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SUMMARY 
 
One of the effective means of reducing the vibration amplitude of tall buildings, due to horizontal seismic 
activation, is the installation of tuned liquid column dampers (TLCDs). TLCDs are innovative vibration 
absorbing devices in the low frequency range, which have been studied extensively in the last decade. 
However, most research work concentrates on the suppression of horizontal motions of structures, but the 
vertical component of the seismic activation influences more or less the damping characteristics of an 
attached TLCD, apparently including the possibility of occurrence of dangerous parametric resonance, 
likewise to the pendulum type TMD. A detailed study of an SDOF-building with a TLCD attached, under 
combined horizontal and vertical excitation, is presented in the form of computer modeling and verified 
with an experimental model setup. The experimental results turns out to be in good agreement with the 
theoretical predictions of the computer model and both, theoretical and experimental investigations 
indicate that the vertical component of seismic activation should be considered carefully since in case of 
parametric resonance the TLCD dynamics would become unstable. However, it will be shown that 
sufficient damping of the fluid motion is crucial for stability and the optimally required damping 
coefficient usually turns out to keep the attached TLCD on the safe side. The over-linear turbulent 
damping presented in the TLCD stabilizes further and contributes one more feature of superiority over 
conventional TMDs. 
 

INTRODUCTION 
 
In civil engineering there is a trend to construct relatively light and flexible structures, which are 
consequently more sensitive to dynamic loads such as wind gusts and earthquakes. Hence, undesired large 
vibration amplitudes appear which endanger the building and bring uncomfort to their inhabitants. It has 
been shown that installing secondary tuned structures is one of the effective means of reducing these 
vibrations, see e.g. Soong [1]. Successful and practical, control of vibrations has been achieved by the 
innovative TLCDs, which have been studied extensively during the last decade, see e.g. Hochrainer [2]. 
TLCDs rely on the motion of a liquid mass in a tube-like container to counteract the external motion while 
a built-in orifice plate induces turbulent damping forces that dissipate kinetic energy. The most important 
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advantages over other types of damping devices are: easy tuning of frequency and damping, little 
additional mass since water is stored in buildings for fire protection, easy accommodation in structures 
even in retrofit, the construction is very simple and cheap and maintenance costs are nearly zero. The 
comparable or even better performance to the conventional tuned mass dampers (TMDs) is evident. 
Therefore, it is a preferable device for low frequency vibration control of high-rise buildings and long 
span bridges. However, most scientific work focuses on the suppression of horizontal motion of structures 
due to earthquake activation and neglected the vertical component. Hence, the objective of this study is to 
develop a more general formulation of a SDOF building with a TLCD attached and to investigate the 
influence of the vertical seismic activation on the damping characteristic of TLCDs. It will be shown, that 
due to vertical excitation the TLCD dynamics becomes nonlinear and quite sensitive to parametric 
resonance. Parametric resonance causes an unstable dynamic system and leads to an undesired increase of 
the TLCD vibration amplitude. Thus, the damping behavior of the TLCD might get lost. However, it will 
be shown that damping strongly influences the occurrence of parametric resonance and due to sufficiently 
high damping of the TLCD parametric resonance is not observed. Hence, the optimal tuning of the TLCD, 
(tuned by frequency and equivalent linear damping term), usually turns out a sufficient high value of fluid 
damping for the considered range of vertical excitation amplitudes and thus, keeps the attached TLCD on 
the safe side. It has to be mentioned that the danger of parametric resonance also exists for the 
conventional pendulum type TMD damper whose point of suspension moves vertically. It will be shown 
that the nonlinear turbulent damping of the TLCD stabilizes the firstly unstable motion and thus, 
represents a further great advantage of TLCDs. 
 
In order to get further insight into the phenomenon of parametric resonance, a detailed study of a SDOF-
building with a TLCD attached, considered under combined and assigned horizontal and vertical 
excitation, is presented in the form of computer modeling and experimentally verified with a model setup. 
The small scale testing facility has been constructed in the laboratory of the Institute of Rational 
Mechanics at the Vienna University of Technology. Series of free and electro-dynamically forced 
vibration tests with time harmonic signals are performed. The experimental results are compared with 
those derived by computational simulations and indicate an excellent agreement. Furthermore, numerical 
simulations are performed when considering the combined seismic activation through the realistic 
European Friuli earthquake, which appeared in the year 1976 in northern Italy. Both, theoretical and 
experimental investigations indicate that the vertical component of seismic activations should always be 
considered since in case of parametric resonance a sufficiently high value of fluid damping is crucial in 
order to prevent undesired worsening-effects on the damping characteristics of the attached passive 
TLCD. It is further recommended to use sealed tubes and to include the over-linear air-spring effect to 
further counteract parametric resonance. 
 

MECHANICAL MODEL 
 
Substructure - separated TLCD 
The equation of motion for the main structure, a SDOF shear frame, coupled with a TLCD is derived by 
the substructure synthesis method, which splits the problem into two parts. Hence, in a first step the 
TLCD is separated from the main structure and considered under combined and assigned total horizontal 
wt  and total vertical vt  floor excitation, illustrated in Fig. 1. The TLCDs parameters are the horizontal 
length of the liquid column B, the length of the liquid column in the inclined pipe section at rest H , i.e. 
its total length is B+2H , the inclined and horizontal cross-sectional areas AH  und AB , respectively, and 
the opening angle of the inclined pipe section π /6 < β < π /2 . Further let ρ  denote the liquid density, e.g. 

water ρ =1000 kg / m3 . The relative and incompressible flow of the liquid inside the container is 
described by the liquid surface displacement u . In the considered mechanical model of the TLCD an open 
piping system is assumed, thus the pressure difference ∆p = p2 − p1  becomes approximately zero. 



 

 
Fig. 1. TLCD with symmetrical shape under combined and assigned horizontal and vertical excitation 

 
Applying the modified Bernoulli equation along the relative non-stationary streamline in the moving 
frame, see Ziegler [3, p. 497], yields the nonlinear, parametric excited equation of motion of the TLCD, 
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where κ  and Leff  denote a geometry dependent coupling factor and the effective length of the liquid 

column. The circular eigen frequency of the undamped TLCD is given by 
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where g is the gravity constant. Furthermore, δL  denotes the head loss coefficient due to turbulent losses 
along the relative streamline and additional losses due to the built in orifice. The values of the head loss 
coefficient, in case of stationary flow, for relevant pipe elements and cross-sections are tabulated and 
given e.g. in Idelchick [4]. In Eq. (1), the vertical excitation vt  causes the conventional equation of motion 
for the plane TLCD with constant stiffness parameter, see e.g. [2], to become time variant. Due to this 
time-variant term the motion of the lightly and linear damped TLCD might become unstable, resulting in 
infinite vibration amplitudes. A detailed study of this phenomenon, called parametric resonance, is 
presented in the section Vertical Excitation. In view of an optimal design of the attached TLCD, see 
section Optimal Tuning of TLCDs, the nonlinear equation of motion, Eq. (1), has to be transformed into 
an equivalent linear one. Basically, the method of harmonic balance, see [3], is used to transform the 
nonlinear turbulent damping term δL  into its equivalent linear viscous damping term ζA  for an assigned 
maximum vibration amplitude. After applying this method, Eq. (2) can be rewritten as 
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where U0  denotes the relative vibration displacement amplitude of the liquid surface. Thereby, the value 
of U0  is determined out of numerical simulations of the linear system and commonly chosen as 
U0 = Umax . Subsequently, optimal tuning of TLCDs renders the required eigen frequency ωA  and 
equivalent linear viscous damping coefficient ζA . Having established the equation of motion for the 



TLCD, in a second step, the resultant interaction forces have to be determined. Assuming that the dead 
weight of the TLCD mT = m − mf  is added to the floor mass, only the interaction forces between the 

massless, rigid, liquid filled piping system and the supporting floor are considered. Conservation of 
momentum applied to a virtual, massless container with fluid mass mf  in an instant configuration, 

renders the resultant components of the external force in x'  and z'  direction, (acting on the fluid body), 
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where κ  and 1κ  define additional geometry dependent factors and L1  denotes a cross sectional 

dependent factor which becomes equal Leff  in case of constant cross sectional areas AH = AB . 

Furthermore, conservation of angular momentum with respect to the accelerated reference point A , see 
Fig. 1, yields the dynamic part of undesired moment, in addition to the static moment fm g uκ , acting 

about the y  axis, 
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However, it is common practice to neglect the influence of this undesired static and dynamic moments 
which partly also exist for conventional TMDs. In view of implementing TLCDs to long span bridges, the 
undesired moment from gravity due to large vibration amplitudes of the liquid surface, must be 
considered. 
 
Substructure - separated SDOF shear frame with assigned interaction forces 
In this section the equation of motion of the separated main structure, a SDOF shear frame, with assigned 
interaction forces from the TLCD dynamics is derived. For this sake, the free body diagram of the main 
structure is considered, shown in Fig. 2. 
 

 
Fig. 2. Free body diagram of main structure with acting interaction forces from the TLCD dynamics 



In Fig. 2, the main structure is assumed to be a SDOF shear frame with its deformation, due to horizontal 
ground excitation gw&& , given by the displacement w . Further, the main structure moves vertically due to 

vertical ground excitation gv&& . This latter movement of the main structure is approximately considered as a 

rigid body motion, (no time-variant P− ∆  effect in the CC-elastic columns). The main structure has 
parameters defined by the moving floor mass M , which includes the dead weight mT = m − mf  of the 

TLCD and modal masses of the columns, the total stiffness of the massless columns k  and linear damping 
coefficient ζS . The total stiffness k  of the CC-columns may be effectively corrected according to the 
compressive axial force from the dead weight of the supporting floor, see Clough-Penzien [5]. Applying 
the basic law of conservation of momentum to the free body diagram of the main structure, Fig. 2, and 
neglecting the undesired moment MA  and the eccentricity of the interaction force Fx' , which also exists 
for conventional TMDs, yield the linear equation of motion 
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where ΩS  and ζS  denote the circular eigen frequency of the main structure given by S k / MΩ =  and 

the linear viscous damping coefficient, which is small, ζS < 0.20, and represents the material damping in 
Eq. (8). Inserting the coupling force Fx' , Eq. (5), into Eq. (8) renders together with Eq. (1) the coupled 
equations of motion for the two DOF system, main structure/TLCD, 
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where µ  denotes the TLCD fluid mass to main structure mass ratio determined by 

1fm
   .

M
µ = <<  (10) 

The equations of motion are coupled due to the geometry dependent factors κ  and κ , defined in Eqs. (5) 
and (6). In case of constant cross sectional area of the piping system AH = AB = A , the geometry 
dependent factors κ  and κ  become equal. In order to provide highest possible energy transfer from the 
main structure to TLCD and thus, dissipation of kinetic energy due to turbulent damping of the fluid flow 
inside the container, the coupling factors should be maximized. Of course, it must be mentioned that 
increasing the coupling factors leads to a high interaction force Fx'  and hence, to an increasing of the 
undesired moment which has been neglected in the formulation of moment of momentum. 
 

VERTICAL EXCITATION 
 
Comparing the nonlinear, parametric excited equation of motion of separated TLCD, Eq. (1), with the 
conventional equation of motion without any vertical excitation, see e.g. [1], indicates an additional time-
variant stiffness parameter due to vertical forcing. This time-variant stiffness leads to parametric excited 
oscillations of the liquid surface displacement u  and, under special conditions, to the undesired instability 
phenomenon of parametric resonance. The important task of this section is to find a criterion in form of a 
required linear damping value ζA  in order to prevent the occurrence of parametric resonance. 



Subsequently, assuming absence of any horizontal excitation tw&&  and further neglecting the turbulent 

and/or any viscous damping term, Eq. (1) simplifies to the time-variant undamped oscillator equation, 

2 1 0t
A

v
u u  .

g
ω  

+ + = 
 

&&
&&  (11) 

Assigning time-harmonic total vertical excitation vt = vt0 cosν zt , Eq. (11) becomes a special type of Hills 
differential equation, the so-called Mathieu equation, see Klotter [6, p. 281], 

2 2 01 0t
A z z

v
u  cos t u  .

g
ω ν ν 

+ − = 
 

&&  (12) 

The Mathieu equation is a linear ordinary differential equation with time-harmonic variant stiffness 
parameter. Classically, Mathieu equation is the equation of a plane pendulum with vertically moving point 
of suspension, see e.g. [3, p. 576] and compare with the conventional pendulum type of TMD. It is not 
possible to find a closed form solution of Mathieu equation, but the determination of dynamic stability, i.e. 
statement of stable or unstable behavior of the solution, has been studied extensively in the last century, 
see e.g. Nayfeh [7, p. 258]. In order to reduce Eq. (12) into the standard form of Mathieu equation we 
introduce the non dimensional time ztτ ν=  and hence, after the appropriate transformation, Eq. (12) can 

be rewritten as, 
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where λ  and γ  denote the nondimensional stability parameters given by 

2
20

2
tA

A
z

v
 ,      .

g

ωλ γ ω
ν

= = −  (14) 

Obviously, depending on the choice of the stability parameters λ  and γ  the motion may become either 
stable or unstable. The domains of stability for Mathieu equation can be determined applying the 
perturbation method, see again [7]. The results of this method are given in form of the Ince-Strutt diagram, 
see Fig. 3, where the stable domains correspond to darkened areas. 
 

 
Fig. 3. Domains of stability and instability given as Ince-Strutt diagram, δ2 = λζA

2 , source: [6, p. 301] 



 
If at certain values of the parameters λ  and γ  instability occurs, then this phenomenon is called 
parametric resonance. From Fig. 3 one can see that parametric resonance may occur not only at single 

vertical excitation frequencies zν , (for small values of γ  instability occurs close to λ = n 2 / 4 , where n  is 

an integer), which is an essential difference to the conventional resonance problem. Furthermore, one can 
see that danger of parametric resonance mainly occurs at the frequency ratio λ =1 / 4 , (the domain of 
instability at this value is quite large) and also that damping strongly influences the occurrence of 
parametric resonance: If linear viscous damping of the dynamic system is taken into account, the domains 
of stability increases in the Ince-Strutt map, indicated by hyperbolic curves in Fig. 3. 
 
Subsequently, referring to the problem of the model TLCD without orifice plate built-in, one may assume 
that the equivalent linear viscous damping ζA  is about 5%, (which is the case in the experimental 
studies). Due to this fact, the domain of stability increases and parametric resonance is suppressed until 
the critical value of vertical excitation amplitude vt0  is reached, see Eq. (14). After overshooting this 
critical value, parametric resonance occurs and leads to growth of the vibration amplitudes of the linear 
damped system beyond bounds. At this point, the nonlinear turbulent damping of the moving fluid always 
stabilizes the vibrating system, which is an additional favorable advantage of the TLCD over the 
pendulum type of TMD. The required value for equivalent linear viscous damping of the TLCD, ζA,requ.  

for stable motions at the frequency ratio λ =1 / 4 , has been presented in [7, p. 301], 
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which equals the absolute value of the stability parameter γ , given in Eq. (14). 
 

NUMERICAL ANALYSIS UNDER TIME-HARMONIC EXCITATION 
 
The following numerical simulations are performed, according to the experimental investigations for a 
partially optimized TLCD configuration, which is tuned by frequency only. The combined and assigned 
base excitation in horizontal and vertical directions are assumed to be time-harmonic in the following 
manner, 
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Furthermore, the vertical excitation frequency zν  and the vertical excitation amplitude vg0  are kept 

constant within the range of numerical analysis. On the other hand the horizontal excitation frequency xν  

is sweeped over the frequency range of interest. Thereby zν  is chosen twice the eigen frequency of the 

TLCD, 2z Aν ω= , i.e. stability parameter λ =1 / 4 , see Eq. (14), in order to observe parametric 

resonance. 
 
Partially-optimized TLCD 
The parameters of TLCD and main structure for performing the numerical analysis are chosen according 
to the laboratory model. However, contrary to actual problems, the natural frequency of the main system 
ΩS  is subjected to optimization, together with the turbulent damping equivalent ζA . The reason for this 
unusual way is based on the fact that the eigen frequency of the test main structure model is more easily 
tuned than the eigen frequency of the TLCD in the laboratory. The assumption of parameters is given in 



Table 1. From Table 1 the ratio of fluid mass mf  to the total floor mass of the main structure M  is given 

by 

0 071 7 1fm
.   . % ,

M
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which is higher than the desired mass ratio µ = 0.5 −3%  of modal building mass in practice. In Table 1, 
the damping terms ζA  for the TLCD and ζS  for the main structure are determined from free vibration 
tests in the laboratory. Thereby ζA  is found as the mean value of certain free vibration tests within an 
amplitude range of U0 = 40− 60mm . The results obtained by numerical simulations are presented and 
discussed in the last section of this paper. Thereby it is important to emphasize that the nonlinear turbulent 
damping term, given in Eq. (3), must be considered in the equation of motion of the TLCD in order to get 
good agreements between numerical and experimental results. 
 
Table 1. parameters of partially optimized TLCD and primary structure; parameter for the combined and 

assigned time-harmonic base excitation 

PARTIALLY OPTIMIZED TLCD 

β = π / 4  AH = AB = 0.0005 m2  Leff = B+ 2H = 0.42 m  mf = 0.21kg 

5 65 0 90
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ζA = 0.045→ not subjected to optimization  

MAIN STRUCTURE 

ΩS = optimal  ,     fA = optimal  ζS = 0.01 M = 2.96 kg  

HORIZONTAL AND VERTICAL EXCITATION PARAMETERS 

sweeped sweepedx x ,     fν → →  wg 0 = 0.004m  

2 11 30 2 1 80z A z A. rad / s ,  f f . Hzν ω= = = =  vg0 = 0.016m  

 
OPTIMAL TUNING OF TLCDs 

 

For optimal tuning of the attached TLCD the design parameters δ* = ωA
* /ΩS

*  and ζA
*  have to be chosen 

suitably, where the star over them indicates that these parameters are in accordance with the conventional 
design parameters of a conjugate TMD problem, see Den Hartog [8, p. 91]. The derivation of the optimal 
design parameters for TLCDs and the analogy of TMD and TLCD for a SDOF-main structure have been 

derived by Hochrainer [2]. Thus, the optimal frequency ratio δ* of the conjugate TMD system is related 
to that of the TLCD by 
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Further the optimal equivalent linear damping term ζA
*  of conjugate TMD system remains unchanged 

ζA
* = ζA  . (19) 

In case of time-harmonic base excitation, Den Hartog´s [8] solution for optimal tuning parameters δopt
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and ζopt
*  require 
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where µ*  denotes the conjugate mass ratio given in [2], 
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Working out Eq. (21) for the model parameters, see Table 1, and inserting in Eq. (20), result in the 
following values for optimal tuning parameters of the conjugate TMD problem, 

δopt
∗ = 0.95,           ζ A,opt

∗ = 0.11. (22) 

By means of these values it is possible to calculate the real frequency ratio δ  of the TLCD problem by 
solving Eq. (18). Hence, the optimal frequency ratio of the model and optimal frequency of the main 
structure becomes 
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It is important to note that the optimal value of linear damping coefficient ζA,opt =ζ A,opt
∗ = 0.11 is not 

considered in the numerical and experimental study. The reason for this sub-optimal assumption refers to 
the experimental possibilities: In order to study the phenomenon of parametric resonance, a sufficiently 
large vertical excitation amplitude vg0  is necessary. Its value is limited in the laboratory by vg0 ≤16 mm  

due to the deployed type of actuator, Brüel&Kjar 4808. On the other hand, damping strongly influences 
the occurrence of parametric resonance. Increasing the value of the damping coefficient ζA  enlarges the 
stability domain in the Ince-Strutt map, see again Fig. 3. To observe parametric resonance, the damping 
coefficient for the TLCD must be kept very small, i.e. no orifice plate is built-in into the fluid stream path. 
Performing free vibration tests determines the viscous damping coefficient ζA = 0.045  as indicated in 
Table 1 and thus, this value is not increased to the optimal one for these numerical and experimental 

investigations. Only one numerical example will be presented under consideration of ζA,opt
∗  in order to 

illustrate that in case of optimal damping, parametric resonance and its influences to the optimal damping 
behavior of TLCDs are not observed. 
 

EXPERIMENTAL INVESTIGATION 
 
In order to get more insight into the phenomenon of parametric resonance and to compare the results of 
numerical simulation with experimentally obtained results, a small scale testing facility has been 



developed in the laboratory of the Institute of Rational Mechanics at the Vienna University of Technology. 
A front view of the constructed testing facility is shown in Fig. 4. 
 

 
 

Fig. 4. Front view of the experimental model set-up 
 
The experimental model set-up, a plane SDOF pendulum, consists of two rigid aluminum bars, an upper 
and a lower one. These bars are connected with to pairs of hangers, whereby a set of roller bearings is 
placed at each joint in order to achieve a small damping coefficient of the structural model. The upper 
rigid bar is carried on a base framework, connected with a set of guiding Thomson bearings. The latter 
show negligible friction and due to vertical disposition of the bearings the upper rigid bar is constrained to 
a vertical translational motion. The lower rigid bar represents the main structure of the experimental 
model, comparable to the floor of an equivalent SDOF-shear frame. The TLCD made of plexiglass pipe 
with rectangular cross section is fixed on top of the lower bar. One end of the lower bar is linked to an 
actuator, an electromagnetic shaker of Brüel&Kjaer Type 4808, through a coil spring whose stiffness 
models the elastic columns of an equivalent SDOF-shear frame. Additionally, a second electromagnetic 
shaker of Brüel&Kjaer Type 4808, whose stroke amplitude is magnified by a simple lever construction, 
excites the upper bar vertically. The time-harmonic excitation signals are provided by the software 
LabView 7.0. In order to reduce the dynamic vertical forces, the structural model mass is counter-balanced 
by a pulley mechanism. Both the horizontal excitation displacement and the response displacement of the 
lower bar are measured by means of contact-less optical laser transducers, Type optoNCDT 1605. The 
vertical excitation acceleration is measured by means of a piezoelectric accelerometer of Brüel&Kjaer 
Type4367. The vertical accelerometer is connected to a charge amplifier and an implemented integrator, 
to transform the measured accelerations into equivalent displacements. All measured signals are recorded 
by means of the software BEAM-DMCplusV3.7 through the board of Digital Amplifier System DMCplus 
(Hottinger Baldwin Messtechnik, HBM). 
 



For the sake of measuring the liquid surface displacement inside the TLCD a new electronic resistance 
measurement device has been developed. For this sake, the piping system is equipped with two pairs of 
wire electrodes  whose resistance depends on the water level inside the pipe. To compensate for several 
nonlinearities, the electrodes are in series connection for the actual resistance measurements. For further 
processing, the electronic signal is band-pass-filtered, in order to reduce the static drift and high frequency 
noise. The measured signal is recorded again by means of the software BEAM-DMCplusV3.7, whereby 
the measured changes of resistance are transformed into the equivalent displacement of the liquid surface 
by means of a nonlinear transfer function, obtained by calibration of the TLCD. 
 
Free vibration tests of primary structure and TLCD were performed to determine the natural frequency and 
damping coefficient. Furthermore a series of forced vibration tests were performed with a partially 
optimized TLCD configuration, as indicated in the previous section, sweeping the horizontal excitation 
frequencies to study the influence of parametric resonance on the damping behavior of TLCDs. The 
experimentally obtained results due to forced vibrations are presented in the following section a 
comparison of experimental and numerical results. 
 

COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS 
 
The experimentally and numerically obtained results of time history response of the main structure for the 
partially optimized TLCD, tuned by frequency only, with a horizontal forcing frequency close to the eigen 
frequency of the main structure fx =1.00 Hz  is shown in Fig. 6. 
 

 
Fig. 6. Experimental and numerical results of time history response of main structure; nonlinear turbulent 
damping term δL =1.325 ; horizontal excitation frequency fx =1.00 Hz ; partially optimized TLCD with 

light damping (no built-in orifice plate) 
 

The blue line represents the steady state vibrations without any vertical excitation and the red line 
indicates the influence of the assigned vertical excitation. It is important to emphasize that the chosen 
combination of the values zν  and vg0  leads to parametric resonance for the light damping assigned. Of 

course, by increasing the vertical excitation amplitude vg0 , which is limited in course of the experiment, 

parametric resonance occurs much stronger. Furthermore, one can see that the time history response due to 
additional vertical excitation leads to the beat phenomenon. Fig. 6 shows an excellent agreement between 
experimental and theoretical results, whereby it is important to mention that the nonlinear turbulent 
damping term δL  must be considered in the equation of motion for the TLCD, given in Eq. (3). The 
linearized equation of motion, equivalent damping term ζA , for an assumed maximal displacement 
amplitude u  of the lightly damped TLCD, grows beyond bounds and thus, is not sufficient enough to 
compare experimental and numerical results, as illustrated in Fig. 7. Hence, it must be pointed out that the 



nonlinear equation of motion, Eq. (1), is superior and describes the physical behavior of TLCDs more 
closely, when the excitation renders parametric resonance. 
 

 
Fig. 7. Experimental and numerical results of time history response of main structure; equivalent linear 

viscous damping term ζA = 0.045 ; horizontal excitation frequency fx =1.00 Hz ; partially optimized 
TLCD with light damping (no built-in orifice plate) 

 
Furthermore, Fig. 8 shows the experimental and numerical results of the Dynamic Magnification Factor 
(DMF) of the main structure for the partially optimized TLCD in case of light damping. 
 

 
Fig. 8. Experimental and numerical results of the Dynamic Magnification Factor (DMF) of the main 
structure; nonlinear turbulent damping term δL  varied over the frequency range of interest; partially 

optimized TLCD with light damping (no built-in orifice plate) 
 
The DMF for the parametric excited coupled main structure/TLCD, vg ≠ 0 , is determined at discrete 

values of the horizontal excitation frequency fx,i. Thereby, the frequency dependent turbulent damping 
term δL,i has to be varied over the frequency range of interest. In order to determine the appropriate value 
δL,i, given in Eq. (3), one has to choose U0,i by the maximum value of vibration amplitude, i.e. 
U0,i =Umax, i. The latter is found from numerical simulations of the linear system, Eq. (3), without any 
vertical excitation, and considering the steady state time history response. Together with the linear viscous 
damping term ζA , which is found as mean value of certain free vibration tests within an amplitude range 
of U0 = 40− 60mm , the DMFi  at the excitation frequency fx,i is given as 



max,i
i

g

w
DMF    ,

w
=  (24) 

where wmax, i  is determined by the steady state time history response of the nonlinear, parametric excited 
coupled system. Out of Fig. 8 one can see that the DMF for the partially optimized TLCD turns out similar 
to Den Hartog [8, p. 98]. Den Hartog´s solution yield a response function that contains two fixed-points, 
obtained by changing the linear viscous damping coefficient. In case of partially optimization these fixed-
points occur at the same height as illustrated in Fig. 8. Again an excellent agreement between 
experimental results and those derived by computational simulations are obtained. Furthermore, Fig 8 
shows that the occurrence of parametric resonance approximately doubles the resonant peaks. However, 
when optimal damping, Eq. (22), is taken into account, no influence of parametric resonance is observed 
for the range of vertical excitation amplitudes considered, see Fig. 9. 
 

 
Fig. 9. Numerically obtained results of the Dynamic Magnification Factor (DMF) of the main system; 

nonlinear turbulent damping term δL  varied over the frequency range of interest; optimal damping taken 
into account 

 
Fig. 9 illustrates the numerically obtained DMF of the main structure with the optimal tuned TLCD, 
(tuned by frequency and damping) taken into account. According to Den Hartog´s solution the frequency 
response function for the coupled system indicates two fixed-points at the same height and additional, as 
an effect of optimal damping of the TLCD, horizontal tangents in these two points. Hence, it can be 
concluded that parametric resonance only influences the lightly damped TLCD and disappears in case of 
optimal damping for the considered range of vertical excitation amplitudes. 
 

NUMERICAL ANALYSIS UNDER REALISTIC EARTHQUAKE EXCITATION 
 
In the following section, numerical simulations of the above mentioned mechanical model are performed 
considering the realistic European Friuli earthquake (north-south component, station name: Tolmezzo-
Diga Ambiesta) which appeared in the year 1976 in northern Italy, downloaded from the EU funded 
Internet Site for European Strong Motion Data [9]. In Fig. 10 the original acceleration strong motion 
signal in time and frequency domain is presented. One can see that the duration of strong motion phase 
takes only a few seconds, from about t = 3 to t = 8 s  and further that the main quake energy occurs in the 
low frequency range, from about f = 2  to f = 5 Hz . However, the eigen frequencies of the main structure 
and TLCD are given as fS = 0.96Hz  and fA = 0.90Hz , see previous section, thus the time history of the 



considered quake has to be adjusted. For further processing the given sampling rate ∆ t = 0.01s  is doubled 
which results in increasing the duration of the strong motion phase and decreasing the peaks location in 
the frequency domain. 
 

 
Fig. 10. Friuli earthquake (north-south component, station name: Tolmezzo-Diga Ambiesta) in time and 

frequency domain, source: European Strong Motion Data [9] 
 
The Friuli quake is assigned horizontal as well as vertical with the same strength. Again, nonlinear 
turbulent damping is taken into account in the equation of motion of the TLCD, which ensures a stable 
motion in case of parametric resonance. The simulations of the nonlinear, parametrically excited system 
have been performed using Simulink, a powerful tool allowing graphical programming, system analysis 
and simulation, which is smoothly integrated into the Matlab 6.5 scientific computing environment. 
Simulink calculates the response of nonlinear parametrically excited systems by time integration. 
 

 
Fig. 11. Friuli earthquake (north south), main structure acceleration a) comparison of main structure 
without and with attached TLCD, reduction of maximum peak about 50%  b) comparison of main 

structure acceleration without and with additional vertical excitation 
 
The Fig. 11a shows the time history response of the main structure, whereby the blue line represents the 
response without TLCD and the read line indicates the damping effect of an attached optimally tuned 
TLCD. Thereby, the coupled main structure/TLCD is considered under combined and assigned horizontal 



and vertical seismic activation, whereby equivalent optimal turbulent damping of the attached TLCD, for 
an assumed maximum vibration amplitude Umax = 80 mm , is taken into account. Furthermore in Fig 11b 
the time history response of the main structure with attached TLCD is presented. Thereby, the blue line 
represents the response in absence of any vertical excitation and the read line shows the response under 
consideration of additional vertical seismic activation. One can see, that the additional vertical excitation 
due to Friuli earthquake has no or only less influence on the optimal damping behavior of the TLCD. Both 
lines nearly coincide and thus confirm, that due to vertical excitation no undesired influence on the 
damping behavior of the TLCD is expected. 
 

CONCLUSION 
 
Detailed theoretical and experimental investigations on the influence of additional vertical excitation on 
the damping behavior of a partially optimized TLCD, have been carried out. A mechanical model of a 
TLCD under combined and assigned horizontal and vertical base excitation has been developed and 
analyzed numerically. Furthermore, a small scale testing facility has been constructed in the laboratory of 
the TU-Institute to perform experimental investigations and to compare the obtained results. An excellent 
agreement between theoretically and experimentally derived results has been obtained. The vertical 
excitation frequency fz  is found most critical at the value fz = 2 fA . At this value the domain of instability 
is quite large and thus the undesired phenomenon of parametric resonance is more probably encountered. 
Furthermore it is important to note that the equivalent linear damping term, in the linearized equation of 
motion of TLCD, is not sufficient for comparing experiment and computer simulation. Close agreement is 
obtained by using the nonlinear increasing damping term in the equation of motion of TLCD. Over-linear 
turbulent damping stabilizes the liquid flow and the vibration amplitude of TLCD becomes limited which 
contributes an important feature of superiority over TMDs. Damping strongly influences the occurrence of 
parametric resonance and due to optimal damping of the attached TLCD, parametric resonance is not 
observed within the considered range of vertical excitation amplitudes. It is further recommended to use 
sealed tubes and to include the over-linear air-spring effect to further counteract parametric resonance. In 
conclusion the vertical motion of structures should be considered in the design stage of the TLCD since in 
case of parametric resonance a sufficiently high value of fluid damping is crucial in order to prevent 
undesired worsening-effects on the damping characteristics of the attached passive TLCD. 
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