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ABSTRACT
The paper presents a model for the evolution of an infectious dis-
ease in a population with individual-specific immunity. The immune
state of an individual varies with time according to its own dynamics,
depending on whether the individual is infected or not. The model
involves a system of size-structured (first-order) PDEs that capture
both the dynamics of the immune states and the transition between
compartments consisting of infected, susceptible, etc. individuals.
Due to the unavailability of precise data about the immune states
of the individuals, the main focus in the paper is on developing
a technique for set-membership estimations of aggregated quanti-
ties of interest. The technique involves solving specific optimization
problems for the underlying PDE system and is developed up to a
numerical method. Results of numerical simulations are presented
for a benchmarkmodel of SIS-type, potentially applicable to diseases
like influenza and to various sexually transmitted diseases.
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1. Introduction

Ever since the seminal work by Kermack and McKendrick [14] compartmental models,
such as SIR- or SIS-models, play a prominent role in mathematical epidemiology. The idea
behind suchmodels is to divide the population into several groups such as susceptibles (S),
infectives (I), and recovered (R), and to study the interactions between these groups and
in particular the transition of individuals from one group into another.

It is obvious that the immune system of individuals plays an important role in this pro-
cess by counteracting the pathogen inside the body. The exact understanding of how this
process works and the modelling of in-host dynamics is the aim of immunology. An intro-
duction to this disciplinemay be found in [20]. In an epidemiological context immunology
is important because the state of the immune system influences, for example, the suscep-
tibility, infectivity, and recovery of individuals. The combination of these two disciplines,
sometimes referred to as ‘immunoepidemiology’ ([5,11,19]), is therefore a natural conse-
quence. One way to achieve this is to model the within-host dynamics of the pathogen
and couple this with an epidemiological model by assuming that the state of within-host
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dynamics influences the transmission of the pathogen between hosts. This approach has
lead to a number of contributions, e.g. [1,3,7,9,10].

We will instead focus on the influence on the epidemiological dynamics of the waning
and boosting of the immune response towards a disease. A short explanation of why the
immune response increases and decreases depending on exposure to a pathogen can, for
example, be found in [5]. One approach to capture the waning of immunity towards a dis-
ease is to introduce additional subclasses of, for example, recovered individuals [12,22] or
individuals with waning immunity from vaccination [18,21]. This approach has the advan-
tage that the dynamics are still described by an ODE model; however, these ODE systems
can become large if many compartments are added. Another approach is to assume that
the recovered population is structured with respect to the immune status of the individ-
uals. This approach retains the low-dimensionality of the equations, however at the cost
of introducing a PDE into the system [6]. Such systems can also be formulated to include
boosting of the immune system for the recovered population as well [5]. Other approaches
to model the boosting of the immune system during the infective period leads to mod-
els with multiple structured populations [19]. We will study dynamical systems in which
every sub-population is structured with respect to the host immunity. An example of such
a model can be found in [26].

In this paper we present a model for the evolution of the susceptible and infected sub-
populations (SIS-model) in which the immunity of individuals has its own dynamics,
depending on whether the individual is susceptible of infected. The model involves a sys-
tem of first-order PDEs (of the type of the so-called size-structured systems), which is
similar to (but different from) [26]. It could be interpreted in terms of an influenza infec-
tion, but similar models may be appropriate to simulate sexually transmitted diseases [4].
In [26], it is argued that this framework can also be used tomodel microparasite infections.

To numerically simulate heterogeneous models, such as the one developed here, the
initial distribution of the population along the possible immunity states has to be known.
However, precise information about this distribution is not available in practice. Therefore,
we develop a method to estimate the dynamics of the disease under uncertain initial con-
ditions, based on available data only. It builds on the general approach of set-membership
estimation under deterministic uncertainty (see, e.g. [15–17]).

The paper is organized as follows. In Section 2 we introduce a benchmark SIS-model
with heterogeneous immunity, which consists of a pair of size-structured first-order PDEs.
In Section 3 we begin the investigation of this model by studying its steady-state distribu-
tions. In Section 4 we present a more general class of models (including SIR-models, for
example), and develop the appropriate set-membership estimation technique. This allows
us to estimate the evolution of the disease without complete knowledge of its initial state.
Finally, in Section 5, we apply this technique to the benchmark model to gain additional
insights about the steady states found in Section 3 and to study howdifferences in the initial
distribution influence the short- and long-term behaviour of the disease.

2. The heterogeneous SIS model

In themodel belowwe consider a closed population of fixed size, a part of which is infected
by influenza. Each individual has an immunity level characterized by a number ω ∈ [0, 1]:
the larger is ω, the higher is the immunity of an individual. The level of immunity has its
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own dynamics. If an individual is susceptible (i.e. not infected, in the present context) in a
time interval [τ , θ), then her immunity level obeys the equation

ω̇(t) = d(ω(t)), ω(τ) = ωτ , t ∈ [τ , θ), (1)

where ωτ is the immunity level at time τ and d(ω) is the velocity of decrease of immunity
at immune state ω. Thus, d : [0, 1] → (−∞, 0].

Similarly, e : [0, 1] → [0,∞) represents the velocity of increase of immunity of infected
individuals: the dynamics of the immune state of an individual which is infected in [θ , η)

is described by the equation

ω̇(t) = e(ω(t)), ω(θ) = ωθ , t ∈ [θ , η). (2)

Of course, if a susceptible individual becomes infected at time θ , then the dynamics of her
immune level switches from Equation (1) to (2), then switches back to Equation (1) at the
time of recovery. In the long run, such switchings may happen several time. Notice that
the dynamics of the immune state is not individual-specific – the laws (1) and (2) apply to
each individual.

In order to ensure existence and uniqueness of the solutions of the above ODEs, and
invariance of the interval [0, 1] (which is required in order to make the model meaningful)
we assume that d and e are continuously differentiable and d(0) = e(1) = 0. This resembles
the assumption that the interval [0, 1] contains all possible immune states.

Now, we describe the model of the evolution of the susceptible and the infected sub-
populations, beginning with some notations. The numbers S(t,ω) and I(t,ω) represent
the sizes of the susceptible/infected subpopulations of immunity state ω at time t. The sus-
ceptibility of a susceptible individual depends on the immunity state and is denoted by
p(ω) ≥ 0. The infectivity of an infected individual may also depend on the immunity state
and is denoted by q(ω) ≥ 0. The recovery rate of an infected individual of immunity state
ω is denoted by δ(ω) ≥ 0. Finally, σ(t) ≥ 0 is the strength of infection or effective con-
tact rate. It is reasonably assumed to depend on time in order to capture possible seasonal
changes or other time-dependent effects.

Notice that the total population size can be represented as

N(t) =
∫ 1

0
[S(t,ω) + I(t,ω)] dω.

In the model below, it will be assumed that the total population size remains constant,
therefore one may normalize it to N(t) = 1. Then under the assumption of proportional
mixing (see, e.g. [8]), the incidence rate takes the form∫ 1

0 q(ζ )I(t, ζ ) dζ
N(t)

=
∫ 1

0
q(ζ )I(t, ζ ) dζ . (3)

The evolution of the susceptible/infected individuals, regarding the changes of the immu-
nity state, is described by the equations

∂

∂t
S(t,ω) + ∂

∂ω
(d(ω)S(t,ω)) = −σ(t)p(ω)

∫ 1

0
q(ζ )I(t, ζ ) dζS(t,ω) + δ(ω)I(t,ω),

∂

∂t
I(t,ω) + ∂

∂ω
(e(ω)I(t,ω)) = σ(t)p(ω)

∫ 1

0
q(ζ )I(t, ζ ) dζS(t,ω) − δ(ω)I(t,ω),

(4)
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complemented with the initial conditions

S(0,ω) = S0(ω), I(0,ω) = I0(ω), ω ∈ [0, 1], (5)

and the boundary (zero-flux) conditions

d(1)S(t, 1) = 0, e(0)I(t, 0) = 0, t ≥ 0. (6)

In our case we will fulfil the zero-flux conditions by assuming that d(1) = e(0) = 0, which
is not principally necessary, but is reasonable and makes the analysis technically simpler
(see Remark 4.1 in Section 4.1). For simplicity, the data p, q, δ, σ , S0, I0 are assumed to be
continuous functions (although this assumption can be easily relaxed – only measurability
and boundedness suffice). Also it is reasonably assumed that d(ω) < 0 and e(ω) > 0 for
ω ∈ (0, 1) (strict loss/gain of immunity if not-perfect/missing), and that p(0) > 0, q(0) >

0. Due to the normalization of the population size, we have to assume also that
∫ 1
0 [S

0(ω) +
I0(ω)] dω = 1.

Equations (4) have a clear micro-foundation: they can be derived (like in physics) by
calculating what amount of individuals will enter/leave immunity state interval [ω,ω +

ω] in a time horizon [t, t + 
t], and then pass to a limit with 
t and 
ω. This kind of
size-structured systems are widely used in mathematical biology, while in the context of
epidemiology, we may refer to [19,26].

The exact definition of the notion of solution of equations (4)–(6) will be given in
Section 4.

Remark 2.1: In the above model, we assumed in advance (by taking N(t) = 1) that the
population has constant size. Notice that Equations (4) together with the zero-flux con-
ditions (6) and the natural condition d(0) = e(1) = 0 keep the size of the population
constant (= 1).

Remark 2.2: The assumption that there is no in/out flow of population is somewhat
restrictive. In fact, in- and out-flows of equal amounts of individuals is implicitly included
in the model, provided that the flows have the sameω-distributions as the existing popula-
tion, hence have no effect on S and I. Moreover, the model (4)–(6) can be easily enhanced
to include out-flows due to mortality (also additional mortality caused by infection) and
migration, and in-flows of new-borns and immigrants, having heterogeneous immunity
states. This is just a matter of adding new terms in Equations (4) and replacing the inci-
dence rate with the left term in Equation (3) in order to take into account a possible change
of the population size.

3. Steady states

In this section we investigate the steady states of the benchmark system (4) in the case of
time-invariant strength of infection σ(t) = σ . Steady states are important in the study of
asymptotic behaviour and give valuable information, in general. Although we are, due to
the complexity of themodel, not able to completely describe the steady states or asymptotic
behaviour analytically, the calculations here are the basis for a numerical analysis of the
steady states which will be carried out in Section 5.
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We formally drop the time dependence of the functions S(t,ω) and I(t,ω). This yields
(denoting differentiation with respect to ω by ′)

(d(ω)S(ω))′ = −σp(ω)

∫ 1

0
q(ζ )I(ζ ) dζS(ω) + δ(ω)I(ω),

(e(ω)I(ω))′ = σp(ω)

∫ 1

0
q(ζ )I(ζ ) dζS(ω) − δ(ω)I(ω).

(7)

Note that we have (d(ω)S(ω) + e(ω)I(ω))′ = 0 which implies

d(ω)S(ω) + e(ω)I(ω) = κ = const. (8)

From the zero-flux conditions (6) and the assumption d(0) = e(1) = 0, we obtain that
κ = 0.

3.1. Disease free steady states

First, we look for disease free steady states of Equation (7), i.e. solutions with I(ω) ≡ 0.
Under this condition (8) becomes d(ω)S(ω) = 0 which implies S(ω) = 0 for ω ∈ (0, 1).
Since

∫ 1
0 S(ω)dω = 1, we get that S(ω) = aδ0(ω) + (1 − a)δ0(ω − 1) for a ∈ [0, 1] and

where δ0(ω) is the Dirac-delta. In particular, the only disease free steady state that fulfils
the zero-flux condition d(1)S(1) = 0 is S(ω) = δ0(ω).

3.2. Endemic steady states

Now, we consider the solutions of the steady-state system (7), where I(ω) is not zero almost
everywhere. We furthermore restrict ourselves to solutions where both S(ω) and I(ω) are
non-negative. For this analysis we fix anω∗ ∈ (0, 1). Furthermore, for θ ∈ (0,∞)we define
the three functions

g(θ) = θ∫ 1
0 q(ω) e−

∫ ω
ω∗ σp(ζ )θ

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ dω

, (9)

Iθ (ω) = g(θ) e−
∫ ω
ω∗ σp(ζ )θ

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ , (10)

Sθ (ω) = − e(ω)

d(ω)
Iθ (ω). (11)

First, assume that (S∗(ω), I∗(ω)) solves Equation (7) and is non-negative. Define

θ∗ =
∫ 1

0
q(ω)I∗(ω) dω. (12)

Using Equations (7) and (8), it is easy to show for ω ∈ (0, 1) that I∗(ω) fulfils

I∗′
(ω) = −

(
σp(ω)θ∗

d(ω)
+ δ(ω) + e′(ω)

e(ω)

)
I∗(ω).
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From this we see that for ω ∈ (0, 1), we can write

I∗(ω) = I∗(ω∗) e−
∫ ω
ω∗ σp(ζ )θ∗

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ . (13)

Multiplying this equation by q(ω) and integrating over (0, 1) yields

θ∗ = I∗(ω∗)
∫ 1

0
q(ω) e−

∫ ω
ω∗ σp(ζ )θ∗

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ dω,

which is equivalent to I∗(ω∗) = g(θ∗). Plugging this into Equation (13), we see that
I∗(ω) = Iθ∗(ω), and using Equation (8), that S∗(ω) = Sθ∗(ω). Note that because the solu-
tion is assumed to be non-negative and that I∗(ω) is not identically zero, we get that
θ∗ > 0.

Now conversely assume that θ > 0. Then it is obvious that Iθ and Sθ are both non-
negative, as g(θ) > 0. Due to our definition of g(θ), it is easy to see that

∫ 1
0 q(ω)Iθ (ω) dω =

θ . Using this, by a simple differentiation of Equation (10), we obtain that for ω ∈ (0, 1)

I′θ (ω) = −σp(ω)
∫ 1
0 q(ζ )Iθ (ζ ) dζ
d(ω)

Iθ (ω) − δ(ω) + e′(ω)

e(ω)
Iθ (ω). (14)

Multiplying Equation (11) with d(ω)/e(ω) and plugging the result into Equation (14), then
multiplying by e(ω) yields

(e(ω)Iθ (ω))′ = σp(ω)

∫ 1

0
q(ζ )Iθ (ζ ) dζSθ (ω) − δ(ω)Iθ (ω).

Consequently, (Sθ (ω), Iθ (ω)) solves Equation (7) on the open interval (0, 1). Thus, we have
proven the following theorem.

Theorem 3.1: Choose ω∗ ∈ (0, 1). Let g(θ), Iθ (ω) and Sθ (ω) be defined as in Equa-
tions (9)–(11) respectively.

• If θ > 0, then (Sθ (ω), Iθ (ω)) solves Equation (7) for all ω ∈ (0, 1).
• If (S∗(ω), I∗(ω)) solves Equation (7), define θ∗ as in Equation (12). Then θ∗ > 0 and

(S∗(ω), I∗(ω)) = (Sθ∗(ω), Iθ∗(ω)) for all ω ∈ (0, 1).

This theorem shows that there is a one-to-one correspondence between non-negative
solutions of Equation (7) on (0, 1) and positive numbers θ . In general, the total population
N in these solutions is not 1, as is assumed in our case. We are therefore now looking for
solutions for which this condition is fulfilled. Using Equations (10) and (11) this yields

1 =
∫ 1

0
Iθ (ω) + Sθ (ω) dω

=
∫ 1

0
g(θ) e−

∫ ω
ω∗ σp(ζ )θ

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ − e(ω)

d(ω)
g(θ) e−

∫ ω
ω∗ σp(ζ )θ

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ dω

= g(θ)

∫ 1

0

(
1 − e(ω)

d(ω)

)
e−

∫ ω
ω∗ σp(ζ )θ

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ dω.
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Using Equation (9), we see that for θ ∈ (0,∞) this is equivalent to

r(θ) = 0,

where r(θ) is defined as

r(θ) =
∫ 1

0

((
1 − e(ω)

d(ω)

)
θ − q(ω)

)
e−

∫ ω
ω∗ σp(ζ )θ

d(ζ )
+ δ(ζ )+e′(ζ )

e(ζ )
dζ dω. (15)

We see that r(0) < 0 (possibly−∞) and r(θ) > 0 (again possibly infinite) for any θ bigger
than supω∈[0,1] q(ω) =: Q. Therefore any solution of the equation r(θ) = 0 must lie in the
interval (0,Q). With this notation, we arrive at the following corollary.

Corollary 3.1: The system (7) has a solution that fulfils the zero-flux condition, is non-
negative, and fulfils N=1 if and only if the function r(θ) has a root θ∗ ∈ (0,Q). In this case,
the solution is given by (Sθ∗ , Iθ∗). This solution is unique if and only if this root is unique.

We note that one can show that r(θ) is continuous on the set where it is bounded. The
question of the existence of a solution to r(θ) = 0 is therefore closely connected to the ques-
tion of where r(θ) is bounded. This however, cannot be answered in general and depends
on the particular choice of parameter functions. The same applies to the uniqueness.

In epidemiological models, it is common that one can define an indicator λ such that if
λ is below a certain threshold there exists no endemic steady state, and there exists a unique
steady state if λ is above this threshold. In the current context, such an indicator could be
the number of roots of r(θ) in [0,Q]. It is an open question to obtain an indicator of similar
kind as the basic reproduction number.

4. Set-membership estimation

In order to calculate a solution of system (4), one needs to know the initial distribu-
tions of the susceptible and infected subpopulations along the heterogeneity ω, that is,
S(0,ω) and I(0,ω). However, this information is usually not available in detail. We may
assume that the total number of susceptible and infected individuals at time 0, that is, the
quantities S(0) = ∫ 1

0 S(0,ω) dω and I(0) = ∫ 1
0 I(0,ω) dω, are known. We may also have

additional information about the initial distributions, for example, point-wise constraints
of the form u(ω) := (S(0,ω), I(0,ω)) ∈ [φ1(ω),φ2(ω)] where φ1 and φ2 are known func-
tions. More generally, we summarize the available information about the initial data as
u(·) ∈ U , where U is a closed, convex and bounded subset of L∞ := L∞([0, 1] 	→ R

n+).
Below in this section, we will formulate the problem of set-membership estimation of the
aggregated state of the system, y(t) := (

∫ 1
0 S(t,ω) dω,

∫ 1
0 I(t,ω) dω), based on the informa-

tion u(·) ∈ U about the initial data and the systems dynamics. Moreover, a computational
tool for finding (approximating) the set-membership estimation will be provided. This will
be done in a more general framework, including other (also higher dimensional) models
of interest in epidemiology and beyond.
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4.1. Formulation of the general model

Below x : [0,T] × [0, 1] → R
n will be viewed as a distributed state function and y :

[0,T] → R
m – as an aggregated state function, with their dynamics given by the equations

∂

∂t
x(t,ω) + ∂

∂ω
(A(ω)x(t,ω)) = f (t,ω, x(t,ω), y(t)), x(0,ω) = u(ω), (16)

y(t) =
∫ 1

0
g(t,ω, x(t,ω)) dω. (17)

The following assumptions will be standing in this section. The function f : [0,T] ×
[0, 1] × R

n × R
m → R

n is differentiable in x and y, the derivatives fx and fy and f itself
are measurable in (t,ω), locally essentially bounded, and locally Lipschitz continuous
in (x, y) uniformly in (t,ω). The function g : [0,T] × [0, 1] × R

n → R
m is differentiable

in x, the derivative gx and the function g itself are measurable in ω and continuous in
t, locally essentially bounded, and locally Lipschitz continuous in x uniformly in (t,ω).
Moreover, f (t,ω, x, y) ≥ −cx, g(t,ω, x) ≥ 0, where c ≥ 0 is a constant and the inequal-
ities (understood component-wise) hold for every (t,ω) and every x ≥ 0 and y ≥ 0.
The matrix function A : [0, 1] → R

n × R
n is diagonal with continuously differentiable

diagonal elements ai(ω), ai(0) = ai(1) = 0 and ai(ω) 
= 0 for ω ∈ (0, 1).

Remark 4.1: The assumptions about f and g are fulfilled in our model (4) with x = (S, I)
and y(t) as in the beginning of the present section. Moreover, there we haveA = diag(d, e)
and the assumptions about A are fulfilled if d and e are as assumed in Section 2. We stress
that the additional assumption d(1) = e(0) = 0made there provides one way to satisfy the
zero-flux conditions (6). In this case, Equations (16), (17) require only initial conditions
to produce a unique solution (see below). If d(1) 
= 0 and/or e(0) 
= 0, then the zero-flux
conditionsmust be ensured by adding the boundary conditions S(t, 1) = 0 and/or I(t, 0) =
0 (see, e.g. the more general consideration in [2]). The approach below is still applicable,
but the calculations become more cumbersome.

As it will be seen below, a solution of Equations (16) and (17) is uniquely defined by the
initial condition

x(0,ω) = u(ω), ω ∈ [0, 1], (18)

where u : [0, 1] 	→ R
n+ is a measurable and bounded function.

The notion of solution of system (16)–(18) can be defined in several ways, but for the
considered problem the method of characteristics seem to be most natural. Let for i =
1, . . . , n, the function ωi : [0,T] × [0, 1] → [0, 1] be defined as the unique solution of the
initial value problem

∂

∂t
ωi(t, ρ) = ai(ωi(t, ρ)), ωi(0, ρ) = ρ,

where ρ is regarded as a parameter for ωi. Due to the assumptions about ai(ω), the map-
ping (t, ρ) 	→ (t,ωi((t, ρ)) is a diffeomorphism of [0,T] × [0, 1] onto itself. Its inverse
has the form (t,ω) 	→ (t, ρi(t,ω)), where ρi is continuously differentiable and satisfies
ωi(t, ρi(t,ω)) = ω and ρi(t,ωi(t, ρ)) = ρ.
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As a motivation for the definition below, we assume that x is a continuously differ-
entiable solution of Equations (16)–(18). Denote zi(t, ρ) = xi(t,ωi(t, ρ)), thus xi(t,ω) =
zi(t, ρi(t,ω)). Then

d
dt
zi(t, ρ) = ∂

∂t
xi(t,ωi(t, ρ)) + ai(ωi(t, ρ))

∂

∂ω
xi(t,ωi(t, ρ)),

zi(0, ρ) = xi(0,ωi(0, ρ)) = xi(0, ρ) = u(ρ),

hence

d
dt
zi(t, ρ) = fi(t,ωi(t, ρ), x(t,ωi(t, ρ)), y(t)) − a′

i(ωi(t, ρ))zi(t, ρ), (19)

zi(0, ρ) = u(ρ). (20)

The above equations motivate the following definition (cf. [2]).

Definition 4.1: The pair of functions x : [0,T] × [0, 1] → R
n and y[0,T] → R

m is a
solution of system (16)–(18) if x has the representation xi(t,ωi(t, ρ)) = zi(t, ρ), t ∈ [0,T],
ρ ∈ [0, 1], where zi(t, ρ) is measurable in ρ and absolutely continuous in t for a.e. ρ, and
Equations (19), (20) and (17) are satisfied almost everywhere.

The definition is correct and x is a measurable function due to the measurability of
z and the fact that (t, ρ) 	→ (t,ωi((t, ρ)) is a diffeomorphism. For the same reason, the
functions xj(t,ωi(t, ρ)) = zj(t, ρj(t,ωi(t, ρ))) in the right-hand side of Equation (19) are
well-defined and measurable. A solution x does not need to be differentiable. It may even
be discontinuous in each of the directions t and ω, but xi is absolutely continuous along
almost every characteristic line (t,ωi(t)).

Lemma 4.1: If (x, y) is a solution of Equations (16)–(18) then the mappings

[0,T] � t 	→ x(t, ·) ∈ L1(0, 1) and [0,T] � t 	→ y(t)

are continuous.

Proof: The second claim follows from the first due to the Lipschitz continuity of g in x
and the boundedness of x. Let us prove the first claim. For every i = 1, . . . , n and for a.e.
t, τ ∈ [0, 1], we have by change of the variable ω = ωi(t, ρ)

∫ 1

0
|xi(t,ω) − xi(τ ,ω)| dω

=
∫ 1

0
|xi(t,ωi(t, ρ)) − xi(τ ,ωi(t, ρ))| ∂

∂ρ
ωi(t, ρ) dρ
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≤
∫ 1

0
[|xi(t,ωi(t, ρ)) − xi(τ ,ωi(τ , ρ))| + |xi(τ ,ωi(t, ρ)) − xi(τ ,ωi(τ , ρ))|]

× ∂

∂ρ
ωi(t, ρ) dρ

=
∫ 1

0
|zi(t, ρ) − zi(τ , ρ)| ∂

∂ρ
ωi(t, ρ) dρ +

∫ 1

0
|xi(τ ,ω) − xi(τ ,ωi(τ , ρi(t,ω)))| dω

≤ c1|t − τ | +
∫ 1

0
|xi(τ ,ω) − xi(τ ,ω + ε(ω, t, τ))| dω,

where |ε(ω, t, τ))| ≤ c2|t − τ | (c1 and c2 are appropriate constants). It is a standard fact
from the analysis (a consequence fromLousin’s theorem, for example) that the second term
converges to zero when t → τ . �

Existence and uniqueness of a solution can be proved by a fixed-point argument simi-
larly as in [2]. Although in some respects the problem in that paper is more general than
the one considered here, the additional assumption ai > 0 is made in [2], which is not ful-
filled even for our heterogeneous SIS model. The existence proof for Equations (16)–(18);
however, requires only a minor modification.

4.2. The set-estimation problem

As explained at the beginning of the section, the initial data u(ω) are not assumed to be
exactly known. Instead, we assume that the only information about u(·) is that u ∈ U ,
where U is a given bounded, closed and convex subset of L∞. Every element u ∈ U will
be considered as a possible realization of the uncertainty in the initial data. Let our task be
to obtain information about a part of the components of the aggregated state y at a given
time, say t=T. That is, we wish to estimate the projection prLy(T) on a given subspace
L ⊂ R

m.
Every u ∈ U generates a unique solution (x[u], y[u]) of Equations (16)–(18). Denote

R(T) := {y[u](T) : u ∈ U}.
That is, R(T) is the set of all aggregated states y(T) that result from some possible real-
ization of the uncertainty, u ∈ U . In this sense, R(T) is the exact (meaning minimal)
set-membership estimation of the aggregated state at time T. Thus, the object of our inter-
est is the set RL(T) := prLR(T). Below we adapt a well-known method for obtaining
estimates

E(T) ⊃ RL(T).

Even more, the method allows to obtain outer approximations of arbitrary accuracy to the
convex hull coR(T).

For a fixed l ∈ L, we consider the problem of maximization of

Jl(u) := 〈l, y[u](T)〉 (21)

on the set U , where 〈·, ·〉 denotes the scalar product in R
m. Notice that J is bounded

on U (see Lemma A.1 in the appendix). Without caring about existence of a solution of
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problem (21), we observe that if (ul, yl) is an ε-solution (in the sense that Jεl := Jl(ul) ≥
supU Jl − ε), then

coR(T) ⊂ {y : 〈l, y〉 ≤ Jεl + ε}.
Repeating the same for a mesh {li} in the unit sphere on L, we obtain the set-membership
estimation

coRL(T) ⊂ E(T) :=
⋂
i

{y : 〈li, y〉 ≤ Jεli + ε},

which is the intersection of a finite number of (affine) half-spaces. Furthermore, if ε is
small enough and the mesh {li} is dense enough in the unit sphere in L, the estimation
E(T) provides an arbitrarily fine outer approximation (in Hausdorff sense) to the convex
hull ofRL(T). Notice also that co{yli} provides an inner approximation to coRL(T).

The main issue in the above set-estimation approach is to solve problem (21). For this,
one can apply the standard gradient projectionmethod. In order to implement it, one needs
to calculate the derivative of J(u) and perform projections on U . In the next subsection,
we focus on the first issue, while the implementation of the gradient projection method is
standard and will only be briefly discussed.

4.3. Solving the set-estimation problem

Recall that fx, fy, gx denote the respective derivatives of f and g. Furthermore, let ∗ denote
transposition. Given u ∈ U and the corresponding solution (x, y) := (x[u], y[u]), consider
the following adjoint system:

(
∂

∂t
+ A(ω)

∂

∂ω

)
λ(t,ω) = −fx(t,ω, x(t,ω), y(t))∗λ(t,ω) − gx(t,ω, x(t,ω))∗ν(t)

λ(T,ω) = −gx(T,ω, x(T,ω))∗l,

ν(t) =
∫ 1

0
fy(t,ω, x(t,ω), y(t))∗λ(t,ω) dω

(22)

with respect to λ : [0,T] × [0, 1] 	→ R
n and ν : [0,T] 	→ R

m. This system has the same
structure as Equations (16)–(18) (and is linear), therefore the solution is understood in the
same way, with the same characteristic functions ωi. Thus a solution of (22) exists and is
unique.

Theorem 4.1: The functional Jl : L∞ 	→ R is Fréchet differentiable. Its derivative has an L∞
representation, namely for every u ∈ U

J′l (u)(·) = −λ(0, ·),
where λ is defined by the adjoint system (22). More precisely, for every u ∈ U there are
constants c and η > 0 such that

|J(u + v) − J(u) − 〈J′(u), u − v〉| ≤ c‖v‖2L∞(�) for every v ∈ L∞(�) with ‖v‖ ≤ η,

where 〈·, ·〉 is the scalar product in L2(�).
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The proof of this theorem uses similar arguments as [23, Proposition 1]. However, the
latter concerns a system of a form similar to Equations (19) and (20), but much simpler.
There, the characteristic functions ωi(t, ρ) are the same for each i, which is a substantial
simplification, although mainly technical. Therefore, we sketch the proof of Theorem 4.1
in the Appendix.

The numerical solving of problem (21) is organized as follows. First, we discretize
Equations (16) and (17) similarly as in the recent paper [25], passing in this way to a math-
ematical programming problem. Due to certain symmetry properties of the discretization
scheme used (the Heun scheme for time discretization combined with the trapezoidal rule
for integration), solving the discretized system obtained by the same scheme applied to the
adjoint system (22) allows to calculate the derivative of the objective function similarly as
in Theorem 4.1. Then, we apply the standard gradient projectionmethod formathematical
programming.

We also mention that in order to obtain a good approximation of the set-membership
estimation E(T) it is necessary to solve problem (21) for many unit vectors l in the sub-
space of interest, L. Moreover, estimations E(Ti) at a discrete mesh {Ti} of time instances
may be wished. Naturally, the obtained (approximate) maximizer u for given T = Ti and
l can be used as initial guess for neighbouring instances Tj and vectors l, which makes the
overall estimation procedure tractable on a commercial PC. The critical dimension for the
implementability of the method is that of the space L (not the dimensions n andm, which
can be much larger). Practically, the number of aggregated states yj of interest (i.e. dim(L))
may vary from 1 to 3.

5. Numerical analysis

In this section we apply the results from Section 4 to calculate set-membership estimations
for the benchmark system (4). According to Lemma A.1 in the appendix, the mapping
u → (S[u](t), I([u](t))) is continuous in L∞. Then due to the convexity ofU , the exact set-
estimationR(t) is a connected set. Hence, its projection on the I-subspace is an interval,
[Imin(t), Imax(t)]. Due to the relation S(t) = 1 − I(t), we obtain that

R(t) = {(S, I) ∈ R
2 : S = 1 − I, I ∈ [Imin(t), Imax(t)]}. (23)

Thus, in order to calculate the estimation R(t) it suffices to solve problem (21) for only
two vectors l1 and l2 given by the positive and negative I-axis.

First, we use the method described at the end of Section 4 and demonstrate how this
can be used to analyse the steady states of the benchmark system numerically. The actual
functional parameters for a given disease are hard to obtain (see discussion in Section 6),
therefore to illustrate the method we take parameters of simple form (that fulfil all the
assumptions), where the force of infection and the recovery rate are of a magnitude
appropriate for modelling influenza (see, e.g. [13]):

• σ = 2.5
• p(ω) = 1 − ω,
• q(ω) = 2p(ω),
• δ(ω) = 2ω,
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Figure 1. On the left, we see the function r(θ) plotted over the interval [0,Q]. Note that the function is
not bounded on thewhole interval, but is continuouswhenever it is bounded. On the right, we show the
behaviour of r(θ) near its root. We see that it is strictly monotonically increasing there. In particular, r(θ)

has a unique root given by θ∗ ≈ 0.08707.

• d(ω) = −0.015ω(1 − ω),
• e(ω) = 0.15ω(1 − ω).

Using these parameters we can calculate the function r(θ) as described at the end of
Section 3. In Figure 1 we show the function r(θ) over the interval [0,Q]. Note that Q=2
in our case. From this calculations, we can conclude that r(θ) has a unique root. Hence,
a steady-state exists and it is unique. Having calculated the root θ∗, we can then calcu-
late the steady-state solution (Sθ∗ , Iθ∗). We show this in Figure 2, where we compare the
steady-state solution with the solution to system (4) at t=200, where the components of
u(ω) are given by the functions u1(ω) = e−2ω − e−2 and u2(ω) = e2ω − 1, scaled so that∫ 1
0 u(ω) dω = (0.9, 0.1).
Note that while an order of magnitude apart, the shapes of the steady states for S

and I are identical. This is explained by Equation (8) (with κ = 0) which yields S(ω) =
−(e(ω)/d(ω))I(ω). In our case −e(ω)/d(ω) = 10 from which it follows that the shapes
are identical. This is of course a result of our simple choice of parameters and in general
this will not be the case.

We will use the steady states we found to describe the set U of possible initial distribu-
tions. Namely, we set φ(ω) = (Sθ∗(ω), Iθ∗(ω)) and define

U =
{
u ∈ L∞ :

∫ 1

0
u(ω) dω =

∫ 1

0
φ(ω) dω, u(ω) ∈ [0.5φ(ω), 1.5φ(ω)]

}
.

Thus, we assume that the prevalence I(t) = ∫ 1
0 I(t,ω) dω of the disease is initially as we

would expect in a steady state, but we allow uncertainty in the actual distribution of the
immune level among the population. That the particular initial condition becomes largely
irrelevant for t this large can be seen in Figure 3. There we use the set-membership esti-
mation technique developed in Section 4 to calculate the maximum and minimum value
the prevalence I(t) may achieve. We see that the prevalence converges to a single value
independent of the initial condition.
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Figure 2. We see for both the susceptible and infected population the theoretical steady states Sθ∗(ω)

and Iθ∗(ω) given by the thick black line. The dashed white lines show S(300,ω) and I(300,ω), respec-
tively, where S and I were calculated from system (4) using an exponential initial condition. We also
show the initial conditions and the solution at the earlier point t= 20. On the right, we plot dist(t) =
‖(Sθ∗(ω), Iθ∗(ω)) − (S(t,ω), I(t,ω))‖L1 to show that the solution does indeed converge towards the
steady state.

Figure 3. Set-membership estimation of the prevalence I(t). Note that while for small t the prevalence
can take significantly different values for different initial conditions, for large t both the maximum and
the minimum converge to the same value. On the right, we show in more detail the interval where the
maximum and minimum differ significantly.

We see that with these calculations we can analyse the asymptotic behaviour of the
aggregated variables of system (4). Using the function r(θ), we can determine existence
and uniqueness of an endemic steady-state solution and using the set-membership esti-
mation, we can conclude that this steady state is globally asymptotically stable for all initial
data u(·) ∈ U .

If we significantly decrease the force of infection by taking σ = 0.25, we find that we
can no longer find a root of r(θ), and numerical calculations yield that r(θ) is either plus
of minus infinity on the interval [0,Q]. In Figure 4, we see that the solution does indeed
converge to the disease free steady state, we described in Section 3.
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Figure 4. On the left, we show the set-membership estimation of the prevalence for σ = 0.25. It can be
seen that the disease dies out. On the right, we show the solution S(t,ω) with initial condition u(ω) =
φ(ω). We see that the function does indeed tend towards a Dirac delta atω = 0.

Figure 5. Set-estimation of the prevalence for the system with σ(t) = 2.5(1 + sin( 4π
100 t)/100). The

prevalence I(t) converges to a periodic solution.

We now calculate solutions to system (4) with periodic σ(t). We take all parameters
as in the previous subsection, but change σ to σ(t) = 2.5(1 + sin( 4π

100 t)/100). The results
can be seen in Figure 5. Similar to the case with constant σ the maximal and minimal
prevalence converge towards each other.However, they nowconverge to a periodic solution
that oscillates in accordance with the function σ(t). In Figure 6, we show the results if
the sinus term is dampened less and we take σ(t) = 2.5(1 + sin( 4π

100 t)/10). Qualitatively,
we see the same behaviour as before, but with more pronounced oscillations. Overall we
see that periodic behaviour, which is commonly observed in various diseases, is readily
reproduced by this model.

In conclusion, using the techniques developed we are able to estimate the evolution
of the disease under uncertain information and to numerically describe the asymptotic
behaviour of the system (4) for initial conditions u ∈ U . In particular, we see that while
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Figure 6. Set-estimation of the prevalence for the system with σ(t) = 2.5(1 + sin( 4π
100 t)/10). The

prevalence I(t) converges again to a periodic solution, but with more pronounced oscillations.

the long-term behaviour may be independent of the initial condition u, the short-term
behaviour may change significantly for different u. For example, events that decrease
the immunity of the population may lead to a temporary outbreak of the disease, or an
intervention that is aimed at increasing the immunity will only have temporary benefits.
Using set-estimation we can gain information about possible outcomes of such events and
actions.

6. Conclusions

In this paper we present a model for the evolution of an infectious disease in a population
where the individuals have different immunity and their immune states vary with the time
according to its own dynamics.We propose a set-membership estimation procedure based
on the available information about the initial distribution of the population along the pos-
sible immune states. The rest of the parameters of themodel are assumed known.However,
this is usually not the case: many of the parameters may be uncertain and changing with
the time – the rates of loosing/gaining immunity, d and e, the strength of infection, σ , etc.
The approach in this paper can be enhanced correspondingly, with the difference that the
auxiliary optimization problems that are involved in the set-membership estimations will
become more complex, still being tractable by standard methods in the optimal control
theory of size-structured systems (see, e.g. [24]). Such an enhancement could be a topic of
further research.
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Appendix

Lemma A.1: There exists a constant C such that for every u1, u2 ∈ U and for the corresponding
solutions (x[u1], y[u1]) and (x[u2], y[u2]) of system (16)–(18) it holds that

‖x[u1] − x[u2]‖L∞ + ‖y[u1] − y[u2]‖C ≤ C‖u1 − u2‖L∞ .

Proof: According to the definition of a solution, xi[uj](t,ω) = zi[uj](t, ρi(t,ω)), where zi[uj]
together with y[uj] satisfy Equations (19) and (20) with u = uj, j= 1,2. Then, it is straightforward
that

‖x[u1] − x[u2]‖L∞ = ‖
z‖L∞ ,
where 
zi(t, ρ) = zi[u1](t, ρ) − zi[u2](t, ρ), 
z = (
z1, . . . ,
n).

Let� ⊂ [0, 1] be of fullmeasure and such that the functions zi[uj](·, ρ) are absolutely continuous
for every ρ ∈ �. Then

‖
z‖L∞ = sup
t∈[0,T]


z(t),

where
z(t) := maxi=1,...,n supρ∈� |
zi(t, ρ)| is a Lipschitz continuous function due to the uniform
Lipschitz continuity of
zi(·, ρ). From the assumptions about the data of the system, Equations (17)
and (19), we successively obtain that

|y[u1](t) − y[u2](t)| ≤ c1
z(t),


z(t) ≤ ‖u1 − u2‖L∞ +
∫ t

0
(c2
z(s) + c3|y[u1](s) − y[u2](s)|)) ds

≤ ‖u1 − u2‖L∞ +
∫ t

0
c4
z(s) ds,

where c1, . . . , c4 are appropriate constants. The claim of the lemma follows from Grönwall’s
inequality. �

Proof: Proof of Theorem 4.1 Let u ∈ U and let ũ ∈ L∞(0, 1). Denote ε := ‖ũ − u‖∞, which will be
presumably a ‘small’ number. We denote by (x, y) and (x̃, ỹ) the corresponding solutions of Equa-
tions (16)–(18). Also we denote by zi and z̃i the corresponding z-functions from the definition
of a solution, so that xi(t,ωi(t, ρ)) = zi(t, ρ), similarly for z̃i. Further, 
u := ũ − u, 
x := x̃ − x,

y := ỹ − y, and 
z := z̃ − z. Then using Equation (19), Lemma A.1 and some standard calculus
we obtain that the following equations are fulfilled:

d
dt


zi(t, ρ) = fix(t,ωi(t, ρ))
x(t,ωi(t, ρ)) + fiy(t,ωi(t, ρ))
y(t) − a′(ωi(t, ρ))
zi(t, ρ) + o(ε),


zi(0, ρ) = 
ui(ρ),


y(t) =
∫ 1

0
gx(t,ω, x(t,ω))
x(t,ω) dω + o(ε),

where the superscripts x and y denote differentiation with respect to x and y, the prime in a′ denotes
differentiation in ω, the missing arguments of fix and fiy are obviously x(t,ωi(t, ρ)), y(t), and o(ε)
is any function of ε (possibly depending on t and ρ), such that o(ε)/ε → 0 (uniformly in t, ρ)
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when ε → 0. We mention that the second equation above holds due to zi(0, ρ) = xi(0,ωi(0, ρ)) =
xi(0, ρ) = ui(ρ).

Now, we consider the adjoint system (22) and denote by ζi(t, ρ) = λi(t,ωi(t, ρ)), the function
corresponding to λ in Definition 4.1. Thus

d
dt

ζi(t, ρ) = −fxi(t,ωi(t, ρ))∗λ(t,ωi(t, ρ)) − gxi(t,ωi(t, ρ), x(t,ωi(t, ρ)))∗ν(t),

ζi(T, ρ) = −gxi(T,ωi(T, ρ), x(T,ωi(T, ρ)))∗l,

ν(t) =
∫ 1

0
fy(t,ω, x(t,ω), y(t))∗λ(t,ω) dω.

Using the second last equation and changing the variable ω = ωi(t, ρ), we represent

Jl(ũ) − Jl(u) = 〈l,
y(T)〉 =
∫ 1

0
〈l, gx(T,ω, x(T,ω))
x(T,ω)〉 dω + o(ε)

=
∫ 1

0

n∑
i=1


xi(T,ωi(T, ρ))gxi(T,ωi(T, ρ), x(T,ωi(T, ρ)))∗l
∂

∂ρ
ωi(T, ρ) dρ + o(ε)

= −
n∑

i=1

∫ 1

0

zi(T, ρ)ζi(T, ρ)

∂

∂ρ
ωi(T, ρ) dρ + o(ε). (A1)

Now, we rework the following expression integrating by parts:
n∑

i=1

∫ T

0

∫ 1

0

d
dt


zi(t, ρ)ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) dρ dt

=
n∑
i=1

∫ 1

0

zi(T, ρ)ζi(T, ρ)

∂

∂ρ
ωi(T, ρ) dρ −

n∑
i=1

∫ 1

0

zi(0, ρ)ζi(0, ρ)

∂

∂ρ
ωi(0, ρ) dρ

−
n∑
i=1

∫ T

0

∫ 1

0

zi(t, ρ)

[
d
dt

ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) + ζi(t, ρ)

∂

∂t
∂

∂ρ
ωi(t, ρ)

]
dρ dt.

Then, we use the relation (A1) and the identities


zi(0, ρ) = 
ui(ρ), ζi(0, ρ) = ζi(0, ρi(0, ρ)) = λi(0, ρ),

∂

∂ρ
ωi(0, ρ) = 1,

∂

∂t
∂

∂ρ
ωi(t, ρ) = a′(ωi(t, ρ))

∂

∂ρ
ωi(t, ρ)

to obtain the representation

Jl(ũ) − Jl(u) =
n∑

i=1

∫ 1

0

zi(0, ρ)ζi(0, ρ) dρ + 
 + o(ε) = −

∫ 1

0
〈λ(0, ρ),
u(ρ)〉 dρ + 
 + o(ε),

(A2)
where


 := −
n∑
i=1

∫ T

0

∫ 1

0

d
dt


zi(t, ρ)ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) dρ dt

−
n∑
i=1

∫ T

0

∫ 1

0

zi(t, ρ)

[
d
dt

ζi(t, ρ) + ζi(t, ρ)a′(ωi(t, ρ))

]
∂

∂ρ
ωi(t, ρ) dρ dt.

After substituting the expressions for (d/dt)
zi(t, ρ), (d/dt)ζi(t, ρ), obtained in the beginning of
the proof, changing back the variable ρ = ωi(t,ω), and using the equations for 
y and ν, it is a
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matter of simple algebra to obtain that 
 = o(ε). Then from Equation (A2)

Jl(ũ) − Jl(u) = −
∫ 1

0
〈λ(0,ω), ũ(ω) − u(ω)〉dρ + o(‖ũ − u‖∞),

which implies the claim of the theorem. �
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