

Vom Zerspanungslabor zur Pilotfabrik "Industrie 4.0"

in der Seestadt aspern

Augangsbasis: IFT der TU Wien

IFT

Institut für Fertigungstechnik und Hochleistungslasertechnik

Vorstand: Univ.Prof.Dr. F. Bleicher

Forschungsbereich Spanende Fertigungstechnik Univ.Prof.Dr. F. Bleicher Forschungsbereich Lasergestützte Fertigung Univ.Prof.Dr.Ing. A. Otto

Grundlagenforschung

Technologie

- Technologieentwicklung u. -optimierung
- ▶ spanende und umformende Fertigung
- ▶ elektro-chemische Verf.
- ▶ adaptronische Verfahren
- ▶ hybride Verfahren
- ▶ Hilfsstoffe (KSS)

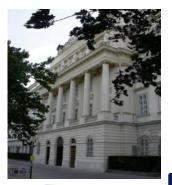
Werkzeugmaschinen Fertigungssysteme

- Auslegung u.Optimierung vonWerkzeugmaschinen
- ▶ Anlagenkonzepte
- Layoutplanung
- ▶ Handhabungstechnik
- messtechnische Evaluierung

Produktionsmesstechnik u. Qualität

- Auslegung u.
 Optimierung von
 Werkzeugmaschinen
- Anlagenkonzepte
- ▶ Handhabungstechnik
- messtechnische Evaluierung

Fertigungsautomatisierung


- Automatisierungstechnik
- ▶ NC-Steuerungstechnik
- Mechatronik
- ▶ Robotik
- ▶ Fertigungsleittechnik
- Produktionsplanung und -steuerung

Laser- und Umformtechnik

- Laserbearbeitung
- laserunterstütztes Umformen
- Laser- und Optikentwicklung

Augangsbasis: IFT der TU Wien

Institut für Fertigungstechnik und Hochleistungslasertechnik

Vorstand: Univ.Prof.Dr. F. Bleicher

Forschungsbereich Spanende Fertigungstechnik Univ.Prof.Dr. F. Bleicher Forschungsbereich Lasergestützte Fertigung Univ.Prof.Dr.Ing. A. Otto

Grundlagenforschung

Technologie

- Technologieentwicklung
 u. -optimierung
- ▶ spanende und umformende Fertigung
- ▶ elektro-chemische Verf.
- adaptronische Verfahren
- ▶ hybride Verfahren
- ▶ Hilfsstoffe (KSS)

Werkzeugmaschinen Fertigungssysteme

- Auslegung u.
 Optimierung von
 Werkzeugmaschinen
- ▶ Anlagenkonzepte
- Layoutplanung
- Handhabungstechnik
- messtechnische Evaluierung

Produktionsmesstechnik u. Qualität

- Auslegung u.
 Optimierung von
 Werkzeugmaschinen
- Anlagenkonzepte
- ▶ Handhabungstechnik
- messtechnische Evaluierung

Fertigungsautomatisierung

- Automatisierungstechnik
- ▶ NC-Steuerungstechnik
- ▶ Mechatronik
- ▶ Robotik
- ▶ Fertigungsleittechnik
- ▶ Produktionsplanung und -steuerung

Laser- und Umformtechnik

- Laserbearbeitung
- laserunterstütztes Umformen
- Laser- und Optikentwicklung

Anwendungsforschung

Industrielle Umsetzung, Anlagenbau, Beratung, Dienstleistung, Demonstration(sfertigung), Schulung

Projektpartner von A-Z

ABB Flexible Automation

AutomationX GmbH

BEKUM Maschinenfabriken GmbH

Berndorf, AG

BEV - Bundesamt für Eich- und Vermessungswesen

Böhler-Ybbstalwerke

Boehringer-Ingelheim Austria GmbH, Wien

BMW Motorenwerke, Steyr

BRP Powertrain

Comdata Systemhaus,

Constantia Teich

DIBO Diamantwerkzeuge GmbH

DMG Mori Seiki

Engel Maschinenbau GmbH, Schwertberg

EMCO Maier

Enzesfeld Caro Metallwerke AG

Ernst Wittner GmbH

Eternit Werke Ludwig Hatschek AG, Vöcklabruck

Feuerhuber Holztechnik, Adlwang

General Motors do Brasil General Motors USA

GW St. Pölten

Franz Haas Waffel- und Keksanlagen-Industrie GmbH, Leobendorf

Hermle

KRAUSECO

H & S Industriesiebe GmbH, Wien

Infineon

Krauseco Werkzeugmaschinen GmbH, Wien

Manner

MKE

Neumann Aluminiumwerke Austria GmbH, Marktl

Oemeta Chemische Werke GmbH, Uetersen

Opel Austria, Wien Opel Germany,

OMV-AG, Wien

Rüsselsheim

Planet! Software-Vertrieb & Consulting

PLANSEE Holding AG

Polytechnik

Prinz KG Maschinenfabrik, Loosdorf

RobiSys AG, Schweiz

Rexroth BOSCH AG

Sandvik GmbH, Wien

Sartorius Austria

SCHOELLER-BLECKMANN Oilfield Equipment AG

Siemens AG Automatisierungstechnik

STIWA

TKM Sprüh- und Dosiergeräte

Tyrolit

Walter Tools

WEBER-HYDRAULIK

Wedco

VOEST Alpine Industrieanlagen

ZTS Engineering Company, Slowakei

Zoller

Eine Technologietransfereinrichtung von

51 % Technische Universität Wien

34 % Wirtschaftsagentur Wien

wien3420 aspern development AG

15 % Wien 3420 Aspern Development AG

Eines der größten Stadtentwicklungsgebiete Europas Unser Standort in der Seestadt aspern

Facts & Figures

- I Grundfläche 2,4 Mio m²
- Wohneinheiten: für 20.000 BewohnerInnen
- 20.000 Arbeitsplätze (Dienstleistung, Produktion, Gewerbe, Wissenschaft und Forschung)
- I Standort für Forschung, Entwicklung und Bildung in Wien
- Geplante Verkehrsanbindung: U-Bahnlinie U2, Schnellbahn/Regionalbahn (S80/R80), ÖBB-Linie Wien-Bratislava und 2017 durch eine leistungsfähige Stadtstraße an die A23 sowie durch die Spange S1

mi factory

mı*factory

Das Labor der researchTUb

Forschung & Entwicklung
Beratung
Demonstrationsfertigung
Schulungen

Sponsoren Laborausstattung

Tätigkeitsfelder Stand Ende 2015

www.motion-innovations.at



Motivation - Konzept - Umsetzung

Industrie 4.0: Treiber & Ansätze

Technologische Treiber:

- Massiver Anstieg der Verfügbarkeit von Rechenleistung
- "Internet of Things": Praktisch unbeschränkter Adressraum in IPv6
- Miniaturisierung in der elektro-mechanischen Sensortechnik
- Generative Fertigungsverfahren

Markttreiber:

- Sinkende Lösgrößen in der diskreten Fertigung
- Steigender Kostendruck
- Steigende Qualitätsanforderungen
- Erwartung von "Ad-hoc-Lieferung" (→ kleinere Lieferzeiten)

Konsequenz: Umfassender Einsatz von IT in der Fertigung

- Virtuelles Abbild der Fertigungsinfrastruktur → zuverlässigere, effektive Planung des gesamten Produktionsablaufes
- Machine-to-Machine Communication (M2M) → Flexible Automatisierung auch für kleine Lösgrößen
- Prozessnahes Monitoring → Standardisierte Prozessoptimierung erhöht die Taktrate, adaptive Prozessführung erlaubt mannlose Fertigung

Ausweitung der Kompetenzbasis

Managementwissenschaften, Betriebstechnik & Systemplanung: Innerbetriebliche Logistik, Montage

Methoden, Prozesse und IT-Verfahren für die Virtuelle Produktentwicklung, Management von Informationen über den gesamten Produktlebenszyklus

Technologie, Werkzeugmaschinen, Fertigungssysteme, Fertigungsautomatisierung, Produktionsmesstechnik & Qualitätssicherung

Grundkonzept: Herstellen einer "Entwicklungsumgebung"

IT infrastructure, vertical integration

PLM (Siemens Teamcenter)

Project & Schedule Mgmt CAX Integration (MCAD) ERP Integration Manufacturing Process Mgmt

Visualization **Document Mgmt** Release Mgmt **Product Data Mgmt**

ERP (SAP)

Long Term Planning Master Data Production Order

Sales and Operations

Creation

Demand Management Material Requirements

Capacity Requirements Production execution

MES (SAP MII und ME)

ERP Integration Scheduling Electronic Work Instructions WIP Reporting, Traceability Non Conformance Mgmt

KPI Mgmt Tool Mgmt In-Process Monitoring Ressource Status, Dashboard Maintenance

Manufacturing Reconfigurable

and adaptive manufacturing systems for high mix and low volume production, integration controls and MES, M2M communication, connection to automated transport, identification of work order by RFID, integration of additive and subtractive

manufacturing

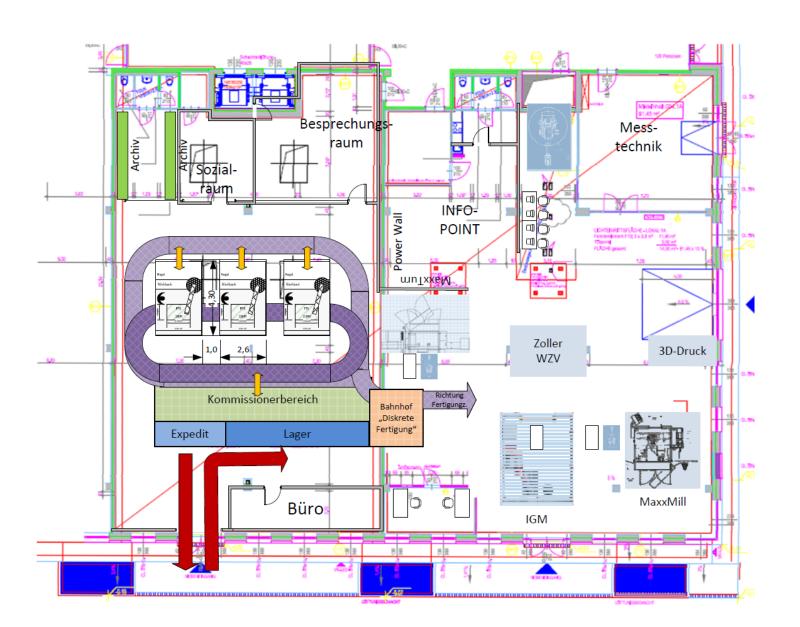
Development of an adaptive intra-plant logistics system (warehouse, automated transport) as a forerunner for Industrie 4.0, using conveyor modules with decentralized mechanical, electrical and control engineering concept, operating independently in the manufacturing system

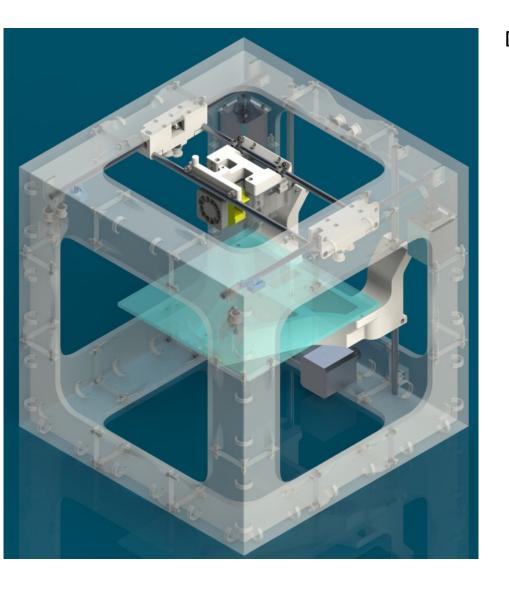
Assembly

Development of an integrated cyberphysical assembly system with electronic worker guidance, intelligent assistance systems and interactive human robot collaboration

Industriepartner

EVOL^RIS





Neues (zusätzliches) Demo-Produkt

Druck

■ Drucktechnologie: FDM = Fused Deposition

Modeling

Bauvolumen: 200 L x 200 B x 200 H mm

 (8 dm^3)

Schichtauflösung: 0,05 mmFilamentdurchmesser: 1,75 mmDruckbares Material: PLA, ABS

■ Bauplattform: Keramik

Abmessungen & Gewicht

Abmessungen: 39 L x 39 B x 39 H cm

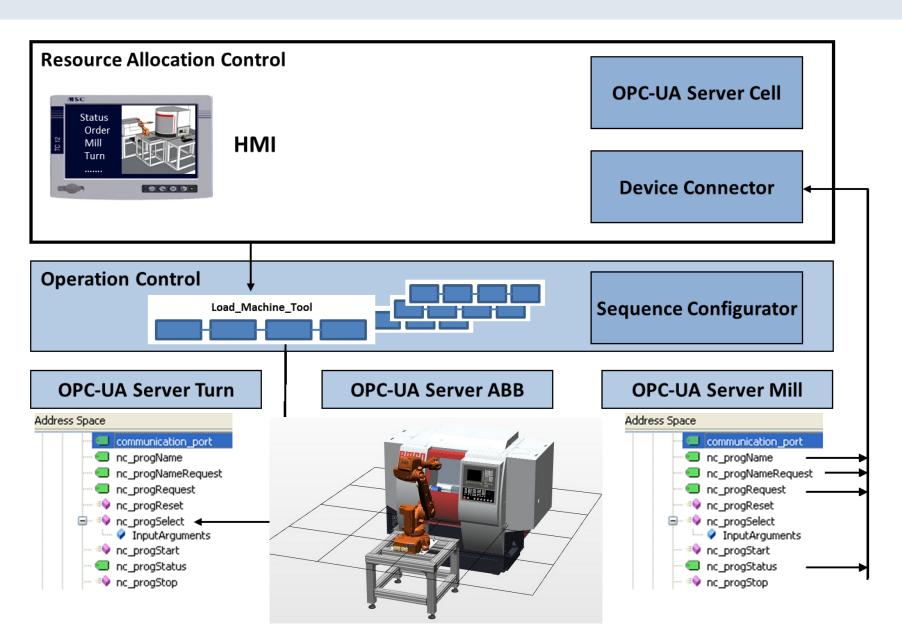
■ Gewicht: ~5 kg

Elektrik

Spannungsversorgung: 240V, 50-60Hz, max. 200W

Software

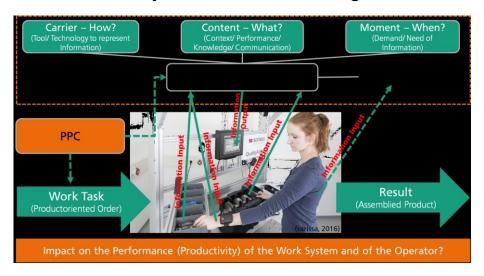
Dateitypen: STL


Betriebssysteme: Windows, MacOs, Linux

■ Verbindung: USB, WiFi & Ethernet

(Webserver)

Machine to Machine Communication


Kooperative und kollaborative Robotiksysteme

- Nutzung der IMW Lernmontage und eines Universal Robot UR5
- Integration weiterer Roboter und Roboterwerkzeuge
- Überführung der erzielten Erkenntnisse in das Gesamtsystem Pilotfabrik (3D-Drucker)

Digitale und visuelle Assistenz

- Integration unterschiedlicher
 Assistenzsysteme, inkl. Integriert zu steuernde Werkzeuge (Schrauber)
- Integration eines "Motion Capture Systems"
- Virtuelle Modellierung und Abbildung der Montage
- Integration eines Menschenmodells in die virtuelle Abbildung zum digitalen Tracking und Analysieren von Belastungssituation

KIC-AVM

K1 – Zentrum "CDP"

Pilotfabrik

Stiftungsprofessuren "OMAHA", "HCCPAS"

Dissertantenkolleg CPPS

Einrichtung der Technologietransferplattform researchTUb

Inhaltliche Ausrichtung von nationalen Forschungsförderinitiativen (FTI-Strategie Wien, NÖ, Produktion der Zukunft, Plattform Industrie 4)

Nationale & Internationale Projektkooperationen mit Unternehmenspartnern

Institut für Konstruktionswissenschaften, Bereich Maschinenbauinformatik und Virtuelle Produktentwicklung (Prof. D. Gerhard)

Institut für Fertigungstechnik und Hochleistungslasertechnik (Prof. F. Bleicher)

Institut für Managementwissenschaften (Prof. W. Sihn)