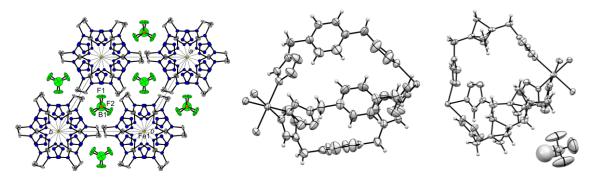

Zero- to three-dimensional iron(II) spin crossover coordination compounds – from ligand design to tunable spin switching behaviour


D. Müller^a, C. Knoll^a, M. Seifried^a, G. Giester^b, M. Reissner^c, <u>P. Weinberger</u>^{a*}
 ^aInstitute of Applied Synthetic Chemistry, TU Wien,
 Getreidemarkt 9/163, 1060 Vienna (Austria)
^bFaculty of Geosciences, Geography and Astronomy, University of Vienna,
 Althanstrasse 14, 1090 Vienna (Austria)
^cInstitute of Solid State Physice, TU Wien,
 Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)
weinberg@mail.zserv.tuwien.ac.at

Synthetic expertise acquired by the preparation of zero- to three-dimensional iron(II) coordination compounds based on N1-functionalized tetrazole ligands is helping to establish building principles aiming for a rational design and tunable spin switching behavior. Homologous series of halogen-substituted mononuclear complexes are

evaluated with respect of electronic and steric effects on the spin transition temperature, *e.g.* the 3-halo-substituted propyltetrazole (3X-3tz) with X= F, Cl, Br and I (see Figure 1). Furthermore, a comparative study of polynuclear chaintype compounds with modified bridging ligand design is presented (see Figure 2) showing the impact of ligand rigidity on the spin transition behavior.

Figure 1: $[Fe(3CI-3tz)_6](BF_4)_2$

Figure 2: $[Fe(3ditz)_3](BF_4)_2^1$ (left), $[Fe(p-xy/ditz)_3](BF_4)_2$ (center) and $[Fe(pptz)_3](BF_4)_2$ (right)

References: [1] D. Müller, C. Knoll, B. Stöger, W. Artner, M. Reissner and P. Weinberger, *Eur. J. Inorg. Chem.*, **5-6** (2013) 984–991.