfied for any
window that has an instantaneous frequency that vanishes at t = 0 (£2,(0) = 0)
which in particular is the case for a real-valued window. In that case the
average frequency of the PWD is equal to the instantaneous frequency of the
signal.

Property P7 does not hold, however, because the first part of constraint C7
is not satisfied. In fact, the average time of the PWD can be computed to be
given by .

[ T Fm|* Wi(0, w — n)dn

=]

To(w) = -

(4.16)

o0

mf [F(m)|? Wi(0, @ — 1) dy

Comparing this result with the corresponding expression for the spectrogram
(4.11) we observe that in both cases an average of the group delay is obtained
but the weighting functions are different.

Finally, it follows from (4.15) that P8 holds, but P9 does not, so that the
finite support property is only fulfilled with respect to the time variable.

4.3. Spectrum analyser using a chirp signal

A classical way to obtain a plot of the spectral content of an assumedly
stationary signal is to sweep the signal past a fixed tuned narrow-band filter by
modulating it with a chirp signal. A simplified version of such a configuration
is sketched in fig. 2, where for ease of analysis it is assumed that a complex
chirp signal and a lowpass filter are used. It will be shown now that this
spectral analysis method can easily be interpreted in terms of the WD of the
signal, which is the case even if the signal is not stationary.

In the scheme of fig. 2 it is assumed that the input f(¢) modulates a complex
carrier with instantaneous frequency — af:

x(0) = f(t)e i« 4.17)
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h(t)

F(t) R x(t) = et

I clt) = e-iat?z

Fig. 2. Schematic diagram of a spectrum analyser using a chirp signal (wobbler).

The WD of this signal can be obtained from eq. (I.4.4) and (I1.3.6) to yield
Welt, w) = Wi(t, 0 + at). (4.18)

The lowpass filter has the impulse response A(¢) which has a WD  Wi(t, w).
Using eq. (I.4.2) we find for the WD of the output signal y(z)

W (t, w) = fw We(t, w + at) Wa(t — 1, w)dr. (4.19)

The square of the magnitude of the output signal can be expressed as an
integral of its WD according to eq. (1.2.29)

1
s@) =ly@* = — ny(r, w) dew
2n
1
—2//W(r,w+ar) Wi(t — 7, w)dtdw
n
1
=2—ffW§(T,??) Wa(t — 7,1 — ar)drds. (4.20)
b

This means that the output signal of this spectral analyser can again be de-
scribed by an averaging of the WD of the input signal in time and frequency.

A nice interpretation of the averaging is obtained by rewriting eq. (4.20)
according to

0

1
s(f) = o f / We(z, 1) Walt — 1, a(t — 1) — (w — m)ldrdn|,,_,,. “.21)

=00 =0

We see that s(¢) is obtained by a convolution of the WD W;(z, w) of the input
signal with the kernel

o(t, w) = Wi(t, at — w) (4.22)

386 Philips Journal of Research  Vol.35 No.6 1980



The Wigner distribution

and taking the values on the line w = at.

If the impulse response of the low-pass filter A(¢) is real-valued, then the
WD W} has its main support in the cross-hatched area indicated in fig. 3a.
According to (4.22) this means that the kernel in the convolution has its sup-
port along the line w = af as indicated in fig. 3b by the cross-hatched region.
The convolution in (4.21) for a fixed value of f then means an averaging of the
WD of the input signal over the area cross-hatched in fig. 3c. Inspection of
this figure shows that the frequency resolution of the method is of the order of
(2nB + «o/B) while the time resolution is of the order 1/B, where B is the
bandwidth of the low-pass filter. To obtain an acceptable resolution in the
frequency ¢ has to be taken sufficiently small, but this makes the analyser
rather slow. A practical figure is & = nB*/10 (ref. 16).

al
b)
n
4
n=atT
w=oat 2 2nB
! 2rB+a/B
1 T
1/8
c) "]

Fig. 3. llustration of the moving averaging process of the Wigner distribution that takes place in
a spectrum analyser. (¢) Region of support of the WD of the filter in the spectrum analyser.
(b) Region of support of the kernel of the convolution. (¢) Region of the averaging that takes
place in the convolution. With increasing time this region moves along the line # = at. The
regions labelled I correspond to the case of a real-valued filter, while the regions labelled 2 are
applicable in case of a complex-valued filter with impulse response given by eq. (4.23).
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It is possible to make the frequency resolution independent of the scanning
parameter o by using a filter with the complex-valued impulse response

h(f) = h'(f) eo*/2, (4.23)

where 4'(¢) is as before the real-valued impulse response of a low-pass filter.
The relation between the WD of A(f) and that of A’ (¢) is given by

Wi(t, w) = Wi (t, w — at) (4.24)

according to (I1.4.4). This means that if the WD of &' (¢) has its support in the
cross-hatched region labelled @ in fig. 3a then the support of W(¢, w) is the
region labelled @ in this figure. The support of the kernel ¢ is then centred
around the line w = 0 which means that the convolution in eq. (4.22) is an
averaging over the area labelled @ in fig. 3c¢. Clearly in this case the fre-
quency resolution is 2nB. However, the filter has now become complex and
must be adapted to the scan speed « of the analyser.

It can be seen that by decreasing B the region of averaging becomes longer
in the #-direction and narrower in the w-direction, which means that for
stationary signals a better estimate of the energy density spectrum is obtained.
As already shown by Papoulis 7) in the limiting case B = 0 we get

s(t) = |F(an)l®. (4.25)

Figures similar to fig. 3 have often been used to explain symbolically the
working principle of a spectrum analyser. The description given in this section
shows that this figure can be interpreted in a much more concrete way in terms
of the WD in view of eq. (4.20).

5. Conclusion

In this paper an attempt has been made to place the Wigner distribution in
the perspective of time-frequency signal representations and spectral analysis
methods. Generally it has been shown that all such representations that aim at
giving an energy distribution over time and frequency can be obtained as a
weighted average of the Wigner distribution. In particular this has been shown
for the spectrogram, and also for the output of commonly used spectrum
analysers that use a chirp signal. It was indicated that a number of useful
properties of the WD could be secured also for other representations if the
corresponding weighting function (kernel) fulfils certain conditions. It then
appeared that apart from the WD a number of representations exist for which
the kernel satisfies all constraints and hence have all the properties that were
considered.

For the spectrogram it was shown that the corresponding kernel could not
fulfil most of these requirements. This results in a smearing in both time and
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frequency of the information contained in the WD if the spectrogram is com-
puted for nonstationary signals. A better situation is obtained by using the
pseudo-Wigner distribution, which, like the spectrogram, can be computed
from windowed data, but introduces no smearing in the time direction. This
latter representation is not always positive, however.

On the other hand it was shown that positivity of such a representation
excludes it from having properties that are desirable for the extraction of
instantaneous information like the intantaneous power, instantaneous
frequency, and the finite support property. If such instantaneous character-
istics should be obtainable from such a time-frequency representation then we
have to accept negative values for it. This seems to be the only way to accom-
modate Heisenberg’s uncertainty relation.

After completion of this manuscript we became aware of the paper by
Flandrin and Escudie '") who report results which are closely related to those
described in this part of our paper.

Philips Research Laboratories Eindhoven, May 1980
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