

Balanced Manufacturing:

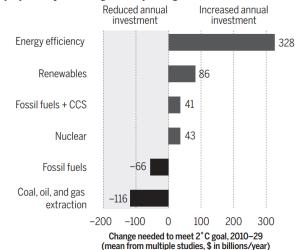
Datenbasierte Modellbildung mittels Machine Learning

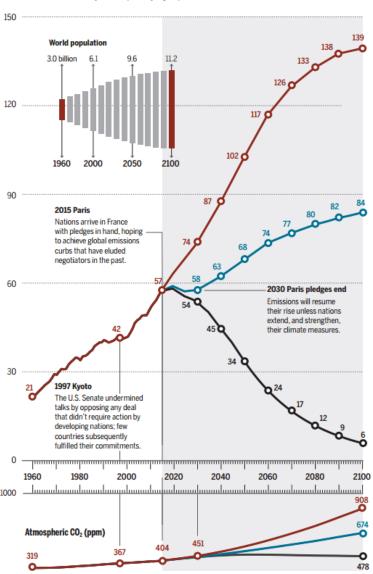
IFT - Institute for Production Engineering and Laser Technology DI Benjamin Mörzinger

Energieeffizienz: Motivation

PARIS AGREEMENT ON **CLIMATE CHANGE (COP21) KEEP GLOBAL TEMPERATURES RISE** WELL BELOW WITH ASPIRATION TO 2°C 1.5°C ALL COUNTIES TO NEW TRANSPARENCY REPORT REGULARLY AND ACCOUNTING ON THEIR EMISSIONS AND SYSTEM IN PLACE EFFORTS TO REDUCE THEM **EVERY REVIEW EACH COUNTRY'S** 5 **CONTRIBUTIONS** TO GHG EMISSIONS CUTS SO THAT THEY CAN BE SCALED UP YEARS DEVELOPED COUNTRIES TO PROVIDE \$100BN CLIMATE FINANCE PER YEAR UNTIL 2025

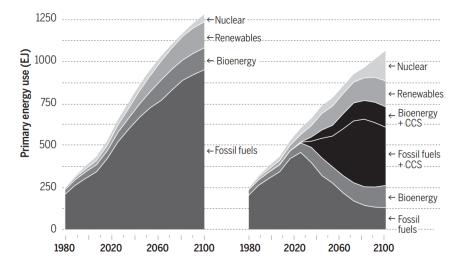
propelled by shifts to greener spending.



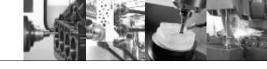


Fossil fuel dominance...

or an energy transformation...



Balanced Manufacturing: Energie als Zielgröße



Monitoring

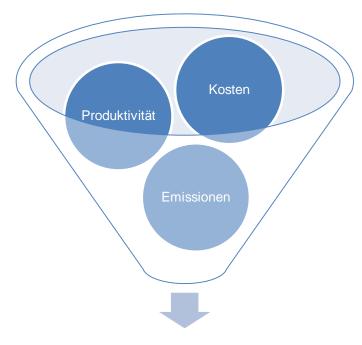
Simulation

Optimierung

Die Zukunft umfasst intelligente Datenaufnahme,-speicherung und –verteilung durch Objekte und Menschen. Dezentrale Steuerungsmechanismen nehmen zu. -Fraunhofer IAO

Die eingebetteten Produktionssysteme sind (...) horizontal zu verteilten, in Echtzeit steuerbaren Wertschöpfungsnetzwerken verknüpft -Arbeitskreises Industrie 4.0, BMBF

Die integrierte Analyse und Nutzung von Daten ist die Kernfähigkeit im Rahmen von Industrie 4.0. -pwc



Handlungsempfehlung

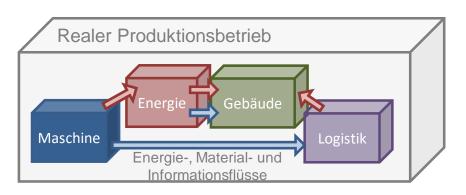
Balanced Manufacturing: Projektkonsortium

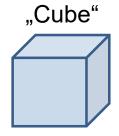
Key Industrial Partners

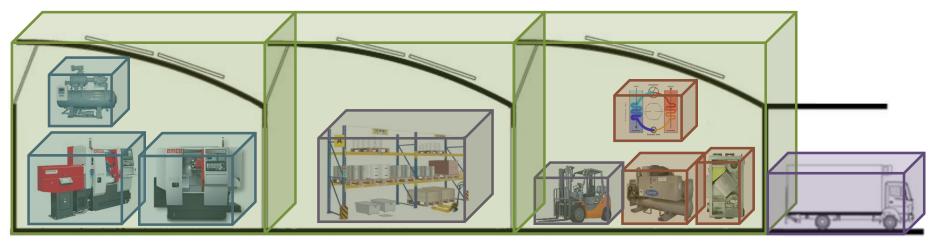
Cubes: Heuristische Systemanalyse

A GOTTE

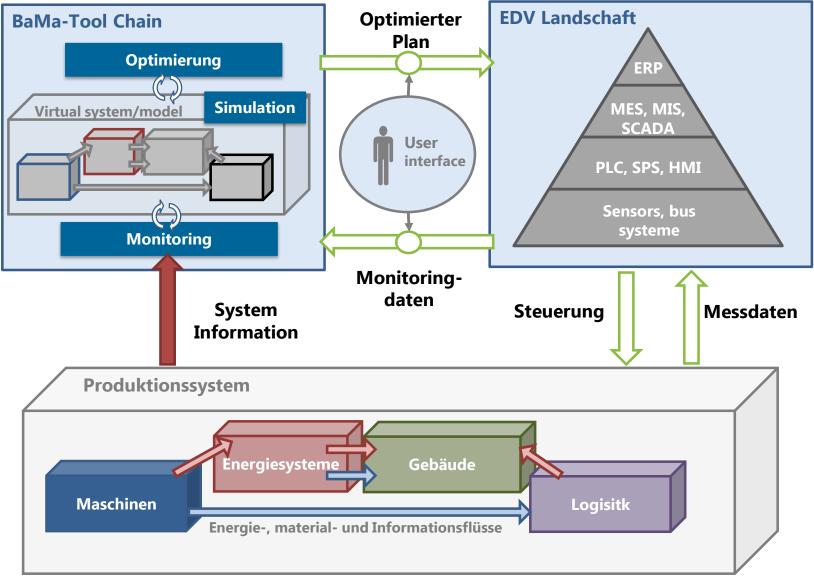
- Virtualisierung des Produktionsbetriebs
 - Komplexes System → Gliederung in Teilbereiche (Cube)
 - Kriterium: energetisches Systemverhalten
 - Modularer Ansatz bringt Flexibilität
- Simulation und Optimierung des virtuellen Gesamtsystems



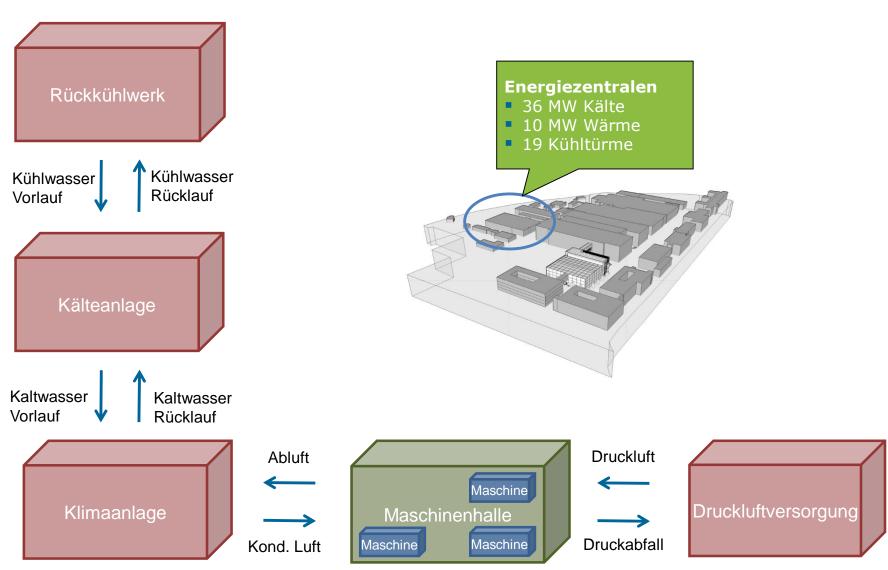




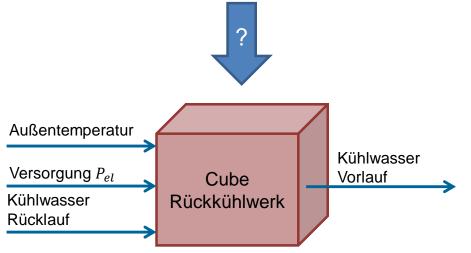
Einbindung in bestehende Systeminfrastruktur

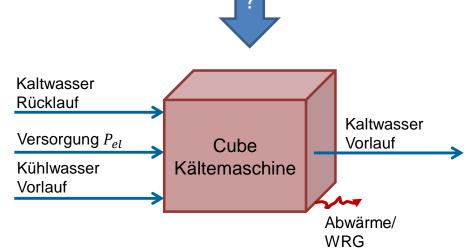


Use Case: Kältezentrale



Use Case: Kältezentrale





Modellierung: White Box

$$\dot{m}_{A_{in}} * c_{W} * T_{A_{in}} + \dot{m}_{B_{in}} * h_{L1} + \dot{m}_{F_{in}} * c_{W} * T_{A_{out}} = \dot{m}_{A_{out}} * c_{W} * T_{A_{out}} + \dot{m}_{B_{out}} * h_{L2}$$

$$\lambda = \frac{l_{tats}}{l_{min}}$$

Inputs	Bezeichnung	Einheit
Eingangstemperatur des Wassers	T_A_in	°C
Massenstrom des Wassers	$m_dot_A_in$	kg/s
Druck im Kühlturm	p_A_in	bar
Ausgangstemperatur des Wassers	T_A_out	°C
Eingangstemperatur des Luftstroms	T_B_in	°C
Wasserbeladung der Luft am Eingang	X_1	kg/kg
relative Mindestluftmenge	l_min	
Signal	Signal	
Feuchtkugeltemperatur der Eingangsluft	T_k1	°C

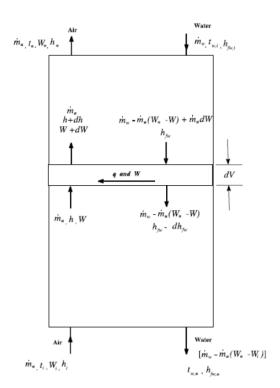
$$h_{L1} = c_{PL} * T_{B_{in}} + c_{PD} * T_{B_{in}} * X_1 + r_0 * X_1$$

$$h_{L2} = h_{L1} + \frac{\dot{m}_{A_{in}} * c_W * \left(T_{A_{in}} - T_{A_{out}}\right)}{\dot{m}_{B_{in}}}$$

$$X_2 = X_1 + \frac{(h_{L2} - h_{L1})}{Le * \frac{(h_{sw} - h_{L1})}{(X_s - h_{L1})} + (h_{gw} - h_{g0} * Le)}$$

$$\dot{Q} = \dot{m}_{Ain} * c_W * (T_{Ain} - T_{Aout})$$

$$\eta_A = \frac{\left(\tau_{Ain} - \tau_{Aout} \right)}{\left(\tau_{Ain} - \tau_{k1} \right)} \qquad \lambda = -\log \left(1 - \left(\frac{\eta_A}{\kappa_0} \right) \right)$$



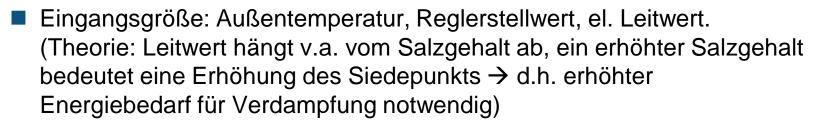
Black Box Ansatz

Generalized Linear Models

$$\hat{y}(\boldsymbol{w}, \boldsymbol{x}) = w_0 + w_1 x_1 + \dots + w_n x_n$$

$$\min_{\boldsymbol{w}} |\boldsymbol{x} \boldsymbol{w} - \boldsymbol{y}|^2$$

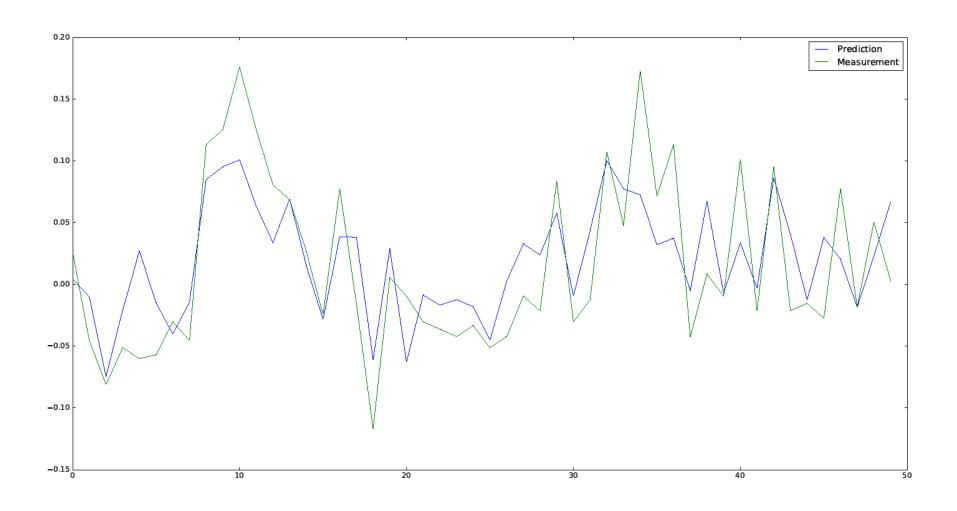
Ausgangsgröße: El. Leistungsbedarf



- Modellqualität: $R^2 \approx 0.74$, $e_{rel} \approx 34\%$
- Methode: Maschinelles Lernen, einfach automatisierbar. Kein spezifisches Domänenwissen nötig.
- Modellverbesserung: Luftfeuchte als Eingangsgröße, komplexere Modelle

Modellierung: Black Box

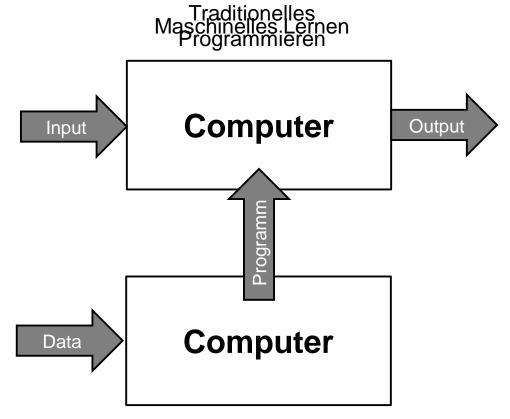


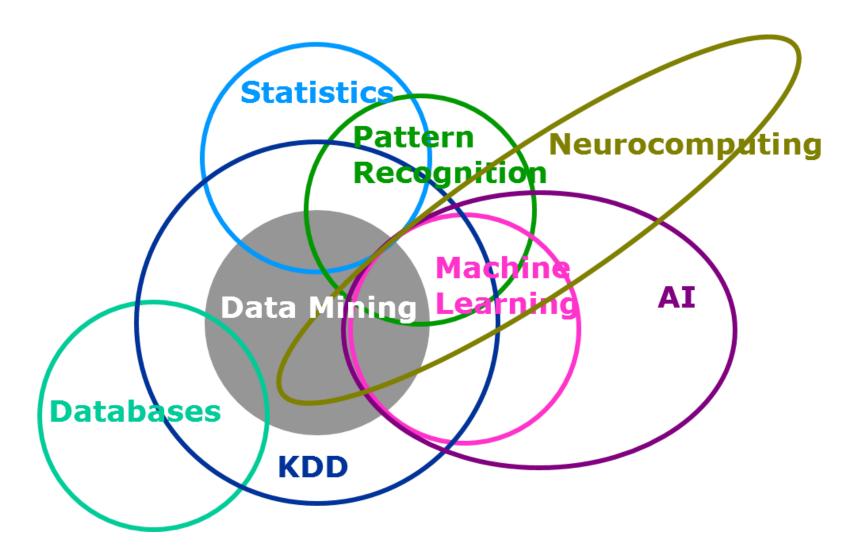


Was ist Maschinelles Lernen?

"Field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel, 1959

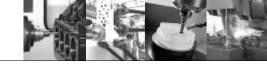




German Traffic Sign Benchmark

- 50,000 Images
- 40 Classes
- size between 15x15 and 250x250

TEAM	METHOD	TOTAL	SUBSET All signs ▼
[3] IDSIA 🙀	Committee of CNNs	99.46%	99 <mark>.46%</mark>
[1] INI-RTCV 🙀	Human Performance	98.84%	98 <mark>.84%</mark>
[4] sermanet 🙀	Multi-Scale CNNs	98.31%	98.31%
[2] CAOR 🙀	Random Forests	96.14%	96.14%
[6] INI-RTCV	LDA on HOG 2	95.68%	<mark>95</mark> .68%
[5] INI-RTCV	LDA on HOG 1	93.18%	93.18%
[7] INI-RTCV	LDA on HOG 3	92.34%	92.34%



DI Benjamin Mörzinger

Technische Universität Wien

IFT - Institut für Fertigungstechnik und Hochleistungslasertechnik Forschungsgruppe Energie- und Ressourceneffizienz

Getreidemarkt 9 / 311 1060 Wien Österreich

Tel.: +43 1 58801 31118 Mobil: +43 6648966685 Email: moerzinger@ift.at www: http://www.ift.at

Man sollte die Dinge so einfach wie möglich machen, aber nicht einfacher.

