Philips J. Res. Vol., 33, 78-102, 1978 R 981

ON THE TRANSPOSITION OF LINEAR TIME-VARYING
DISCRETE-TIME NETWORKS AND ITS APPLICATION
TO MULTIRATE DIGITAL SYSTEMS

by T. A.C. M. CLAASEN and W. F. G. MECKLENBRAUKER



Philips J. Res. Vol., 33, 78-102, 1978 R 981

ON THE TRANSPOSITION OF LINEAR TIME-VARYING
DISCRETE-TIME NETWORKS AND ITS APPLICATION
TO MULTIRATE DIGITAL SYSTEMS

by T. A. C. M. CLAASEN and W. F. G. MECKLENBRAUKER

Abstract

Time-varying discrete-time networks are considered and their descrip-
tion by means of a transmission function is given. Such a description
can be applied to discrete-time networks which contain e.g. modulators
and subsystems operating at different sampling rates. Two forms of
Tellegen’s theorem are derived for these networks. Each of these forms
suggests a definition of transposition, called hermitian transpose and
generalized transpose respectively. The generalized transpose can be
seen as a generalization of the transposition concept defined for time-
invariant networks which it includes as a special case. For networks
with real parameters the two transposition concepts are the same, but
hermitian transposition has certain advantages for systems with com-
plex parameters. A transposition theorem is discussed that relates the
transmission function of either form of transpose network to that of the
original network. As an application of this theorem a sensitivity analysis
is given. Finally an extension of the foregoing theory is discussed for
networks containing both analogue and digital parts.

1. Introduction

The complexity of a digital system for signal processing depends inter alia
on the number of arithmetical operations that must be performed per unit of
time. This number is proportional to the sampling rate at which the system
operates. One of the aims in the design of a digital system is therefore to set
the sampling rate at its lowest possible value. On the other hand it is known
that a digital signal with a sampling rate f, = 1/T can only uniquely represent
frequencies up to f;/2 so that f, must be higher than twice the highest frequency
occurring in the signal. If the whole digital system operates at the same sampling
rate this rate is determined by the highest frequency component that will ever
be present in the system.

A more economical use of the arithmetical units can often be made by using
different sampling rates for different parts of the system. Each sampling rate
can then be adapted to the spectral content of the signals to be processed in
the corresponding subsystem. Several such multi-rate processing systems have
recently been proposed in the literature '~7). The increase or decrease of the
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sampling rate that is necessary to interconnect the various subsystems can be
implemented very easily if the sampling rates are related by integer factors '),
Introduction of the sampling rate increase (SRI) or sampling rate decrease
(SRD) does not affect the linearity but makes the system time-variant as will
be shown in sec. 2. It is therefore clear that many implementations of digital
signal-processing schemes are time-varying discrete-time systems.

In this paper a description of linear discrete-time systems is given that takes
into account these time variations. In section 2 the concepts of impulse response
and transmission function are introduced. In section 3 two forms of Tellegen’s
theorem for these linear time-varying discrete-time systems are derived. Each
of these forms suggests a definition of transposition that will be called hermitian
transpose and generalized transpose respectively. For systems with real param-
eters the two forms of transposition are the same. The generalized transpose
generalizes the concept of transposition as defined for time-invariant systems 2),
which it contains as a special case *). The hermitian transpose has the advan-
tage that it yields the same result when applied to a network with complex
parameters or to the real implementation of it. These forms of transposition
are discussed in sec. 4, resulting in a transposition theorem that relates the
transmission function of both forms of transpose networks to that of the
original network.

Transposition of time-invariant networks leaves the transmission function
the same and thus offers an alternative implementation of a transmission func-
tion ®). Transposition when applied to time-varying systems yields in general a
different transmission function, as can be expected from the fact that the input
and output sampling rates of a system and its transpose need not be the same.
The transpose system implements what can be called the complementary opera-
tion of that performed by the original system. Due to this property, transposi-
tion naturally arises in system analysis and synthesis and may lead to efficient
designs of systems performing such complementary operations once the im-
plementation of the original operation has been found. As an example, it is
shown in sec. 5 that transposition of a decimator leads to an interpolator and
of a modulator to a demodulator and vice versa.

Tellegen’s theorem can also be used to obtain expressions for the sensitivity
of the transmission function of a system to changes in the parameters of the
network. These expressions will be derived in sec. 6. Finally in sec. 7 it will be
shown that the concepts introduced before can be extended to incorporate net-
works containing both analogue and digital elements.

*) This is the reason that we have preferred to speak of transposition rather than of duality,
which is more customary in control theory ?), or of adjointness, which is used in mathe-
matics 19).
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2. Description of linear time-varying discrete-time systems

Every linear discrete-time system with one input and one output can be
described by an impulse response A(x,m1), which is the response of the system
to the input signal x(n) = u(n — m), where u(n) is the unit sample sequence *):

o -{ Lol (1)
uln) =
0 n+# 0.
The output y(n) for an arbitrary input signal x(n) is given by
) =3, hlnm) x(m). (2)

For time-invariant systems /(n,m) depends only on the difference n— m and
thus takes the simpler form

h(n,m) = H(n — m), 3)

which makes (2) a discrete convolution. A frequency domain description of a
linear discrete-time system can be obtained by means of the Fourier transform
for discrete-time signals:

X0 = ) x(n)exp(—jnb) 4)
with inverse transform
] n
x(n) = B [ X(0) exp (jnb) d6. (5

i1 4

In these expressions 6 is a relative frequency which is related to the actual
frequency w by

0 = T, (6)

where T is the sampling period of x(n).
The transmission function H(#,£) of a system with impulse response /(n,m)
is defined by **)

*) In contrast to the conventional notation we use u(n) for the unit sample sequence and
reserve the symbol & for the Dirac function, which will be used later.

**) The transmission function so defined is the Fourier transform of the frequency-response

function that usually is used in the analysis of linear time-varying systems '1:12), It is

the discrete-time analogon of the bi-frequency system function introduced by Zadeh !3).
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H(6,8) = F oY h(nm)exp [—i(n0 — m&)]. N

T n=—o0 m=-—w

For a system with a real impulse response it follows from (7) that
H(0,5) = H'(—0,—§), (8)

where the asterisk denotes complex conjugation.
With the above definition of the transmission function the relation between
output spectrum Y () and input spectrum X (6) takes the form

Y(0) = [ H(0.8) X(§) d&. )
In general the sampling period of y(r) may differ from that of x(n) and will
be denoted by T, and T, respectively. From the frequency relation specified
by eq. (6) it then follows that X(wT) is the value of the input spectrum at
frequency @ and Y(2T,) the value of the output spectrum at frequency £2.
In a linear system these values are linearly related, and eq. (9) states that the
proportionality factor is precisely H(£2T,,wT),).
As an example the decrease in sampling rate by an integer factor N will be
considered, which has the input-output relation )

»n) = x(nN)  Vn (10)
Comparison of (10) with (2) yields
h(n,m) = u(nN — m). (1n

Since h{n,m) given by eq. (11) is not of the form of eq. (3) it must be concluded
that the sampling rate decrease is a time-varying element. Its transmission
function can be obtained from eq. (7):

o

1
H(6,6) = o 2. exp [—jn(0— N&I. (12)

T op=—w

The right-hand side can be rewritten using the identity '#)

fr el

Y exp(—jud) =2= ) (6 — 2kn). (13)

n=-—w k=-—w

This expression is a Dirac pulse-train with period 2= and will frequently occur
in our analysis. Therefore we introduce the following function which apart from
a scale factor is equal to the “shah”-function used by Bracewell '%):
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L (0) i\ Y. 80— 2rk). (14
k=—w
Similarly as d(w) in the case of continuous-time signals, L (6) occurs in the
spectral analysis of discrete-time signals, taking account of the periodicity of
the spectra of these signals. Manipulation with this function is very similar to
that with the ¢ function.
From (14) and (12) it follows that

H(0,§) = w (0 — NE). (15)

This leads to a relation between input and output spectrum of the form

N—-1

YG—I X@—2ﬂ:k ”
o5 =) &

k=0
using the fact that wi (§ — N&) = 0 if N& #£ 6 — 2xk. In terms of the actual
frequencies the expression is

N—-1

1 27
Y(oT,) = NZX((UTI—/(*N). (17

k=0
This is illustrated in fig. 1 for N = 3. Here, and in all subsequent examples,
only the fundamental interval —m <C 0 << = of each of the spectra is depicted,
and since T, = NT, the corresponding lengths of the frequency intervals are
different for the two spectra. The various relations and the symbols used for

N7z

-/ Ty -/ T w/ 3 =m/T, /Ty —e=uw

_.a

Y(8)=Y(wT)

TR

0 x>
-/ Ty /T, —=w

Fig. 1. Input spectrum and output spectrum of a sampling rate decrease for N = 3.
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this SRD and for several other elements are summarized in table I, where
H(6) and @D(0) are the Fourier transforms of /i(n) and ¢(n) respectively.
TABLE 1

Time-domain and frequency-domain description of elements of linear time-
varying discrete-time systems

time - domain description frequency-domain description

i bol . . .
opration Symea imp. resp. h{n,m) input - output |transm. funct H(6.2) input - output

time-invariant htn-m) yin)=htn)*xin)= | Hegi(8-¥) ¥(8) = H(8)X(8)

¥
®
-
) X ¥ I
modulation p(n)ufn-m) ytn)=x(n)eln) Z—Jl.sﬁ(a -&) W‘”;P
® fpe o

¥in)
@ cosine cos(nb) ufn-m) y(n)=x(n)cos(nb) %Lufﬁ-z-&‘cj ¥(6)= -"-)((B-EEJ
+ i e-gea) + HX(8+8.)
@ sine sinfné) ufn-m) y(n)=xin)sin(née) ;1—-111(8-{-8:) Yf6)=£,-X(a-st
“ 3 W(e-§rd) X848,

sampling rate ulnN-m) ytn) = x(nN) wie-NgJ Yee)=

y
decrease (SRD) 1 NA g -2mk
LE xpBosmk
@ WESR

x ¥ .
sampling rate uln-mN) x(n/N) u(NE-E) ¥(8) = X(N6)
increase (SRI) @ - yin)= { n=0,2N, ..

To=

N 0

elsewhere

The transmission function as introduced in eq. (7) can be used in much the
same way as is conventionally done for time-invariant networks. For example
the transmission function H of a cascade of two systems H, and H, as shown

in fig. 2 can be expressed in terms of the individual transmission functions
according to

H(0,6) = [ Hy(0.n) H,(n.€) dn. (18)

—-mn

From eq. (18) it can be seen that the order in which the transmission functions

E—

x(n) ‘ n)
E Hy Hy ! 2

ol o _ _ |®
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occur is of importance. An interchange of the two is in general not possible.
Since expressions of the form (18) will frequently occur, the following short-
hand notation is introduced:

A T
Hy(0, ) H(-,8) = [ Hy0,m) H,(n,£) dy. (19)
Without ambiguity this notation can be extended to situations where the func-
tions depend only on one variable. For example eq. (9) in this notation reads

Y(0) = H(@O, )e X(-). @)

3. Tellegen’s theorem for time-varying networks

What nowadays is referred to as Tellegen’s theorem *©-17) is actually a very
general network principle. The theorem is derived starting from an identity,
that, as indicated by Penfield et al. '7), may be expressed in various different
forms. This degree of freedom makes the theorem very powerful since it allows
its formulation to be adapted to particular classes of networks or to the problems
under investigation. Fettweis '®) has shown that to signal-flow networks the
difference form of Tellegen’s theorem is applicable. Also in this formulation
there still remains a large amount of freedom in the precise form, a fact that
can be used to advantage. In this paper we will give two formulations of the
difference form of Tellegen’s theorem. These forms are derived with the intent
to generalize the concept of transposition to linear time-varying systems. Two
different definitions of transposition will result as is discussed in sec. 4, which
together with Tellegen’s theorem lead to a transposition theorem applicable
to arbitrary linear discrete-time signal-flow networks.

To this end let us consider such a network S having a certain topology. It
consists of a set of 7 nodes connected by oriented branches. To each node i
there corresponds a node variable w;. Two types of signals are distinguished
entering each node: x; representing source variables and v;; representing the
output signal of the branch connecting node j to node i. This is illustrated in
fig. 3, where output signals y; are also indicated in the way proposed by Fett-
weis '®). For each of the nodes the following equation holds

I
win) = x,(n) + 3 vy (n) i=1,...,1 (20)

i=1
It should be recalled that different sampling periods are allowed in various
parts of the system, and, to deal with the most general situation, sampling
periods 7; will be associated with each of the nodes as indicated in fig. 3.
Of course the trivial assumption has been made that all signals entering a
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Fig. 3. Flow-graph representation of a discrete-time network. Shown are two nodes with
their interconnections and sources.

specific node have the same sampling period. The Fourier transform of eq. (20)
gives

T
W0 =X@+ YV i=1,...,1L Q1)
Jj=1
Tellegen’s theorem relates variables of two different networks S and S’ having
the same topology. The variables in S* will be denoted by primed symbols
and satisfy relations similar to (20) and (21).
The forms of Tellegen’s theorem that we aim at can be derived from the
following two identities.

n I
J _Z [Wi(6) W/ (—0)— W,/ (—6) Wy(6)]db = O, (22)

and B
/ AZ [W{(6) W/ (0)— W,/ (0) W(0)]1db = 0. (23)

First it can be remarked that if all w,'(n), the node variables in S', are real
then (22) and (23) are the same, and thus differences can only be expected in
networks with complex signals. Indeed in sec. 4 it will be shown that two
different forms of transposition theorem result for networks with complex
parameters from the two different forms of Tellegen’s theorem. Secondly, a
comparison with the derivation of Tellegen’s theorem, as given by Fettweis,
reveals that both (22) and (23) differ from Fettweis’ formulation in that both
expressions are integrated over a fundamental interval of 6. In this way account
is taken of the fact that in a time-varying system frequency components of a
signal at a certain node may be transferred to other frequencies during the
transmission from one node to the other. It also makes the derivation more
“symmetrical” in the sense that a similar derivation in the time domain is
possible after applying Parseval’s equality to (22) or (23), but this time domain
form will not be given here. Only the derivation of the first form will be given
explicitly since that of the second form follows the same lines.
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From eq. (21) applied once to W; and once to W, it follows that

i
n I 1

Wi(0) Vi (—0) — W"(—0) V,,(0)] dO
7{ EUZ:I[ ) Vi (—6) (=0) Vi, (0)] 24

n I
+ [ X [Wi(0) X,"(—6)— W/ (—0) X,(§)] db = 0.
—-n i=1
This is a form of Tellegen’s theorem that holds for any discrete-time network,
whether linear or not. If the network is linear, then in accordance with sec. 2
impulse responses f;(n,m) with corresponding transmittances F,;(#,&) may be
associated with the branches in S such that

Vi0) = Fi0, )e W{-), ij=1,...,L

A similar relation holds for the primed variables. Using these relations eq. (24)
can be rewritten as
kL n I I

[ [ Y Y Wi0) F"(—0,8) W/ () db d&
- —xn i=1Jj=1

T n I I

— [ [ X ZW/(=0)F (8.8 wié) do d& (25)

-t —n i=1Jj=1

n I
+ X WO X/ (—0)— Wi (—0) X(6)] 4§ =0,
-n i=1
Now the order of the summations in the first double sum can be reversed and
the integration variables 6 and & replaced by & and —0 respectively to yield
the desired result. With this derivation and the analogous derivation starting
from eq. (23) the following theorem has been proved.

THeoreM | (Tellegen’s theorem). In every two linear discrete-time networks S
and S’ with the same topology, the spectra of the signals satisfy the relations

T I I
[ [ 3 % W/ (—0) WiE) [F(—&—6) — Fi;(6,£€)] db d¢

—n -7 i=1j=1

a I
+ [ Y W) X,"(—0)— W, (—0) X,(6)] df = 0 (26)
and "

[ [ X S w0 W& [F;/'(£,0)— F0,6)] db d&

n I
+ [ X W) X,/(6)— W/ (6) X,(6)]db = 0. @7

- i=1
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4. Transposition of linear time-varying networks

Transposition or flow-graph reversal is a well-known procedure for giving
time-invariant networks a different structure while leaving the transmission
between input and output unchanged ®'®). Invariance of the transmission
function for flow-graph reversal cannot be expected for time-varying systems
since input and output may operate at different sampling rates. A high input
rate and low output rate will become a low input rate and high output rate
after flow-graph reversal and vice versa. Therefore a different definition of trans-
position is required. Two such definitions are suggested by the two forms of
Tellegen’s theorem derived in sec. 3. They will be denoted by hermitian trans-
pose and generalized transpose respectively.

Let S be a linear discrete-time network with / nodes and branch transmit-

tances {F;;(0,£€)}],—; where F,; is the transmittance of the branch that con-
nects node j to node i.

Definition 1. The hermitian transpose of S is a linear discrete-time network S*
with the same topology as S and in which node j is connected to node i by a
branch with transmittance

FUH(B,f) == Fji*(_gg_e) Lj= Ly g sovs £ (28)

with corresponding impulse response

fifnm) = fi)(—=m—n)  ij=1,..., L (29)

Definition 2. The generalized transpose of § is a linear discrete-time network
ST with the same topology as S and in which node j is connected to node i
by a branch with transmittance

F[_,-T(B,§) - Fji(gag) Isj - la vy 1 (30)

with corresponding impulse response
fulnm) = fi(—m—n)  ij=1,... 1 (31)

It can be seen from eqs (29) and (31) that both forms of transposition preserve
causality. From eq. (8) it follows that in the case of networks where f;; is real
for all / and j the two definitions coincide and thus S¥ = ST, but in the case
of systems with complex parameters they generally differ. The hermitian trans-
pose then has an important advantage over the generalized transpose. To see
this, consider the network S of which the branch connecting node j to node
is depicted in fig. 4a. In the hermitian transpose network S and the generalized
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Re fi(n,m)

J 1

#y(n.m) . Im fii(n,m) -Im f;i(n,m)

SR

(7))
~
L
L
. &
5 [

al al Re fijfn,m)

Re flin.m}

I i
. fj’:m m)= f,; {-m,-n) -Im fj',?'(n,m) Im fff{n,m):-l’m fiif-m.-nl
je ® |
s¥ sHE
j i
b) b) Re fﬁ'{n, m) = Re fjj(-m,-n]
LG f;fn,m} .
j i
. ff’j'(n,m):fjj{_m‘_n) . -Im fj}'!n,m) Im ff,-rfn,mJ: Im fi;(-m,-n)
_,' >r— =8/
s7 (sTr
J i
c) c/ Re fﬁ(n,m}:Re f;;(-m,-n)
. Refyl-m-n)
j i
Im f;(-m.-n) -Im f;;(-m,-n)
(sh4
J i
d) Re fij{-m,-n)
Fig. 4 Fig. 5

Fig. 4. Flow-graph representation of connections between two nodes in various networks;
(a) original, (b) hermitian transpose, (¢) generalized transpose.

Fig. 5. Flow-graph of networks implementing the complex transmittances of fig. 4; (a) original,
(b) hermitian transpose, (c) generalized transpose, (d) transpose of the network of fig. 5a.

transpose network ST node 7 is connected to node j as indicated in figs 4b and
4¢ respectively. A practical realization of S will be a system S® such that to
every node i in S there correspond two nodes i’ and i" in S® with node variables

w (1) = Re w,(n), (32)
wi R(n) = Im wy(n). (33)

The transmissions from nodes j* and j'* to nodes i’ and i’ are characterized
by the impulse responses
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fuyt(nm) = Re fi(n,m), (34)
Syt am) = Im f;(n,m), (35)
Sor R (nm) = —1Im fi;(n,m), (36)
fierpR(nm) = Re fiy(n,m), (37

as shown in fig. 5a. The networks S¥ and ST will similarly have associated with
them a network with real parameters that implement the complex transmissions
as shown in figs 56 and 5¢. These networks will be indicated by (S™)® and
(STR respectively. Since the network S® is also a linear discrete-time network,
transposition can be applied to it. Clearly, since S® has only real parameters,
its hermitian and generalized transposes will be the same and can be indicated
by (S® or (S®)T as desired. The nodes i’, i" and j’, j" of this network and
the corresponding connections are shown in fig. 54. Tt can be seen by com-
parison that

(S®) = (S")* (38)
but

3% = (5% (39)

which means that different systems result when generalized transposition is
applied to a network with complex parameters, or to its practical realization.

Applying hermitian or generalized transposition to a discrete-time system
first of all implies flow-graph reversal, as indicated by the reversal of indices in
eqs (28) to (31). This means that branch points in the system become summation
points and vice versa. Besides this flow reversal the elements must be replaced
by elements having the specified transmittance. From inspection of table I it
can be seen, for example, that an SRD must be replaced by an SRI and vice
versa. Table 11 summarizes the necessary replacements. From the definition
of S¥ and ST it follows that (S™)! = (ST)T = S, which means that if an element
must be replaced by an other upon transposition then after transposition this
latter element must be replaced by the first one, so that two such elements are
always mutually transposed.

The usefulness of the definitions given above becomes clear when we apply
Tellegen’s theorem to the network and its transpose. Applying the first form
(eq. (26)) to S and S™ we see that the double sum vanishes and thus

n I
[T [Wi0) X (—0)— W(—0) X,(6)] d6 — 0. (40)

-n i=1
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TABLE 11

Elements in the original discrete-time system .S and the corresponding elements
in the transposed systems S" and ST

hermitian generalized
transpose transpose

| =<
o o

original

bk

win) ¢¥-n) wl-n)

A similar form holds for S and ST. Equation (40) is a generalization of the
interreciprocity relation as defined in ref. 18.

Now assume that 5 is excited by a single input x,(n) incident on node a, and
consider as output the signal y,(n) = w,(r) on node b. The transmission from
input to output is characterized by a transmission function H,,(0,£) such that
according to eq. (9"

Yy(0) = Hyul(0, - )0 Xo( ). (41)

Due to the reversal of the signal flow the hermitian transpose system S™ will
have a single input x,"(n) incident on node b and output y,7(n) = w, (n).
The spectra of these signals are related by

YH(O) = Hap''(0, ) » X, -). 42)

Inserting eqs (41) and (42) in the interreciprocity relation (eq. (40)) and ob-
serving that X;(0) = 0,i = 4, and X;#(0) = 0, i # b, the first part of the trans-
position theorem follows immediately. The second part results from a similar
reasoning but applied to S and ST,
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THEOREM 2 (Transposition theorem). If a linear discrete-time system S realizes

a transmission function H,,(0,£) between input node @ and output node & then

(1) its hermitian transpose system S" realizes a transmission function H,,"(6,&)
between input node » and output node a given by

HabH(BBE) = Hbu*(_‘fa_e)s (433')

(2) its generalized transpose system ST realizes a transmission function H,,7(0,£)
between input node b and output node a given by

Hap'(0,8) = Hyl(§,0). (43b)

The implications of these properties will be clarified by means of some examples
in sec. 5, but it may be noted here that in general the transmission function
will not be invariant upon either type of transposition. Therefore transposition
does not merely provide an alternative implementation of a certain transmission
function, as in the time-invariant case, but rather it yields an implementation
of a system that performs a complementary operation.

A property of both types of transposition is that it changes neither the number
of multipliers nor the rate at which these multipliers operate. This observation
leads to the following corollary, which clearly shows the impact of these forms
of transposition on a hardware implementation.

Corollary. 1f a linear discrete-time system S that realizes the transmission func-

tion H(0,&) is optimized with respect to multiplication rate, then

(1) S"is an optimal realization with respect to multiplication rate of the trans-
mission function

HY0,£) = H'(—&,—0).
(2) ST is an optimal realization with respect to multiplication rate of the trans-

mission function

H'(0,6) = H(&.9).

5. Applications

To clarify the concepts of transposition introduced in sec. 4 a number of
examples will be given. We start with an implementation of a decimation-in-
time Fast Fourier Transform (FFT) algorithm, of which an 8-point version is
shown in fig. 6. Since this system is time-invariant the generalized transposition
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Fig. 6. Flow-graph of a decimation-in-time FFT algorithm for 8 points.

coincides with the conventional transposition and, as is well known, leads to a
decimation-in-frequency FFT algorithm {ref. 8, sec. 6.3.2). Since the imple-
mentation of the FFT in fig. 6 has complex parameters, the hermitian transpose
will be different from the generalized transpose. From the transposition theorem
it follows that the hermitian transpose implements the inverse discrete Fourier
transform with a decimation-in-frequency FFT algorithm.

The system in the next example has real parameters. Without ambiguity we
then use the term transposition, Figure 7a depicts an implementation of a
decimator *) derived from a FIR filter with linear phase and sampling rate
decrease. Use is made of the symmetry of the impulse response to reduce the
multiplication rate. The transmission function of the system is

H,(0,8) = H (& w (0 — N§), (44)
where

A (&) = (ho + 2 hy cos k&) exp (— ME).

k=1
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al

b) + tn @

Fig. 7. (@) Implementation of a linear phase FIR filter for sampling rate reduction (decimator).
(b) Transpose of the decimator. This structure realizes an interpolator.
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If X,(0) is the input spectrum the output spectrum equals
N—-1

18 71 i 0 — 2nk - 60— 2k s
b()_R?Z(N)“(N)' )

k=0
In such a decimator A has a low-pass characteristic with cut-off frequency at
w = 7/T,. A schematic representation of H(f) and the spectra is given in
figs 8a, b and ¢. The transpose of this decimator is shown in fig. 7b and according
to the transposition theorem it has the transmission function

H,,"(0,8) = H(0) w (£ — NO). (46)
A (o)
al ¥ £ 1 —
- -n/3 /3 g —= 0
-/ Ty g —=w
X, (6)
O IIITITIITNNNY
- -n/3 ] b4 —=0
-/ T, /3T =n/Tp /Ty —ew
Y, (8]
c I
- T — g
-/ Ty /Ty —e=w
xIte)
@ NN
- .3 — 4
-/ Ty /Ty —ew
vIie)
e/ " / \; 7
i /3 7’3 P ——
-n/T Sy, —ew

Fig. 8. Spectra of various signals of systems in figs 7a and &; (a) characteristic of the func-
tion FI, (b) input spectrum of decimator, (¢) output spectrum of decimator, (&) input spectrum
of interpolator, (e) output spectrum of interpolator.
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Excitation of this transpose system with an input signal with spectrum X,T(6)
gives the output spectrum

Y,7(0) = H(0) X,"(NO) (47)

as shown in figs 8 and 8e. It can be concluded that this transpose system is an
interpolator *=%). In fact this system is a particular implementation of an inter-
polating FIR filter that was previously proposed by Bellanger and Bonnerot °).
It is important to note that use is again made of the symmetry of the impulse
response of the FIR filter to reduce the number of multiplications, in contrast
to conventional implementations of an interpolator 3-¢). This is an immediate
consequence of the corollary in sec. 4.

The following example concerns a Weaver single-sideband modulator shown
in fig. 9a. In this system M is a low-pass filter with cut-off frequency at w/27T,,

cos (n w/2) cos/n (8, +7r/2N{]

a) —sin[;; (B+ rr/ZN}]

cosﬁ'ﬁ 6. + 1r/2N)]

s.‘nﬁ)( 6.+ rr/2N}]

—sin[r-)(ﬂci» m/2N)]

+

o
b) cos(nm/2) cos[.:1 (8.+ W/ZN}]
e«jn 2 e,-'nrgcnr/zm
x§in) y&in)
a b
c)

Fig. 9. (@) Weaver single-sideband modulator. () Modulator of fig. 92 extended with addi-
tional input and output. (¢) Complex representation of the modulator of fig. 95.
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as shown in fig. 10a. For the input spectrum in fig. 106 the output spectrum
of fig. 10c¢ results. Extending this modulator as shown in fig. 95 we obtain a
real implementation of the complex system shown in fig. 9¢. Of course for
real input signals the real part of the output signal of the complex modulator
is the same as the output of the modulator in fig. 9a. The transmission function
of the complex modulator equals

H,,5(0,6) = A6 — 6. — /2N) w [§— N(6— 6,)] (48)

and a sketch of the output spectrum Y,(0) is given in fig. 10d, assuming the
input spectrum of fig. 105. Due to the form of the output spectrum the complex
system may be called an upper sideband modulator. The hermitian transpose
of this system is obtained by flow-graph reversal and changing the elements
as prescribed by table II. In this case all elements remain the same except for
the SRI, which is replaced by an SRD. The transmission function of the her-
mitian transpose system is

H,,™(0,6) = H(E + 0, + =/2N) w [0 — N( + 0)]. (49)
Ae)
a) L {
- -n/2N  w/2N T —= g
-/ Ty -n/2T,  W/2T, /Ty —euw
Xo (8) =xEt8)
P NN
- T —e g
-/ Ty Ty —ew
[ RALC
8 7 Y
- -m/N-6. 6 8, Be+w/N w —= 0
-/ Ty /T, —=w
Vi)
PR S \\ I
- 0 B+m/N T —= g
-/ Ty /T, —ew

Fig. 10. (&) Transmission function of filter H in fig. 9. (b) Input spectrum of the modulators
in fig. 9. (¢) Output spectrum of the Weaver modulator of fig. 9a. (d) Output spectrum of
the complex modulator of fig. 9¢.
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xEe)=xET(0)

MM NN

» W

4

-t -w/N-8; -6, 0 8. Bctm/N —= g
-/ Ty Ty —ew
vs'ta)
b vz
- T — g
-/ Tg /Ty —=w
Y<Tre)
N
& M\
- T —= g
-t/ Ty w/la —=w

Fig. 11. (a) Input spectrum of the transposes of the modulators of fig. 9. (6) Output spectrum
of the hermitian transpose of the modulator of fig. 9¢. (¢) Output spectrum of the generalized
transpose of the modulator of fig. 9c.

For the input spectrum X,“H(0) of fig. 11a the output spectrum is sketched
in fig. 11b, and the hermitian transpose can be seen to be a lower sideband
demodulator. In accordance with the discussion in sec. 4, the transpose of the
modulator of fig. 95 will be a real implementation of the hermitian transpose
of the complex modulator, and when only real parts are considered the trans-
pose of the Weaver modulator of fig. 9a results and is a single-sideband de-
modulator. If we apply generalized transposition to the complex modulator of
fig. 9¢, then not only must we replace the SRI by an SRD but we must also
replace n by —n in the modulation function. This yields the transmission function

Hyp(0,6) = H(E— 0. — m/2N) w [6— N(&— 0,)]. (30)

The output spectrum of this system is shown in fig. 1 1¢ and it can be concluded
that the generalized transpose of an upper sideband modulator is an upper side-
band demodulator.

As a final example the TDM-FDM translator discussed in ref. 7 can be
mentioned, which in its most general form contains complex-valued signal
processing operations. The structure of the corresponding FDM-TDM trans-
lator is found by applying hermitian transposition to the TDM-FDM system.
Generalized transposition too will yield an FDM-TDM translator but, for a
complex system, will have a slightly different implementation.
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6. Sensitivity analysis

An important application of Tellegen’s theorem is the derivation of for-
mulae for the sensitivity of transmission functions to changes of system param-
eters ®'#). Such formulae are important for determining the influence of param-
eter quantization ®) on the system characteristics. Moreover, as indicated by
Jackson 2°) there is a close relation between the coefficient sensitivity of a
network and its roundoff noise resulting from signal quantization.

Completely analogous to the method given by Fettweis, a sensitivity for-
mula for time-varying discrete-systems can be derived from any of the two
forms of Tellegen’s theorem as stated in sec. 3. Here only the result of the
derivation will be given.

Consider a system § as depicted in fig. 124. The input and output nodes are
labeled @ and b respectively, and the transmission function between these nodes
is Hy,(0,£). We assume a transmittance F;;(6,£) in the branch connecting node i
to node j, and want to determine the influence of changes of F,, on H,, To
this end we introduce a system S’ which is identical to S except for the branch
that connects node i to node j, which has a transmittance F;,(0,8) + AF;(0,£).
Denoting the transmittances in S’ by primed variables, the following expres-
sion for the variation of H,, can be derived:

VAN
AHba(Bsg) = Hba’(asf)_ Hba(ezf)

(51)
— Hbj(es i ) . AF_‘,’!( T ') L4 Hial( K ,§),

"1}0
T

a)

b)

Fig. 12. (a) Discrete-time system S realizing the transmission function H,,. () Discrete-time
system S’ obtained from § by perturbing the transmittance F;; by AF;,.
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where the notation introduced in sec. 2 is used. Equation (51) describes a
cascade of three subsystems as shown in fig. 134. Since H;,’ too is a trans-
mission function of the perturbed system S’, we may likewise write

Hm’(o,(f) = Hm(ﬂ,f) =+ AHia(G&g)s (52)
Hig 4Fj; Hyy
% D alTI i J Tb D
i AHpq :
A I—_——

b/ D) e A Mg | D
T ; : T
a JU_,’ b

Fig. 13. (a) Flow-graph of the cascade that realizes the variation AHj, of the transmission
function Hp, due to a change AF;; in Fj; in the system S. (b) Alternative network that realizes
AH,, and only contains transmission functions of S.

where AH,(0,8) is given by (51) but with index b replaced by i It therefore
* follows that

Hl‘a’(ga‘:t) = Hia(ﬁaf) == Hij(ﬁa ' ). AFji( T ) . Hia,( ' 55) (53)

and thus H,;,'(6,£) is the solution of this integral equation. The interpretation
is that H,,(0,£) may be constructed by a cascade of H;, and a feedback loop
with transmission function AF;; and H,; as shown in fig. 13b. Apart from AF;;
this latter system only contains transmission functions of the unperturbed
system S. If each of the transmission functions in eq. (53) describes a time-
invariant system, then the cascade operation becomes a simple multiplication
and the well-known relation for large scale variations 8-21) follows immediate-
ly #). Such an explicit relation does not exist in the general time-varying case,
but repeated substitution of (53) into (51) leads to the Neumann series

AH,0,8)
— Hbj(as.). [AFji('s ') + AEii('a '). Hij(_' s')'AEii('s')+ .-.]‘Hm(',&)-
(54

The terms in the brackets are related to network sensitivities of increasing
order 2!). In particular the first term

Hbj(ﬂs').AFji('a').Hw('5‘E) (55)

*) Such a simplification is also possible if both AF;; and H;; are transmission functions
corresponding to time-invariant impulse responses.
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gives the first-order variation of H,, to changes in the transmittance F;;. For
the specific case that only a constant multiplier with coefficient 4;; connects
node i to node j this expression yields the sensitivity
OH,(6,€)
Dl

= Hyf(0, ) » Hi(-.,) (56)

which very much resembles the familiar relation for time-invariant systems 3-18).

Finally, in eq. (56) the transmission function H,;(6,&) may be replaced by
H;,"(£,6), which is the transmission from node b to node j in the generalized
transpose system S™. With this modification the sensitivity of H,, with respect
to all network coefficients can be determined by analysing once the original net-
work (to obtain all /;,(0,£)) and once its transpose (to obtain all /;,7(&,0)) '®).

7. Extension to systems with continuous-time and discrete-time signals

The foregoing discussion can easily be extended to networks that contain
both continuous-time and discrete-time signals. In such systems we must allow
elements with analogue inputs and digital outputs or vice versa. Such elements
have impulse responses of the form fi4,(n,7) and h,4(z,m) with corresponding
input—output relations

o0

yd(n) — f hdﬂ(n’r) xa(T) dz (57)
and
ya(t) = Z had(r’m) xd(m) (58)

respectively. Natural candidates for such elements are the ideal A/D converter
(in which amplitude quantization effects are disregarded) and the idealized
D/A converter (that produces weighted & functions), which have the impulse
responses d(nT— 7) and &(r— mT) respectively, where T is the sampling
period of the devices. The transmission functions of these hybrid elements
are now defined by

1 © ©
Hda(GS'Q) é 5_" Z f /"'da(n'or) eXp [7.](”6I - QT)] dr (59)

T n=—owx —w

for analogue input and digital output, and

1 o a
H,g(w,£) é = o Z hag(t,m) exp [—j(ewt — mé)] dt (60)

n—m m=—0
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for digital input and analogue output. Applying these definitions we find that
the transmission functions of the A/D converter and the D/A converter are
given by wi (6 — QT) and i (wT — &) respectively. The corresponding spectral
relations can be obtained from

Yo(0) = [ Hal(6,92) X,(2) d2 (61)

— G0

and

Ya({’u) = f Had(waf) Xd(&) d‘f (62)

—R

With the transmission functions thus defined it is easy to modify Tellegen’s
theorem and the transposition theorem in such a way that hybrid systems con-
taining both continuous-time and discrete-time subsystems can also be dealt
with. It then follows that the A/D converter and the D/A converter are mutually
transposed.

8. Conclusions

Two forms of Tellegen’s theorem have been derived that are applicable to
any pair of linear discrete-time networks with the same topology. Both forms
of this theorem suggested a definition of transposition, which were called
hermitian transposition and generalized transposition respectively, thus gener-
alizing the transposition concept that hitherto only applied to time-invariant
systems.

Next a transposition theorem was given that relates the transmission function
of a linear network to that of its hermitian or generalized transpose. In contrast
to the time-invariant case where the transpose has the same transmission func-
tion as the original network, the transposes in the time-varying case realize
functions that in a sense are complementary to that of the original network.
As examples it was shown that the hermitian transpose of an FFT implemen-
tation performs the inverse transform, transposition of a decimator yields an
interpolator and a modulator became a demodulator after transposition. There-
fore transposition offers a simple and effective way to derive implementations
of systems that realize such a complementary operation once the implementa-
tion of the original operation is known. In particular when the original system
has been optimized with respect to multiplication rate the transpose will
automatically be optimal in this sense too.

Sensitivity formulae were derived that make it possible to compute the in-
fluence of small- and large-scale changes of network elements on the trans-
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mission function of a system. Finally an extension was discussed to networks
that consist of both continuous-time and discrete-time parts.
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