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Abstract 
In this contribution a brief overview of the development of an orthotropic material model for the simulation of 
clear spruce wood under simultaneous biaxial in-plane stresses and transverse shear stresses is given. The model 
considers an initially linear elastic domain as well as hardening and softening behaviour at higher states of stress 
and strain, respectively. Combining the advantage of a smooth single-surface plasticity model with the 
identification of several modes of failure is the key to the novel mathematical formulation. The applicability of 
the new constitutive model will be demonstrated by means of a nonlinear finite element analysis of a layered 
cylindrical shell. 
 

1. INTRODUCTION 
Realistic finite element ultimate load analysis of layered wooden shells requires knowledge of both, 
suitable constitutive equations for the prediction of the deformation behaviour of biaxially loaded solid 
wood and the transverse shear forces inducing shear stresses in cross-sections perpendicular to the 
middle surface of the shell. Thus, a fully three-dimensional constitutive model is needed. 
 
The model development is based on a comprehensive test series on clear spruce wood by 
EBERHARDSTEINER [2]. The respective biaxial experiments provide the necessary information 
concerning the stress-strain relations in the pre-failure domain as well as the failure locations for 
arbitrary strain paths. The obtained failure locations reveal an elliptic shape of the failure envelope. In 
[2] that envelope is decribed by means of the orthotropic failure criterion by TSAI & WU [8] which 
identifies failure states as a boundary of a linear elastic domain. 
 
By defining characteristic strength values, depending on the material parameters of the elliptic failure 
criterion, MÜLLNER [6] combined these values with micromechanically motivated failure modes 
identified by MACKENZIE-HELNWEIN et al. [4]. The determination of the material parameters results in 
a system of nonlinear equations. Thus, the advantage of a single-surface model has to be paid for by 
the extra effort of locally solving these nonlinear equations. The application of the classical return 
mapping algorithm by SIMO & HUGHES [7] yields an unsymmetric consistent tangent for this material 
model. 
 
This contribution reviews ideas first introduced with a multi-surface approach [4] in the attempt to 
apply them to the initial single-surface description suggested by [2]. A related study was successfully 
performed by [6] for the in-plane biaxial loading. The generalization of this formulation for stress 
states observed in layered shells was done by MACKENZIE-HELNWEIN et al. [5]. 
 
In Chapter 2 four failure modes of biaxial stressed wood are identified. Chapter 3 refers to the material 
model, where in Section 3.1 the used yield surface is described. Because of the brittle tensile and the 
ductile compressive behaviour of wood the formulation of different evolution laws by means of strain-
like primary variables is required. Therefore a compatibility condition for the material parameters is 
needed (Section 3.2). For the material model an associated flow rule (Section 3.3) and a non-
associated hardening and softening rule (Section 3.4) is used. Chapter 4 gives an example for the 
visualisation of the yield surface before and after plastic deformations. Finally, a representative 
example analysis is given in Chapter 5. 
 



2. FUNDAMENTAL FAILURE MECHANISMS FOR BIAXIALLY STRESSED WOOD 
Based on a cruciform specimen made out of clear spruce wood without imperfections such as knots 
and a moisture content of 12 %, a series of 439 displacement-driven biaxial strength tests were 
performed [2]. These tests cover the whole set of distinguishable stress states for an orthotropic 
material under plane stress conditions. The individual tests differ in two mechanical parameters: 
• Grain angle ϕ – it is the angle between principal loading direction and the grain direction L. 
• Displacement ratio κ – it is defined as κ ≈ ε11 : ε22, with ε11 and ε22 according to Fig. 1. 
The obtained failure locations reveal an elliptic shape of the failure envelope by TSAI & WU [8]. This 
failure criterion corresponds with a second-order tensor polynomial and is shown in Fig. 1. 

0.004
0

75

144

-0.002

σ1

ε

κ = +1 : 0
ϕ = 0◦

ε22 ε11γ12

ϕ = 15◦
κ = −3 : −5

266

0

-25

0.030-0.015 ε

σ1

ε11 γ12ε22

κ = −4 : +5
ϕ = 0◦

0.004

0

-25

100

ε

σ1

-0.002

ε22γ12ε11
γ12

ε22 ε11

κ = 0 : −1
ϕ = 0◦

998

-6

0

-0.015 0.002

σ2

ε

σ11 [N/mm2]

1

τ12 [N/mm2]

2

3 σ22 [N/mm2]

Mode 1: Mode 2: Mode 3: Mode 4:

4

 
Figure 1 - Elliptic failure envelope by Tsai & Wu and characteristic stress-strain curves and fracture types for 

characteristic biaxial loading situations 
Analyzing the stress-strain relations for different load ratios MACKENZIE-HELNWEIN et al. [4] 
characterised four modes of failure, illustrated in Fig. 1 by a stress-strain diagram and an image of the 
specimen at fracture: 
• Mode 1 – brittle tensile failure in fibre direction, 
• Mode 2 – compressive failure in fibre direction, 
• Mode 3 – brittle tensile failure perpendicular to grain, and 
• Mode 4 – ductile compressive behaviour perpendicular to grain. 
At large deformations, both compressive modes 2 and 4, show a phenomenon called densification 
which causes an equilibrium state of internal stresses in the cell structure [1]. Building up these 
internal stresses does not cause additional dissipation though the effective compressive strength 
increases. 
 
Concerning stress states in layered wooden shells, a fifth failure mode may become relevant. It is 
controlled by transverse shear stresses and thus cannot be observed in the existing biaxial tests by 
EBERHARDSTEINER [2]. Nevertheless, that failure mechanism is closely related to shear failure in a 
plane perpendicular to the radial direction [5]. 
 
Typically, single-surface models do not permit the identification of these micromechanical failure 
modes. Adopt an associated hardening, the single-surface model would admit only one hardening-
parameter. Thus, the form of the yield surface would change equally in all directions. Therefore, the 
formulation of a non-associated hardening or softening rule has to occur, as shown in the next chapter. 



3. SINGLE-SURFACE PLASTICITY MODEL 

3.1. Orthotropic yield surface 
The orientation of wood is characterized by its growth direction in the stem, i.e., the longitudinal or 
fibre direction L, the radial direction R, and the tangential direction T. 
 
The concept of a single-surface model offers a reasonably simple mathematical description of an 
orthotropic yield surface by means of six independent material parameters for plane stress states in the 
LR-plane and seven ones for including the effect of transverse shear. The basis of the single-surface 
description is the elliptic yield condition by TSAI & WU [8] 
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where the seven independent material parameters a BijB and bBijkl ( { }RLlkji ,,,, ∈ ) are listed in 
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By introducing the effective shear stresses 
2222 and TLRTTRTLRR ττττττ +=+=  (3)

and associating it with shear failure in planes perpendicular to the R- and T-direction, the material 
parameter bTLTL in (1) can be equated with bRTRT. The determined yield surface is shown in Fig. 2. 
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Figure 2 - Yield surface of single-surface material model in the orthotropic stress space and                   
evolution laws for the strength values depending on the strain-like primary variables αi 

In order to consider the different failure mechanisms mentioned in Chapter 2 it is necessary to 
formulate a non-associated hardening and softening rule. Because of the seven independent material 
parameters in (2) the hardening and softening rule consists of seven entries, too. These evolutions 
laws, depicted in Fig. 2, are collected in the vector Rp of (5). They describe the strength properties of 
the different failure modes by means of strain-like primary variables αi (i ∈  {(t,L), (c,L), (t,R), (c,R), 
(ref), (shr,R), (shr,T)}. 
 
The strength values used in the evolution laws are the six maxima of the strength values, max βi,j 
(i ∈  {t,c}, j ∈  {L,R}) as well as βshr,R and βshr,T, and the inclination tan φ∗ of the yield surface in the 
plane τR = 0 (see Figs. 3(a) and 3(b)). In order to connect the seven strength values with the 
corresponding failure modes, it is necessary to formulate a compatibility condition as shown in the 
next section. 



3.2. Compatibility condition for the material parameters 
In Figs. 3(a) and 3(b) the considered strength values are defined by means of the chosen elliptical yield 
surface. If plastic strains occur the yield surface will change in size and shape as shown in the figures. 
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Figure 3 - Characteristic strength values of the single-surface model                                    
(a) tensile and compressive strength in the plane τLR = 0, (b) shear strength in the plane σL = 0 

The seven strength values are on the one hand controlled by the vector p* and on the other hand 
multiplied by the evolution laws. With these two definitions a residual vector 
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can be defined, where 
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is the stress vector function. If plastic strains occur, the residual vector R is not satisfied and the 
components of the vector p* have to be modified. The obtained nonlinear equation system is solved by 
means of the NEWTON-RAPHSON-method. The new entries of p* define a new yield surface without 
changing the mathematical form of (1). 
 
The increasing of the compressive strength due to densification is modelled by means of the terms 
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where HK,d is a hardening stiffness parameter, αK,d and αK,∞ mark the onset of densification and the 
ultimate densification strain, respectively, (K ∈  {L,R}) and 2/)( xxx += . 



3.3. Associated flow rule – evolution law for plastic strains 
The evolution law for the plastic strains can be described by means of a flow potential formulation by 
SIMO & HUGHES [5]. Under consideration of associated plasticity the flow rule reduces to 
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withγ& as a proportionality factor, the so-called consistency parameter. 
 
3.4. Non-associated hardening and softening rule – evolution law for primary variables 
Different evolution laws implicate different hardening and softening rules, respectively. Thus, the non-
associated hardening or softening rule for the single-surface model results as 
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4. VISUALISATION OF THE YIELD SURFACE 
Because of the orthotropic characteristics of wood and the restriction to plane stress states, the 
visualisation of the elliptical yield surface in the orthotropic stress space (σL, σR, τLR) is advantageous 
[6]. In the present case, transverse shear stresses are considered, too. 
 
Thus, the visualisation of the yield surface has to be modified, as shown in Fig. 4. The visualisation of 
one stress state is split into two pictures. Figure 4(a) shows the yield surface for the apparent stress 
state in the σL-σR-τR-stress space, and Fig. 4(b) shows it in the σL-σR-τT-stress space (for the definition 
of the effective shear stresses τR and τT see (3)). 
 

(a) (b) 

Figure 4 - Initial (magenta) and modified (green) yield surfaces of single-surface material model:             
(a) in the σL-σR-τR-stress space (b) in the σL-σR-τT-stress space 

 
Figure 4 shows as an example the initial and the modified yield surface in case of plastic deformations 
due to tensile loading in longitudinal direction. This kind of load is connected with a cascading crack 
pattern [4]. In the case of alternating loading the material accepts compressive loading despite of the 
crack. 



5. NUMERICAL EXAMPLE 
The suggested material model was used for the analysis of a cylindrical wooden shell with an opening 
and stiffening beams as shown in the horizontal projection of the shell in Fig. 5(a). The arch rise of the 
circular cylindrical shell is 2.00 m. With a length of 10.0 m and a width of 8.0 m, the thickness of the 
shell is only 48 mm. In thickness direction, the shell consists of three layers of equal thickness. The 
complete shell is made out of the same material but the grain angle varies for different layers. For 
instance, the outer layers have a grain angle of +30° with respect to the xy reference plane. 
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(a) (b) 
Figure 5 - Cylindrical shell with opening                                                           

(a) shell geometry and orientation of boards, (b) vertical displacements at maximum applied load 
Figure 5(b) shows the used finite element mesh. The minimum element size is 150 x 150 mm, the 
largest one is 300 x 300 mm. Moreover, the figure shows the deformed shape at a scaling factor of 15. 
The maximum displacements are along the longitudinal edges of the opening. The deformation pattern 
shows point symmetry about the centre of the structure which corresponds to the point symmetric 
composition of the shell. The material parameters from [5] and [6] are summarized in Table 1. 

Table 1: Material parameters for the single-surface plasticity model 

EL = 13000 N/mm² ER = 700 N/mm² νLR = 0.50elastic behaviour 
GLR = 632 N/mm² GRT = 222 N/mm² GTL = 470 N/mm²
kt,L = 118.18 Y1,L = 10.00 N/mm² αL,d = 0.50behaviour in 

grain direction  kc,L = 3.02 HL,d = 15.00 N/mm² αL,∞ = 0.75
kt,R = 45.60 Y1,R = 1.80 N/mm² αR,d = 0.10behaviour in 

radial direction kc,R = 30.00 HR,d = 2.00 N/mm² αR,∞ = 0.75
shear in LR-plane kshr,R = 86.00 φ0 = 63.3° φ∞ = 35.0°
shear in TL-plane kshr,T = 2091.17  

Two different load cases were considered in the analysis. First, a uniformly distributed dead load with 
a density of 0.45 g/cm³, second, a live load of up to 225 kN, equally distributed along the stiffening 
beam which surrounds the opening. 

     

−6 −4 −2 0

 10
−3

−4

−3

−2

−1

0

1

2

−4 −2 0 2
−100

−80

−60

−40

−20

0

0
σR [N/mm2]εR [10−3]

top

bottom

+2

0

−2

−4

−1

+1

−2 +2−4−6 −4 −2 0

−3

σ
R

[N
/m

m
2
]

n

CF
A

B D

D

B

C
A

Fel=150 kN

ϕ = +30◦

ϕ = −30◦plastic region

ϕ = −30◦

 
(a) (b) 
Figure 6 - Stress-strain results for the characteristic node P                                            

(a) stress-strain diagram for the top layer (b) cross-section through the shell 



Figure 6(a) contains a characteristic stress-strain curve for the node P of the top surface of the shell 
marked in Fig. 5(a). The live load was initially increased to an overall of 210 kN (point A in Fig. 6(a)). 
This load level exceeds the elastic limit for the structure which was found at a total live load of 
150 kN. Subsequently, the load level was reduced to 100 kN (point B) and once again increased to a 
maximum total load of 225 kN (point C). Finally, the live load was removed totally (point D). 
 
The considered point P is characterized by inelastic deformations which correspond to crushing 
perpendicular to grain, as it is identified by Fig. 6(b). This figure shows the variation of the stress 
component σR over the shell thickness. 
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(a) (b) 

Figure 7 - Distribution of stress components                                                       
(a) fibre stress σL in the top layer, (b) radial stress σR in the top layer 

 
The shell is subject to both membrane and bending stresses. The latter is dominant near the opening 
and causes extreme stress values to appear near the corners of the opening. This fact is shown in 
Fig. 7(a) for the fibre stress σL in the top layer of the shell and in Fig. 7(b) for the radial stress σR in the 
top layer of the shell again. 
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(a) (b) 

Figure 8 - Distribution of stress and state variables                                                   
(a) in-plane shear stress τLR in the middle layer, (b) sum of primary variables αi in the top layer 

 
Figure 8(a) shows the distribution of the in-plane shear stress τLR. The distribution of the transverse 
shear stresses τRT can be found in [5]. Figure 8(b) contains a detail view of the areas with plastic 
deformations in the top layer of the shell. The picture shows that inelastic deformations only appear in 
the proximity of the opening. The majority of the shell though remains elastic. 
 
The presented analysis demonstrates that the load bearing capacity of the considered cylindrical shell 
is controlled by tolerable deformations than by collapse due to material failure. The proposed model, 
however, can be used to identify critical zones where structural modifications can aid both 
performance and durability of the wooden shell by reducing local damage. 



6. CONCLUSIONS 
This paper includes an overview on the development of a new constitutive model for the simulation of 
clear spruce wood under simultaneous biaxial in-plane stresses and transverse shear stresses. The 
applicability of the model was proven by means of a nonlinear finite element analysis of a layered 
cylindrical shell with an opening and surrounding stiffening beams. 
 
The advantages of the proposed formulation are: 
 
• The ability to identify five distinct modes of failure in the material. These modes may be activated 

individually or as combined failure modes. 
• The ability to describe hardening and softening by means of seven distinct strength functions. 

These functions can be experimentally verified and, if needed, easily replaced by almost any 
characteristic strength function. 

• Due to the single-surface description, the effort for the numerical integration of the rate equations 
by means of the return mapping algorithm remains moderate. 

• A closed form expression for a non-symmetric material tangent operator is available. This is 
important for an effective numerical implementation. 

 
A verification of the presented material model for plane stress states by means of back-calculations of 
the biaxial experiments by EBERHARDSTEINER [2] was done by MÜLLNER [6]. The performed 
simulations of the mentioned experiments show a good agreement between the model and the test 
results for most modes of biaxial loading. Minor deviations are a consequence of restricting the yield 
condition to an elliptical surface. However, the obtained results in [6] are superior to any method 
suggested by design codes. 
 
The presented numerical example gave a brief demonstration of the suitability of the presented 
material model and its numerical implementation. Further numerical studies with experimental 
verification on model shells are planned for the near future. In addition to that, the effect of knots and 
the respective fibre deviations on various strength values is investigated by FLEISCHMANN et al. [3]. 
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