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Foreword

In January 2005 I started working on my diploma thesis at the Vienna
University of Technology, full of enthusiasm. Yet there was some concern
whether I am able to develop the adequate concepts and to finish timely in
June, since the subject is quite big. Building an automated rapid prototyp-
ing system requires thorough understanding of both hardware design and
software design, because tools have to be created allowing for automated
conversion of algorithms into hardware designs. Fortunately the education
in Hardware/Software Systems Engineering provided me with most basics
in order to tackle the enormous challenge and finish in time.

For students planning to write their own thesis I recommend the really
excellent, general tips on thesis writing from Steve Easterbrook [7]. Readers
having questions on the thesis’ details can contact me by email: georg.
brandmayr@fh-hagenberg.at.

Now I am really happy that all efforts led finally to a helpful tool for
designers using Simulink — helpful in particular for those intending to target
field programmable gate arrays for prototyping in digital signal processing
without using hardware description languages.

This document reports in detail on the prototyping system I developed
in the last months. Hence, readers intending to use the system will find it
useful. Moreover, Chapter one, two and four might also be interesting for
readers with a general concern in (automated) rapid prototyping or those
intending to build such a tool as well.
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Abstract

Verifying DSP (digital signal processing) systems is an error-prone and time-
consuming process, since manual steps are involved in the creation of proto-
types. Rapid prototyping is an emerging key design methodology, allowing
DSP system designers to quickly verify their algorithms by co-simulation in
order to identify implementation-connected real-time problems. The pre-
sented FPGA (field programmable gate array) rapid prototyping system
fully automates the creation of hardware prototypes defined by just a single
input source in Generic-C. Hence it replaces manual HDL (hardware de-
scription language) creation. Prototypes are generated for a Xilinx Virtex-
II FPGA, part of the RTS-DSP (real time simulation digital signal pro-
cessing) board from ARC Seibersdorf research. The MathWorks’ Simulink
serves as platform for simulation and FPGA prototype co-simulation. Thus
it accesses this prototype via an also automatically generated hardware-
in-the-loop block. An SRRC (square root raised cosine) transmit filter in
co-simulation, taken from the wireless field, successfully demonstrates the
potential of the rapid prototyping system. Compared to manually coded pro-
totypes the time required for creation of a prototype is reduced by at least
one order of magnitude. Although area and speed rates of generated proto-
types are typically worse than for manually coded prototypes the presented
tool allows for automated generation of FPGA prototypes for co-simulation
without requiring HDL coding.
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Kurzfassung

Die Verifikation von digitalen Signalverarbeitungssystemen ist fehleranfällig
und zeitraubend, da manuelle Schritte zur Erzeugung von Prototypen er-
forderlich sind. Rapid Prototyping ist eine Schlüsseltechnologie, die Ent-
wicklern dieses Verifizieren ihrer Algorithmen anhand von Co-Simulation in
kürzester Zeit erlaubt. Dadurch können Probleme im Zusammenhang mit
der Echtzeitumsetzung frühzeitig erkannt werden. Durch das vorgestellte
Rapid Prototyping System wird die Erzeugung von FPGA (Field Program-
mable Gate Array) Prototypen vollständig automatisiert. Da nur ein Quell-
code in Generic-C erforderlich ist, wird manuelles HDL (Hardware Descrip-
tion Language) Portieren unnötig. Ein Xilinx Virtex-II FPGA, integriert in
der RTS-DSP (Real Time Simulation Digital Signal Processing) Baugruppe
von ARC Seibersdorf research, dient zur Realisierung der FPGA Prototypen.
Simulink von The MathWorks ist der Simulator für die Co-Simulation von
Prototypen, wobei auf diese durch ebenfalls automatisch erzeugte ”Hard-
ware in the Loop“ Blöcke zugegriffen wird. Ein Beispiel aus dem Gebiet
der digitalen Signalverarbeitung in Co-Simulation, ein SRRC (Square Root
Raised Cosine) Sendefilter, demonstriert die Leistungsfähigkeit des Rapid
Prototyping Systems. Verglichen mit einem nach herkömmlicher, manueller
Weise erzeugten Prototyp wird die benötigte Zeit für dessen Herstellung um
mindestens eine Größenordnung reduziert. Obwohl die Werte für Flächen-
verbrauch und Taktung, im Vergleich zu handoptimierten Prototypen, ty-
pischerweise schlechter sind, ermöglicht das vorgestellte Rapid Prototyping
Werkzeug die automatisierte Erzeugung von FPGA Prototypen und deren
Integration in Simulink Modelle auf Knopfdruck.
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Chapter 1

Introduction

1.1 Motivation

Trends in the electronic industry show that design complexity is increasing
faster than ever before, although the time for development of a product is
getting even smaller. Consider, for example, mobile phones in the wireless
communications market. In the early 90’s, when the Global System for
Mobile Communications (GSM) was launched, the architecture of a mobile
was straightforward [9]. A typical product consisted of numerous small
integrated circuits, with roughly equal partition between radio frequency
(RF) and digital frontend. Besides phone calls, and soon thereafter, short
message service (SMS), no substantial features were provided. However,
today’s architectures of third generation (3G) devices show an above average
complexity increase in the digital part, because the market demands as much
functionality as possible in a single device. System-on-a-chip (SOC) helps
reduce the number of integrated circuits (ICs) and offers unprecedented
complexity — complexity which designers have to deal with.

Prototypes can help unveil design bugs, which might be hidden in the
simulation stage, since they allow exploring the behavior of a “real” product.
In particular FPGA prototypes are well suited to explore the behavior of
hardware (HW) components, since FPGAs have already moved beyond their
traditional applications into new domains such as digital signal processing.
The emergence of multimillion-gate, “application specific integrated circuit
(ASIC)-like” devices incorporating innovative memory architectures and em-
bedded processors enables even the implementation of complex algorithms
[19]. FPGA prototypes allow designers to estimate parameters, which are
typical for design portions to be implemented in an ASIC or FPGA, like real
time algorithms with extensive, repetitive multiplications at speeds of some
100 MHz. One such parameter is the area consumption of the component,
which is strongly influenced, besides design complexity, by the utilization
of FPGA-specific hard macros, such as multipliers, block random access

1



CHAPTER 1. INTRODUCTION 2

memories (BRAMs) or DSP-slices. Even timing issues, such as long critical
paths, can be analyzed, because they will not be much different in the final
product. Thus, it is possible to identify bugs in an early project stage for
typically much less cost than in a product’s final stage. Another reason for
building a prototype is to convince potential customers of the capabilities
of the product, which might be far from completion. From these points of
view, prototypes seem to be the perfect solution for all problems. Nonethe-
less, a drawback of prototypes is that their implementation is costly and
time consuming for today’s high complexity systems. There is no use for a
prototype if the labor to build it equals building the product itself or when it
becomes available after the product release. Additionally, decreasing time-
to-market forces designers to skip work not of utmost necessity for product
completion, which includes prototypes. Traditionally, FPGA prototypes are
implemented manually, which means that a hardware designer obtains a be-
havioral description of the prototype, for instance a MATLAB script, and
tries to convert it into an HDL description. This is the same procedure
as for the product itself, which results in the aforementioned handicaps of
prototypes. Nevertheless, designers can greatly benefit from prototypes if
their creation is easier to deal with.

Automated rapid prototyping, on the other hand, provides all advan-
tages of prototyping, but avoids its disadvantages. The error prone, manual
creation of prototypes is replaced by an automated design flow, which uses
an algorithm to generate the hardware description from the behavioral de-
scription, referred to as behavioral synthesis. This automated approach
prohibits human errors from VHDL1 porting and speeds up the prototype
creation time by powers of ten, due to automation. Thus, rapid prototyping
does not constrict designers in keeping tight time-to-market restrictions. In
addition, the substantial savings in time even allow for iterations in the pro-
totyping flow, which are useful in gradually improving the design. Some of
the aspects presented so far are not new. The five ones approach, introduced
by Rupp in [27], recommends using one “golden” code as well as heavy tool
automation. In [30] a rapid prototyping environment, very similar to mine,
is depicted except that the one source paradigm is not used, since VHDL
code is created manually.

As one may have figured out by now, the presented approach provides
another advantage: designers do not have to (immediately) deal with HDL
any longer. However, this is only true as long as there are no bugs in the
generated hardware. In such cases the HDL must be debugged, which still
has to be done by hardware experts. Yet, compared to the situation some
years ago, today’s designers have valuable support in simulating hardware
(more precisely HDL) by high level tools. For instance, Simulink has been

1very high speed integrated circuits (VHSIC) hardware description language.



CHAPTER 1. INTRODUCTION 3

recently extended with the award winning2 capability to simulate HDL code
directly in a simulation model. Thus, it is now possible to use all high level
features of Simulink, like data representation on scopes, for handling and
visualizing HDL simulation data. For example, the input for a VHDL filter
could be generated by a Simulink sweep generator, applied to the VHDL en-
tity and the outputs can be viewed on a time scope or fast Fourier transform
(FFT) scope — features not provided by common HDL simulators. Again
it is not necessary to deal directly with the HDL to perform co-simulation.
Nevertheless, one should not get the impression that such an automated
rapid prototyping flow renders the knowledge of hardware (description lan-
guages) unnecessary. The automated flow still requires these competencies,
even when their application is not required in the same extent as for manual
implementation.

1.2 Ambition

Due to all the aforementioned benefits of rapid prototyping this thesis is
aimed at developing an FPGA rapid prototyping environment for the appli-
cation area of DSP. This thesis’ work has been previously published in [4],
which provides an overview, omitting details addressed here.

Typically a DSP system’s architecture is built by using block oriented
system level simulation tools, such as Synopsys’ CoCentric System Studio
or The MathWorks’ Simulink. The prototyping environment must create an
FPGA prototype and provide a seamless integration into the block based
simulator in form of a ready-to-use “hardware in the loop” (HIL) block.
This block, accessing the FPGA prototype, is then used for co-simulation in
existing simulation models. The prototype’s desired behavior is specified in
a high-level level, C like, programming language. Highest priority is given
to full automation of the prototyping flow, in order to minimize prototyping
time and to keep a single source, as suggested in [27]. This means that even
the low level HW descriptions have to be created automatically, demanding
for behavioral synthesis of the single source.

Designers, familiar with HW design, know that creating an FPGA de-
sign requires time — computing time alone may take hours. In case of an
error redesign will consume nearly the same amount of time. The better
part of this time can be saved by first creating behavioral prototypes — an
additional task for the automated rapid prototyping system.

Eventually fixed-point numerics must be supported, since most embed-
ded DSP systems do not allow for floating-point numerics due to HW area
and power consumption restrictions.

2The Mathworks and Mentor Graphics won the EDN Innovation of the Year Award
for their co-simulation environment “Link for ModelSim.” This award honors outstanding
electronic products [8].



CHAPTER 1. INTRODUCTION 4

1.3 Outline

The following chapters introduce the automated FPGA rapid prototyping
concept and the upcoming tool: Rapid ProtoTyper (RPT). I recommend
reading all chapters in the given sequence, since most of them are constitu-
tive on each other and contain references on previous chapters. This applies
in particular to Chapter 5, which sets up directly on Chapter 4.

Chapter 2 provides an overview of co-simulation, common implemented
and imaginable FPGA rapid prototyping approaches and C to register trans-
fer level (RTL) conversion concepts.

The platform comprising the prototype carrier FPGA, that is the ARCS
RTS-DSP board,3 the block based simulator and major, already initially
appointed design tools are presented in Chapter 3.

Chapter 4 presents key concepts and fundamentals developed in order to
implement the rapid prototyping tool. The simulator’s role will be explained
in detail, followed by methods used to integrate prototypes in co-simulation.
These methods include analysis of the single input source, leading to creation
of the FPGA prototype and required simulation software.

Chapter 5 identifies detailed, concrete prototyping tasks and presents
their implementation in the realized design flow, based upon the ideas intro-
duced in Chapter 4. Design flow elements, such as programmed tools and
libraries, are described in detail. Finally the graphical user interface (GUI),
integrating all tools in an application, is introduced.

Chapter 6 demonstrates the prototyping environment’s application on
a practical example. A typical wireless field simulation model is used for
co-simulation with an automatically generated behavioral prototype and an
HIL block, generated by application of the prototyping flow on the model’s
transmit filter.

Finally Chapter 7 gives a summary on the work, showing its limitations
and capabilities. In addition future optimizations, such as integration of
better tools, are suggested.

Tool installation instructions and notes are listed in Appendix A. The
tool structure of RPT is described in detail in Appendix B. Appendix C
lists the contents of the CD-ROM, comprising the diploma thesis PDFs,
bibliography items and the example presented in Chapter 6.

3Austrian Research Centers Seibersdorf Real Time Simulation Digital Signal Processing
board.



Chapter 2

FPGA Rapid Prototyping

This chapter provides an overview of common implemented and imaginable
FPGA rapid prototyping approaches, C to RTL conversion concepts and
co-simulation.

2.1 Block-Based Co-Simulation

Co-simulation is typical for verifying prototypes and model based simulation
is typical for architectural design. This section states the motivation for
block based co-simulation.

LMS Linear Equalizer

Submatrix

Rectangular
QAM

Rectangular QAM
Modulator
Baseband

Random
Integer

Random Integer
Generator

Input

Desired

Equalized

LMS Linear
Equalizer

TDF FIR Before

After

AWGN

AWGN
Channel

Figure 2.1: Example of a block based Simulink model.

Imagine a rather complex DSP simulation model in a graphical, block
based simulation environment like the widely known Simulink, e.g., the
MIMO BLAST (Bell Labs layered space-time) system implemented in [3]
or the one depicted in Figure 2.1. At an early project stage, the entire simu-
lation will execute solely on the personal computer (PC), since it is based on
algorithmic library blocks. Once this algorithmic simulation succeeds one
can move closer towards product implementation in HW. In order to verify
the HW feasibility (for more reasons refer to Chapter 1), designers might

5
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Figure 2.2: Example for co-simulation of prototyping blocks.

want to migrate portions of their design into FPGAs, which constitutes a
characteristic case of operation for the rapid prototyping system. Hence, it
is intended to replace a specific Simulink block, e.g., a subsystem of library
blocks, by a block accessing an FPGA prototype executing the same func-
tion. However, first the prototype’s correct function has to be approved by
co-simulation, i.e., the prototype is simulated along with its “behavioral”
counterpart — the original block. Block behavior for various scenarios can
be verified by comparing both outputs.

It must be considered that creation of FPGA prototypes is time con-
suming, in particular for performing multiple runs when prototypes must
be rebuilt. Solely the computational time required for creating a bitstream
from HDL code is at least half an hour for complex designs. Hence it is use-
ful to perform co-simulation with a behavioral prototype prior to creation
of the FPGA bitstream. Behavioral prototype means a purely software
(SW) based (PC-executed) model of the HW prototype, e.g., a VHDL co-
simulation. The model in Figure 2.1 depicts an least mean square (LMS)
linear receiver, taken from the wireless field, comprising a random source,
modulator, transmit filter, channel and the said receiver. Assuming the
designer co-simulates the transmit filter, an expanded model is shown in
Figure 2.2. First the red behavioral prototype, thus the prototype’s SW
model, is added to the simulation. The constellation diagrams before the
equalizer are used to verify the prototype. It is sufficient to compare results
before the equalizer, since only the prototype’s output is of interest, but not
the equalizers behavior (in this co-simulation). Once co-simulation of the
behavioral prototype leads satisfying results, the green hardware prototype
can be generated and eventually co-simulated too, referred to as “hardware
in the loop” (HIL) simulation. Verification is performed equally to the pre-
vious co-simulation of the behavioral prototype. A verification approach
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allowing for automation is to build the difference of the original filter out-
put and its respective prototyping block output by means of an addition
block, followed by checking if any sample is non-zero.

HW Prototypes are created by mapping a blocks functionality into an
FPGA. Co-simulation is used to verify behavioral prototypes and HIL pro-
totypes.

2.2 Prototyping Methodologies

Existing and imaginable FPGA prototyping methodologies for HIL simula-
tions are discussed by analyzing their pros and cons. Unlike the previous
section this section describes how FPGA prototypes are created.

In a top level view the purpose of the prototyping system, as demon-
strated in the previous section, is to build a prototype represented in the
simulation model by a single HIL block. This block accesses, via yet un-
defined interfaces (IFs), the prototype on the FPGA. The question arises,
how this prototype is created. Several approaches exist, differing mainly in
the front end, i.e., the input source. The back end is the same: HDL de-
scriptions are synthesized, mapped, placed and routed, eventually resulting
in a bitstream for FPGA configuration. Such FPGA implementation tools
as Xilinx’ Integrated SW Environment (ISE), introduced in Section 3.3.1,
and Quicklogic’s QuickWorks were originally developed to help designers
effectively develop logic circuits, since that was the best fit for FPGAs.

Synthesis: HW synthesis means that RTL HDL descriptions are analyzed
and converted into a netlist of logic elements, allowing for the generation
of an ASIC or FPGA implementation. VHDL, suitable for synthesis, must
contain specific patterns to allow hardware inference, i.e., the synthesis tool
allocates hardware for these patterns. In general the hardware used for infer-
ence is all-purpose hardware, applicable for different tasks, such as look-up
tables or flip-flops. Additionally most FPGAs provide optimized hardware
blocks which are dedicated to particular tasks only, like block memories.
Commonly these resources cannot be inferred from VHDL code but must
allocated by hardware instantiation, which makes code technology depen-
dent. If VHDL is intended to be generated for different platforms, this must
be regarded, because each one will require its own instantiations while others
will not offer some resources at all.

The following three sections describe how HDL code for FPGA imple-
mentation tools is created according to the different prototyping approaches.

2.2.1 Structural Synthesis

This prototyping approach means utilizing a model’s structure by converting
it into an associated HDL description suitable for synthesis. For each block
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in the simulation model exists an associated, generic HDL module, which is
adapted to block parameters. Hence the simulation model itself is the input
source to the rapid prototyping system. The models structural information
is used to interconnect these HDL modules. This approach even allows for
the use of extremely optimized or pre-synthesized cores, since only the inter-
connections for the modules are created and their generic’s actual values are
set. Xilinx’ System Generator for DSP [32] was the first tool implementing
this concept and bridged the gap between the world of the system engineer
and the hardware designer.1 By seamlessly integrating with Simulink, Sys-
tem Generator leveraged a powerful visual data flow environment suited for
modeling digital algorithm signal flow graphs, and allowed the designer to
generate bit- and cycle-accurate hardware implementation from the system
model automatically [16].

Though being very promising this approach suffers from missing means
of control, since block based models only allow to access interconnections
as opposed to block internals. Building sophisticated control logic with the
provided library blocks is very labor intensive and will, due to required
workarounds, often result in suboptimal results. Nevertheless this is a com-
fortable solution suitable for algorithm designers requiring only library com-
ponents.

2.2.2 Behavioral Synthesis

Another approach, providing more flexibility and better access to block in-
ternals, is to specify the input to the prototyping system, i.e., the block
description, in a high level (programming) language, which is commonly re-
ferred to as behavioral synthesis. It interprets an algorithmic description
of a desired behavior and creates hardware that implements that behav-
ior. The description language must be widely accepted to avoid the tedious
acquisition phase of a new language, suggesting to use C/C++. For rapid
prototyping a prototype, replacing a simulation block, must be created. This
implies that all block information, in addition to the description relevant to
the simulator engine, must be contained in this source. Common program-
ming languages, however, do not provide facilities for specifying Simulink
items. Of course the language can be extended with proprietary constructs
serving one’s needs, but this prohibits compatibility to International Stan-
dards Organization (ISO) compliant compilers. It is very beneficial that
behavioral prototype blocks, as mentioned in Section 2.1, can be created by
compiling the description for using it as block the simulation model.

In behavioral synthesis several optimizations2 are performed to reduce
the algorithm’s complexity and then the description is analyzed to deter-

1Comparable Simulink to FPGA tools are available by Synplicity, Lyrtech and Sun-
dance.

2E.g., common subexpression elimination.
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mine the essential operations and the dataflow dependencies between them.
Allocation and binding algorithms assign high level operations to specific
functional units such as adders, multipliers, comparators, etc. Finally, a
state machine is generated that will control the resulting datapath’s imple-
mentation of the desired functionality. The datapath state machine outputs
are in RTL HDL, optimized for use with the FPGA implementation tools
mentioned before. More details on behavioral synthesis are examined in
Section 2.3.

Although tools exist behavioral synthesis is currently a research field on
its own. Since C to RTL conversion is the method of choice for the rapid
prototyping system it is discussed in Section 2.3. The biggest challenge
still lies in the semantics of C/C++ to RTL conversion, i.e., how C/C++
constructs are mapped to HW elements.

2.2.3 Manual HDL Creation

The last, apparent approach is creating HDL code for the prototype manu-
ally, as used in [30].

Although manual HDL creation cannot be compared directly to the two
other approaches, since it does not allow for a single source and in turn au-
tomatic prototyping, at least the remaining tasks for HIL simulations can be
kept automated. However, VHDL designs can be immediately co-simulated
as behavioral prototype by connecting the simulation platform to a HDL
simulator, as performed in [30] for ModelSim and Simulink. Manual code
creation enables full exploration of the FPGA architecture by using hard
macros like BRAMs, which are not accessible by behavioral synthesis. Un-
fortunately the time required for prototype creation is significantly higher
than for the two approaches presented above, in particular for complex de-
signs since the HDL code gets complex.

Concluding, manual HDL creation is no good choice for automated rapid
prototyping, because time consuming programming on RTL level is required.

2.3 C To RTL

Since a C-dialect is used as input to the prototyping system, C to RTL HDL
conversion is required and analyzed in detail.

Digital HW design traditionally had the disrepute of requiring heavy
efforts for minimal results. This was caused, to the bigger part, by out-
dated design methodology like full manual wire routing. Today’s modern
synchronous digital designs are synthesized from HDL code, minimizing de-
sign efforts compared to manual techniques. However, even this methodol-
ogy reached its limits due to the ever increasing, enormous design sizes of
10MGates+. Designers struggle with complex HDL sources, demanding for
new, system level design methodology. The electronic design automation
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(EDA) industry, on the other hand, desperately tries to get C to RTL con-
version tools ready for practical use, while still not adopted by most HW
designers. In the following C to HDL conversion strategies are presented.

2.3.1 Strategies

A widely accepted hardware semantics of American National Standards In-
stitute (ANSI) C/C++ (not SystemC) is still not defined.

Parallelism

Writing a program in C is a straight forward task, but describing a piece of
hardware is much more difficult because a program is a sequence of opera-
tions, executed one after the other, while in hardware as in ASICs or FPGAs
operations are also executed in parallel. Unlike VHDL, C does not provide
any language mechanism to express parallelism. In order to take care of
parallelism a new language construct can be introduced. E.g., Celoxica’s
Handel-C [6] uses par { } to tell the compiler about parallelism. Although
this approach is successful3 it suffers from incompatibility to the language
standard due to the mentioned proprietary extensions. To avoid this prob-
lem either parallelism could be left completely to the C to RTL translation
tool or it is denoted implicitly in the code by language compliant constructs.

Timed C++

In behavioral synthesis timed means that source code must contain a notion
of time. Designers have to take care for scheduling their operations over
cycles, sharing resources and inserting pipeline stages.

This notion of time is a syntactical construct, e.g., A|RT Builder [1] uses
function calls to schedule operations in one cycle. All code in a single func-
tion call is mapped into HW operating in a single clock cycle. Registers
are inserted by using special variables, e.g., those with a static storage
class specifier. Thus long combinatorial logic can be pipelined by register
insertion. To perform this functionality the tool can use a one to one map-
ping from C++ constructs into corresponding HDL output — every C++
code piece gets its HDL counterpart, as applied by A|RT Builder. A se-
quential process creates all registers, the C++ code sequence is translated
into a VHDL code sequence and mapped into a combinatorial process. One
might think now, that this methodology does not provide an abstraction
gain, which is indeed true. However, the important fact is, that the source
language is C++ and the source code size is smaller than the output HDL.

Concluded, the synthesis of timed C++ is not beneficial in terms of
abstraction, since operation-scheduling etc. must be hard-coded in the source

3Handel-C tools are already over 10 years on the market.
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with specific constructs, which is basically RTL modeling in C++.

Untimed C++

Synthesizing untimed C++ eliminates shortcomings from timed synthesis.
The source code is no longer cycle true, i.e., it comprises only the algorithm
rather than architectural information. More precisely, the source code con-
tains only the information what operations have to be performed as opposed
to the RTL-like style required in timed descriptions, describing what and how
operations have to be performed.

First the source is analyzed syntactically and transformed into an in-
ternal data representation. Then the algorithm is optimized by constant
propagation, eliminating common subexpressions, etc. Inputs, outputs, and
operations of the algorithm are identified, and data dependencies between
them are determined, resulting in a control/dataflow graph (CDFG). This
determines which values are needed prior to computation of other values.
Note, that still no concept of time exists. Resource allocation establishes a
set of functional units, taken from the technology library, that will be suit-
able to implement the design. Eventually the concept of time is introduced
by transforming the CDFG into a finite state machine (FSM) representa-
tion. Using the data dependencies of the algorithm and the latencies of the
functional units in the library, the operations of the algorithm are assigned
to specific clock cycles. Design constraints will determine the result with
respect to latency, pipelining, and resource utilization. Binding assigns the
operations of the algorithm to specific instances of functional units from the
library. Values that are written in another cycle than they are read, are
stored in registers, allocated by register binding. The datapath and FSM
resulting from all of the previous steps are output as RTL source code in
the target language [23].

Hence, synthesis from untimed code requires the tool to design an ar-
chitecture for the source description. Since a large range of possible archi-
tectures exists, designers control the tool by applying constraints, such as
maximum latency, the number of resources etc., to select their appropriate
architecture.

2.3.2 Tool Comparison

Various tools are available for C/C++ to RTL conversion. I arbitrarily
selected four to discuss them in the following.
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DK Design Suite

DK Design Suite from Celoxica is one of the most successful4 C based design
flow tools on the market.

Celoxica developed its own C dialect Handel-C [6]. Handel-C is typical
of the home-grown C-based simulation and synthesis languages developed
by universities and EDA companies. It preserves traditional C syntax and
control structures, making it easy for C programmers and hardware design-
ers to understand. In addition to hardware-centric datatypes, Handel-C
also includes proprietary extensions that facilitate dataflow representations
and support parallel programming. This flow involves manually translating
the untimed algorithm into Handel-C. Following verification via simulation
(which requires Celoxica’s compiler), the Handel-C representation is directly
synthesized into a gate-level netlist.

Using a proprietary language means users cannot use alternative simula-
tion or synthesis tools. As a result, many engineers prefer standards-based
alternatives. Theoretically, manual translation of MATLAB to Handel-C
should be relatively painless because Handel-C is close to pure C. In prac-
tice coercing Handel-C to adequately capture the design in a form suitable
for the synthesis engine requires intensive work by an expert user.

All of the implementation “intelligence” associated with the design has to
be hard-coded into the Handel-C, which therefore becomes implementation-
specific and timed, as explained above. Furthermore, users have minimal
control over the Handel-C synthesis engine, which is something of a “black
box” to work with and which doesn’t take advantage of the target technology.
E.g., no account is taken of FPGA elements like multipliers and BRAMs.
This implies some nonintuitive manipulation of the C code to achieve speed
and size requirements. In short, design teams may end up taking as much
time creating adequate Handel-C as they would hand-creating the RTL,
thereby nullifying the advantage of C-based design flows [12].

Catapult-C

Catapult-C [21], one of the most recently released C-based design tools,
creates “optimized ASIC/FPGA hardware from untimed C++,” according
to its developer Mentor Graphics. The two keywords here that suggest
significant progress are optimized and untimed. The following words from
[24] provide the idea of Mentor’s approach:

Most of the other C/C++ hardware generation tools have re-
lied on pseudo-timed input with specialized libraries adapting C
and C++ to hardware design by adding scheduling constraints
and other hardware-specific information into the source descrip-
tion. Mentor’s approach, by working from completely untimed

4Available for over 10 years and most used in the world, according to Celoxica.
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algorithmic descriptions, gives the compiler the maximum flex-
ibility in creating a hardware architecture that is optimized for
the design goals of the project. It also means that C or C++ tar-
geted at hardware is more like the generic code that a software
developer would normally write.

Since the untimed source does not contain architectural information, a
multitude of different architectures can be implemented, differing in area,
speed, latency and others. Catapult-C offers the exploration of these archi-
tectures by plotting performance charts (micro-architecture what if analysis
[19] in Mentor Graphic’s terminology). Then designers select the alternative,
that fits their constraints best.

A major problem in behavioral synthesis is the connection of algorithms
to interfaces, e.g., an Advanced Microprocessor Bus Architecture (AMBA)
bus. These interfaces impose constraints on the algorithms architecture and
therefore must be considered in synthesis. However, most behavioral syn-
thesis tools available do not. Catapult-C uses a patent-pending interface
synthesis technology [19], that creates a wrapper around the algorithmic de-
sign and connects it to the external HW. Interface synthesis allows to switch
between various external interfaces and explore results without modifying
the source.

Catapult-C uses pure, untimed C++ and integrates interface specifica-
tion. It clearly is the most advanced among today’s behavioral synthesis
tools.

CoDeveloper

CoDeveloper from Impulse Accelerated Technologies supports the rapid cre-
ation of hardware-accelerated systems using FPGAs and the C programming
language.

CoDeveloper is a C language development system for coarse grained
programmable hardware targets including mixed processor and FPGA plat-
forms. CoDeveloper’s core technology is the Impulse-C library and related
tools that allow standard ANSI C to be used for the expression of highly
parallel applications and algorithms targeting mixed hardware/software tar-
gets. This set of C libraries and tools (which include the CoBuilder RTL
generator, CoMonitor Application Monitor and the CoDeveloper Applica-
tion Manager) can be used in conjunction with standard programming envi-
ronments including Microsoft’s Visual Studio (VS), Gnu C Compiler (GCC)
and other standard tools for the development, debugging and implemen-
tation of highly parallel applications directly onto programmable hardware
platforms [11]. CoDeveloper performs loop unrolling, common subexpres-
sion elimination and automatic parallelizing when generating HW. Contrary
to Handel-C no CoDeveloper uses no proprietary language extensions, ex-
cept compiler pragmas for manual architecture manipulation.
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I evaluated CoDeveloper for use in the rapid prototyping flow. The most
remarkable thing is that designers must make heavy use of the mentioned
Impulse-C library, if they want to migrate an algorithm to HW. This library
provides interface (IF) elements such as “streams,” which must be used
in algorithms targeted at FPGAs. More precisely, a C function targeted
at FPGAs must only use Impulse-C library interfaces, which are mapped
into corresponding HDL equivalents, e.g., a first-in first-out (FIFO) memory
for the mentioned stream. Obviously the C code is strongly Impulse-C
library dependant, since interfaces are included in the code, as opposed
to Catapult-C. It is not possible to create HDL without these interfaces,
making CoDeveloper only a second choice. In general the product seems to
be targeted at C programmers with very little or no HW knowledge, who
want to accelerate their software with ready-to-use FPGA power.

A|RT Builder

A|RT Builder5 from Adelante Technologies is a design tool that translates
a C++ based functional specification of an algorithm into an RTL HDL
description. A|RT stands for Algorithm to Register Transfer. The input
to A|RT Builder is a description of an algorithm, expressed in a subset of
C++, optionally enhanced with fixed-point classes that can be provided by
A|RT Library or SystemC [1].

A|RT Builder interprets C sequential statements, except function calls,
as behavior and maps them sequentially into a HDL (Verilog or VHDL) pro-
cess. Function calls result in structure by mapping them in HDL modules.
These modules’ interfaces are defined by the C function parameters. By
applying A|RT Builder’s concept a single execution of the C algorithm will
always correspond to the execution of one clock cycle in the output HDL.
Hence resources are not shared over clock cycles. Designers must use a spe-
cific coding style to describe sequential logic as required for FSMs in order
to minimize area and schedule operations over clock cycles. Since A|RT
Builder’s input must be timed C++, as explained in Section 2.3.1. This
means that the HW architecture is reflected in the source. Changing or se-
lecting architectures as enabled by Catapult-C’s “micro architecture what-if
analysis” requires rewriting the A|RT Builder source. The integration of
interfaces is also not supported. Typically A|RT Builder created HDL must
be wrapped by hand-coded “glue” HDL. More details on A|RT Builder are
provided in Section 4.4.1 and in the user manual [1].

In fact A|RT Builder requires C++ RTL modeling, since the output
HDL is mapped “one to one.” This requires designers to be familiar with
latency, pipelining, resource sharing etc., annihilating the benefits of a C

5A|RT Builder was sold to ARM in 2003.
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based design flow, since no additional abstraction is gained.

Co-simulation is the simulation of refined, implementation specific proto-
type design units along with their formal (original, behavioral) counterparts.
Those prototypes intended for HW implementation are generated for FP-
GAs, as in this thesis’ scope. From the various existing FPGA prototyping
methodologies I chose behavioral C to RTL synthesis.



Chapter 3

Design Environment

This chapter introduces the HW platform comprising the FPGA, the tool
for block based (co-)simulations and other major design tools.

3.1 Hardware Platform

The prototyping platform is the RTS-DSP board from ARC Seibersdorf re-
search. It contains a DSP part (including the target FPGA) for executing
simulation algorithms and a CPU part handling peripheral tasks like com-
munication to external systems. Figure 3.1 gives an overview of the board
architecture. Detailed descriptions of the board are provided in [20, 13].

3.1.1 DSP part

This part contains a TMS320C6416 DSP from Texas Instruments (TI),
clocked at 600 MHz, which is suitable for complex computations and al-
gorithms. The second processing element is a Xilinx VirtexII XC2V2000
FPGA, whereas an auxiliary feature is the connection of the DSP and the
CPU via dual ported BRAMs. The next section provides more details on
the FPGA. Data transmission between DSP and FPGA is carried out by
the EMIFB (external memory interface B), which is clocked at 100 MHz.
EMIFB also connects four MByte of flash memory to the DSP, which con-
tains the DSP executable and the FPGA bitstream file. EMIFA connects 32
MBytes of synchronous dynamic RAM (SDRAM) to the DSP. If necessary
the system can be upgraded with up to 512 MBytes of commercial SODIMM
(small outline dual in-line memory module) SDRAM [14].

3.1.2 FPGA

The dedicated dual ported RAM, mentioned in the previous section, handles
the communication between the CPU and the DSP (Figure 3.1). In general,
the remaining chip area is used for HW implementable, computational tasks

16
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Figure 3.1: Block diagram of the RTS-DSP board.

which decrease the work load of the DSP. When the RTS-DSP board is used
in conjunction with Rapid ProtoTyper (RPT) it carries the FPGA proto-
type, synthesized from a VHDL design. The already existing outermost
VHDL shell, developed by ARCS during former projects, incorporates the
prototype. This shell provides the data bus, address bus and all control
signals, e.g., read/write, chip enable, etc. Furthermore, it was adopted for
rapid prototyping by providing a particular clock solely for the prototype.
This prototyping clock is derived from the 66 MHz CPU clock and might be
multiplied or divided by means of the on-chip phase-locked loop (PLL), ac-
cording to the requirements of certain prototypes, which allows for freedom
in prototyped algorithms.

The FPGA features 2M system gates, 56 18-bit multipliers, 1008 kbits
of BRAM and eight digital clock manager (DCMs). Interrupt pins of both
DSP and CPU can be accessed by the FPGA, which allows for efficient data
transmission to adjacent cores. E.g., the external interrupt pin of the CPU
is used to signalize that the FPGA has completed its computations and
output data is ready for carriage.
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3.1.3 CPU Part

The CPU of the board is a Motorola Coldfire MCF5272 chip. Its main task is
the data transmission between the FPGA and the CPU and the execution of
the TCP/IP stack for the Ethernet IF. It is clocked at 66 MHz and features
an integrated fast Ethernet controller (FEC), which controls a fast Ethernet
transceiver LXT971A from Intel, carrying out the ISO-OSI (open system
interconnection) physical layer. The EMIF of the CPU connects 16 MBytes
of SDRAM, 4 MBytes of flash and the FPGA [14, 10].

3.1.4 Interfaces

The most important IFs for rapid prototyping are:

Ethernet connector Enables data transmission to the host PC. This port,
whose data transfer rate is substantially lower than the low voltage
differential signaling (LVDS) IF’s data rate, was initially intended to
transfer visualization data only.1 Its data rate is sufficient for this
purpose. However, when the board is used for rapid prototyping, the
Ethernet port carries the main data stream, which might turn out
to be the bottleneck in the data transmission path. However, small
execution time of the simulation is not a primary goal of this thesis.

LVDS IF A high speed serial IF which enables transmission of external
data or interconnection of two or more RTS-DSP boards.

JTAG (Joint Test Action Group) IFs enable direct programming of the
FPGA and flash memories. An RS-232 (Recommended Standard-232) IF
allows debugging of the CPU [14].

Once a new bitstream has to be loaded onto the FPGA it can be loaded
via Ethernet, CPU and FPGA, directly into the DSP SDRAM (see Fig-
ure 3.1), wherefrom the DSP reconfigures the FPGA at runtime, i.e. no
board reset is required.

3.2 Simulink

Verifying prototypes by co-simulation is crucial in rapid prototyping, as
mentioned in Section 2.1. Simulink, a well known simulator in engineering,
is used for this co-simulations.

Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled in con-
tinuous time, sampled time, or a hybrid of the two. The scope of this work
includes discrete systems only, i.e., systems with sampled time. Systems can

1The ARCS RTS-DSP board was designed for a (mobile communications) channel
simulator, for more information refer to [14].
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also be multirate, i.e., have different parts that are sampled or updated at
different rates.

For modeling, Simulink provides a graphical user interface (GUI) for
building models as block diagrams, using click-and-drag mouse operations.
Block libraries, such as the “Signal Processing Blockset,” offer blocks per-
forming common tasks of their field, e.g. digital filtering. Simulation results
can be viewed on scope blocks or saved to workspace variables. However,
performing co-simulation with a proprietary HW platform requires the use
of specific, user defined blocks. Their creation is enabled with so called
S-Functions, explained in the next section.

3.2.1 S-Functions

An S-Functions allows the integration of program code into Simulink blocks.
This offers great freedom because any programmable behavior or action
can be implemented. S-functions can be written in MATLAB m-code, C,
C++, Ada, or Fortran. I use C++ S-Functions since C++ offers great
flexibility and existing ARCS libraries are written in C. C++ S-Functions
are compiled into MATLAB executable (MEX)-files, which requires special
compiler options. MATLAB comes with the mex utility, which sets all these
options and calls a (customizable) C++ compiler. In this thesis Microsoft’s
Visual C++ (VC++) compiler, introduced in Section 3.3.2, is used.

Understanding how S-Functions work requires understanding how Simu-
link works. A Simulink block consists of a set of inputs, a set of states, and
a set of outputs, whereas the outputs are a function of the sample time, the
inputs, and the block’s states. Basically the execution of a discrete Simulink
model proceeds in three stages:

• Initialize model.
• Calculate outputs.
• Update states.

First comes the model initialization where Simulink incorporates library
blocks into the model, propagates widths, data types, and sample times,
evaluates block parameters, determines the block execution order, and al-
locates memory. Then Simulink enters a simulation loop, where each pass
through the loop is referred to as a simulation step. During each simulation
step, Simulink executes each of the model’s blocks in the order determined
during initialization. For each block, Simulink invokes functions that cal-
culate the block’s outputs and states for the current sample time. This
continues until the simulation time has elapsed.

An S-Function must contain a set of functions called by the Simu-
link scheduler. This set of callbacks and their execution order is depicted
in Figure 3.2, whereas the mdlUpdate() callback may be omitted if not
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Figure 3.2: S-Function callbacks and their execution order.

used. There exist much more optional callbacks, which are exactly ex-
plained in [29]. Most important is the mdlOutputs() callback. As shown
in Figure 3.2 it is invoked in each simulation step. Hence, all action for a
blocks regular behavior (not initialization) is contained here. Macros, pro-
vided by the S-Function application programming IF (API) are used to ob-
tain and store Simulink block information, e.g., ssSetNumDiscStates() or
ssSetSampleTime(). All callbacks with “initialize” in their name are called
once at simulation start-up in order to set initial values and define data sizes
etc. mdlTerminate() is usually used to clean up allocated memory, since it
is invoked as the very last function.

Simulink is used to co-simulate prototypes, integrated into Simulink by
means of S-Functions, allowing to incorporate user defined functionality with
callback functions.

3.3 Design Flow Tools

Creating a rapid prototyping environment requires the use of tools in a
design flow. This section introduces third party tools whose usage was fixed
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prior to creation of the prototyping design flow. Hence they are considered
to be part of the design environment.

3.3.1 Xilinx ISE

Xilinx’ Integrated Software Environment (ISE) is an FPGA design software
suite. It allows to net FPGA resources by creating a configuration for its
interconnect matrix such that it behaves exactly as the design entry speci-
fication.

ISE enables to specify HW designs by HDL, netlists, intellectual prop-
erty (IP)-cores etc. Such a design entry specification can be implemented,
resulting in a bitstream for FPGA configuration. ISE comes with a set of
tools performing parts of the entire design creation process [31]. Processes
for bitstream creation are listed in the following:

1. Synthesize: Design entry files, viz. VHDL files in this thesis, are synthe-
sized by the Xilinx Synthesis Tool. Synthesis allocates HW resources
that behave in the same way as the corresponding language construct.
Hence synthesizable HDL code is restricted in that it must conform
to specific rules, since not all possible constructs are feasible in HW.
This coding style is referred to as register transfer level (RTL) style.
Synthesis tools output netlists for further processing by the following
tools. These netlists contain information on used resources and their
interconnection. Macro inference allows to allocate FPGA resources
without instantiating them in the code, i.e., by following Xilinx coding
styles synthesis results can be optimized.

2. Implementation: This process consumes, unlike the two others, a huge
amount of computational power and, hence, time. It comprises three
sub-processes:

Translate: The translate process merges all input netlists and design
constraint information in order to output a Xilinx Native Generic
Database file, which describes the logical design reduced to Xilinx
primitives.

Map: The translated design is mapped into FPGA elements, such
as configurable logic blocks (CLBs) and I/O buffers (IOBs). The
output is a native circuit description file that physically represents
the design mapped to the components in the Xilinx FPGA.

Place and Route: This process takes a mapped design, places and
routes it, and produces an Native Circuit Description file that is
used as input for bitstream generation.

3. Programming File Generation: Eventually bitstreams for Xilinx de-
vice configuration are generated. These bitstreams must be down-
loaded to the FPGA in order to execute the desired function.
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All listed processes have corresponding tools which have to be invoked con-
secutively for creation of a bitstream from a VHDL source, as required for
rapid prototyping.

3.3.2 Visual C++

Microsoft’s VC++ is part of the quite popular Visual Studio (VS) SW de-
velopment platform on Windows. It provides a C++ compiler and linker,
used for the rapid prototyping environment.

Typically Visual Studio is used with its GUI. Programmers type their
code into an embedded editor and initiate compile and build (also known
as link) steps by pressing buttons, which, in turn, call the corresponding
command line tools.

Compiler: Prior to compilation comes a preprocessing stage, executing all
preprocessor instructions and removing them from the file. The actual
compiler analyzes the remaining C++ code and outputs object files,
whose generation can be controlled by a variety of options, such as
“inline function expansion.” Unfortunately is this compiler not 100%
compatible to ISO C++, e.g., partial template specialization is not
supported.

Linker: Object files from the compiler are read and executable code is
created. As well as compiling linking is customizable by options, e.g.,
“Output file name.”

Automatic rapid prototyping requires the compiler and the linker to be
accessible from an external program, which is possible since both provide a
command line IF.

The RTS-DSP board from ARCS contains the Xilinx Virtex II FPGA for
rapid prototyping. It communicates via Ethernet with Simulink’s S-Functions,
used for co-simulating prototypes. Xilinx’ ISE is used for FPGA implemen-
tation and Microsoft’s VC++ compiler creates the S-Function MEX files.



Chapter 4

Rapid Prototyping
Methodology

Based upon theory introduced in Chapter 2, this chapter provides key con-
cepts and fundamentals developed in order to implement the rapid prototyp-
ing tool: Rapid ProtoTyper (RPT). The simulator’s role will be explained
in detail, followed by methods used to integrate prototypes in co-simulation.
These methods include analysis of the single input source, leading to creation
of the FPGA prototype and required simulation software.

4.1 Design Flow Overview

What must be done in order to obtain prototyping blocks? A general, simple
design flow, assembled from fundamental blocks, answers this question, while
the detailed, implemented design flow is illustrated in Chapter 5.

The overall goal, as explained in Section 2.1 in detail, is replacing a
Simulink block with its prototype. Further was defined, that this prototype
has to be described in a C like programming language, which forms my
system’s input as illustrated in Figure 4.1 in a high-level, detail-omitting
view. Following the “one source” paradigm in the five ones approach, men-
tioned in [27], the entire rapid prototyping flow is set up on a single source.1

Each block in the diagram depicts the prototype at a different implementa-
tion stage, apart from the Hardware in the Loop2 block being just a shell
for another prototype realization. Since all blocks are data representations
there is no information in this diagram on how data is compiled or gener-
ated. However, some third party tools with major influence on my concepts
are introduced during discussion while the complete tool set is explained in
Chapter 5. Attention should be paid to the arrow color since red illustrates

1Per definition of source code, this does not include any auto-generated code, as e.g.
VHDL code (in our design flow).

2Convention in this chapter: typewriter font refers to Figure 4.1.

23
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Figure 4.1: Simple, high-level design flow.

transformation steps among data representations opposed to green, indicat-
ing data transfer. Keeping track of the flow is alleviated by splitting it up
in two branches:

1. Simulink generation.
2. FPGA generation.

Although partition by language, as provided in Figure 4.1, suggests together-
ness of blocks with equal color the Hardware C description counts towards
branch item 2 FPGA generation.

4.1.1 Simulink Generation

Co-simulation in Simulink requires the Behavioral prototype block and
the Hardware in the Loop block to be implemented in terms of C++ S-
Functions (for more information on S-Functions refer to Section 3.2.1). The
Behavioral prototype block is solely PC-executed and therefore can be
immediately generated from the Single source. This source, based upon
C++, is unique in that all other prototype descriptions are generated from
it and thus no further (prototype) programming is required. However, this
approach is not new, e.g. Rupp also recommends the use of one source in
[27]. As Figure 4.1 shows, the Hardware in the Loop block consequentially
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communicates with the FPGA suggesting that some interfacing concept is
involved. Since this IF is also generated from the single source, which in-
cludes all this IF information (in detail explained in Section 4.2.1), the
Hardware in the Loop block can be generated immediately, too.

4.1.2 FPGA Generation

Being RPT’s base, C to VHDL conversion is illustrated in the upper right
corner of Figure 4.1. Since writing an own C to VHDL conversion tool would
have been too much effort I decided on using an external tool. Among the
various alternatives discussed in Section 2.3.2, I chose A|RT Builder for rea-
sons discussed in detail in Section 4.4.1. Since A|RT Builder requires input
extended with specific code constructs, a Hardware C description must be
generated to fit the tool’s syntax. Once this description has been compiled,
the resulting, HW synthesis compliant VHDL prototype models the proto-
type at RTL level. Finally this VHDL prototype is synthesized by Xilinx
ISE and the resulting net lists are implemented in an FPGA configuration
bitstream. In order to run the prototype on the FPGA it has to be con-
figured with the bitstream. Finally communication between simulation and
FPGA, via Ethernet, can be established.

4.2 Input Source

In order to describe a systems behavior as well as its IF a suitable input
format is chosen. Further, its composition is analyzed and strategies for
analysis and information extraction are presented.

Requirements: Since an entire simulation block is described by a sin-
gle source, all information essential to the block must be contained in this
source. To enable simulation-embedding the block’s interface must be spec-
ified, including parameters such as the number of input/ouput (I/O) ports,
their data types and sample rates. A detailed system level view from Simu-
link at prototype integration is provided in Section 4.3. In addition to the
inevitable IF it is desirable to equip the block with behavior and, moreover,
with state.

4.2.1 Generic-C

Generic-C, defined in COSSAP3 and well known in EDA industry, was se-
lected as prototyping language, since it comes with features allowing to
tackle the above mentioned tasks with relative low effort. Generic-C is a
C dialect with proprietary language extensions, designed to describe block

3Communications System Simulation Analysis Package.
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#INCLUDE "fxp.h"

// data rate

#define R 16

// correlation signal depth

#define DEPTH 40

// input for correlation

INPUT_PORT(1) Fix<8,6> * u;

// output of correlation

OUTPUT_PORT(1) Fix<8,6> * y;

RATE(INPUT_PORT(1))=R;

RATE(OUTPUT_PORT(1))=R;

STATE Fix<8,6> x [DEPTH];

Figure 4.2: Generic-C header example.

based DSP systems, which made it a solution tailored for rapid prototyping.
Fortunately the language extensions are mainly used to describe block IFs
and affect system behavior code only marginally as depicted in the following.

A Generic-C description consists of a header section and two functions
modeling a block’s behavior.

Header Section: Each statement (not preprocessor instructions) in this
section must begin with a Generic-C keyword as exemplified in Figure 4.2.
An overview of Generic-C keywords and their associated declaration’s en-
hanced Backus Naur form (EBNF) grammar is provided in the following:

INPUT PORT declares an input port. The exact syntax for the input port
statement is:

"INPUT_PORT" "(" index ")" type "*" identifier ";"

Index must be a positive integer, type a C/C++ base type or fixed-
point type from the A|RT library and identifier a valid C/C++ vari-
able name.

OUTPUT PORT declares an output port, whereas syntax rules are equivalent
to the INPUT_PORT statement:

"OUTPUT_PORT" "(" index ")" type "*" identifier ";"

RATE marks the beginning of a port’s data rate declaration with the follow-
ing syntax:
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"RATE" "(" "INPUT_PORT" | "OUTPUT_PORT" "(" index ")" ")" "="
rate ";"

The declaration of the associated input port respectively output port,
selected with index, must occur prior to the rate declaration. The rate
itself can be any positive integer, but optimal HW results are achieved
by using powers of two.

STATE is used to model a blocks state. Although variables, containing state
information, can also be declared in the behavioral part, using the
STATE construct is advantageous since tools can handle it explicitly.
The STATE declaration, unlike all other Generic-C declarations, must
not appear more than once per source, according to [26]. Its syntax
rules are:

"STATE" type identifier "[" size "]" ";"

For type and identifier apply the same rules as mentioned in the
INPUT_PORT declaration. According to syntax rules, states must al-
ways be declared as arrays.

RPT does not support all Generic-C constructs since this would have been
too much implementation effort. However, those not supported, e.g. PARAMETER
and RAM, are not essential to describe a blocks behavior and, furthermore,
workarounds exist, which have the same effect.

Algorithmic Part: Unlike the header section this part contains only mi-
nor Generic-C specifics. System behavior is modeled by an initialization
function and an algorithm function. The former does exactly what its name
suggests; hence it is called only once at simulation begin. Usually solely the
state variable, i.e. the variable declared by STATE, is initialized here. For
a block named Prototype the Generic-C file name must be “Prototype.gc”
and the initialization function’s syntax is defined in the following:

"init_Prototype" "(" ")" "{" body "}"

Compared to regular function calls it is obvious that no return type and no
parameters are allowed. Parameters are not required, since implicit access to
the state variable is granted. The function body is, as usual in C, embedded
in braces, must not contain any proprietary extensions and thus can be
compiled by standard compliant C/C++ compilers.

The algorithm function actually contains the block’s behavior. The syn-
tax is defined as following in EBNF:

"Prototype" "(" ")" "{" body "}"
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Since, equal to the initialization function, no parameters are allowed, the
algorithm implicitly has access to IF data from the header section. Port
variables, although declared as pointers, are contiguous arrays and thus
may be accessed like the state variable with the index operator []. Basi-
cally the body may be coded in whatever style designers prefer, although
hardware creation deserves attention because the coding style influences re-
sulting hardware architectures dramatically as discussed in Section 4.4.2.

Summarized, a Generic-C provides an IF section, containing I/O port
and state information, and an algorithmic part, defining the blocks behavior.

4.2.2 Input Analysis

Rupp already wrote a tool performing Generic-C conversion, entitled GenC
and accurately described in [26]. Various outputs can be generated, in-
cluding A|RT Builder code and Simulink S-Functions. Maier used GenC in
his diploma thesis [18] to generate S-Functions for rapid DSP-prototyping.
In order to generate DSP code he wrote an add-on analyzing GenC’s S-
Functions, which is an interesting approach in that this add-on gets around
analyzing Generic-C. Since Maier’s prototyping system carries out the same
task as mine, except that his target is a DSP, I considered applying his ap-
proach in my system. However, during some case studies it turned out that
S-Functions are harder to analyze than Generic-C code since the required
information is hidden in an accumulation of surrounding code. Additionally
GenC generated S-Functions use improper, old-style memory management
increasing block invocation time. Another problem were several Generic-C
input issues (white-space sensitivity, sequence sensitivity, insufficient type
support, faulty error handling . . . ), which finally convinced me to set up
a new tool chain including Generic-C analysis. For avoiding the problems
mentioned above I decided to use a more general, object oriented approach.
A scanner-parser tool, using token streams, extracts pure information from
Generic-C sources and provides it in a uniform, clean representation. Re-
lating to Figure 4.1 this representation replaces the Generic-C source and
forms the basis, i.e.the input, for generator tools.

In order to create token streams from Generic-C a scanner is used. It
reads the input file and extracts command strings, terminated by semicolons.
While scanning these strings white spaces are discarded, additionally to
C++ line comments // and section comments /* ...*/. Resulting tokens
are analyzed by a parser creating a database, particularly from Generic-
C IF description constructs as mentioned in Section 4.2.1. This database
contains all relevant information from the Generic-C source like I/O port
numbers, types, names, rates and state information. Additional to ANSI C
types fixed-point types are supported, defined in the A|RT library [2]. By
means of these types, variables of arbitrary length up to 32 bits are possible,
whereas the binary point may be specified at any position in the mantissa.
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Generic-C function contents are not analyzed by the parser but saved in the
database file together with the prototype IF information mentioned above.

Summarized, Generic-C is used as the input source language. It contains
a proprietary header section, used to indicate IF information as ports, and
functions for initialization and algorithmic behavior. Generic-C files are
processed by a scanner-parser tool providing a uniform database.

4.3 Simulation Semantics

Considering Simulink model creation, prototype integration is a core issue.
Prototype requirements and attributes of Simulink, viewed from simulation
data flow perspective, are discussed.

First of all, before any code can be generated, a simulation semantics
has to be established. An eminent feature of Simulink is its time based
simulation engine. It supports continuous time systems as well as discrete
time systems. Since my rapid prototyping system focuses on digital hard-
ware only I do not have to deal with Simulink’s continuous time features.
For discrete time systems an appropriate solver exists, which guarantees the
following:

• Simulation time advances in fundamental sample time steps, whereas
each sample time (in multi rate systems) must be an integral multiple
of the fundamental sample time.

• Each block’s algorithm is only invoked once per sample time hit, con-
trary to continuous time systems.

• Prior to block invocation block inputs are updated, analogous block
outputs at the invocation end.

When using Simulink for prototype co-simulation some issues have to be
considered, as explained in the following.

4.3.1 Background

In addition to supporting single rate systems RPT must also support multi
rate systems. Simulink offers the multitasking scheduling algorithm for this
purpose. All blocks with common sample times are assigned to a separate
task, which is only invoked when a sample time hit occurs. In multi rate
systems with sample times of adjacent blocks being integral multiples of each
other this multitasking approach can lead to unexpected system behavior
due to dependencies in the tasking sequence. More precise it may emerge
that a block, viewed in the model’s signal propagation flow, is executed after
its successor when a sample time hit occurs at both blocks and they reside
in different tasks.
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Figure 4.3: Multi rate block processing simulation.

Simulations with a high count of blocks (several hundred) and deep hier-
archies can cause a severe performance decrease due to the overhead caused
by the scheduling algorithm. When the simulation additionally is very ex-
haustive it is desirable to reduce the overall simulation time and subse-
quently the scheduling overhead. To tackle this task one may use block
processing. Thus, in the simplest case, the algorithm is executed iteratively
according to the block processing size, while the block itself is only invoked
once by Simulink’s scheduler. In other words the scheduler’s multiple block
invocations are shifted inside the block.

4.3.2 Approach With Generic-C

Since the source language is Generic-C, the above mentioned problems can
be tackled by means of the language integrated features. Thus a data rate
can be specified for each input and output port, which, according to my
simulation semantics, corresponds to the block processing size. However, the
data rate not only allows to solve the scheduling problem, it also addresses
the multi rate problem. By specifying different data rates for ports one can
create a multi rate block, though the block, in Simulink only uses one sample
rate. Figure 4.3 exemplifies a typical multi rate simulation, whereas different
sample times are indicated by associated colors. Designers, who code blocks
in Generic-C, have full control over the handling of sample rates because
it takes place in the Generic-C code. Each port is mapped into an array
with a size given by the data rate. This array size corresponds to the signal
dimensions displayed in Figure 4.3. Full control means that any value of
the array can be accessed via the index operator []. Semantically, the value
provided by the array index corresponds to a port value at the time given
by this index. Designers have to take care of processing the entire block in
this case. It would have been possible to restrict their data access rights and
perform the iteration over the array, including port indexing, automatically
to exclude potential human errors. However, in a case study it turned out
that this would only lead to satisfying results when all arrays are of equal
size, i.e. in the case of a single rate system. To offer more flexibility I decided
to let designers take care of port accessing. Section 6.2 provides Generic-C
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source code illustrating the actual port access methodology.
Eventually a Simulink data representation must be chosen, regarding

criteria such as flexibility and compatibility. Simulink’s block based data
is usually represented by frames. In order to be compatible with the data
representation of [18], I have chosen vectors, indicated in the diagram by
numbers. By using Simulink’s Convert 2-D to 1-D library block, frames
can be converted, without information loss, to vectors and vice versa with
the To Frame block. Besides sample time, Simulink block routing lines are
characterized by their data type. Usually double precision floating point
format is used. However, in DSP systems specialized formats, such as fixed-
point, are often preferred. A|RT Builder comes with its own, proprietary
fixed-point format, which can be integrated into Simulink via a user-defined
routing data type. Unfortunately such a type is incompatible to library
blocks like scopes, which is a substantial drawback. Hence double precision
floating point format is used whereupon Generic-C data types are used only
inside prototype blocks (S-Functions).

Summarized, multi rate support as well as simulation scheduling effort
attenuation is achieved by block processing and Simulink routing is repre-
sented in double precision floating point format.

4.4 Hardware Generation

Branch two in Figure 4.1, introduced in Section 4.1, illustrates stages of
FPGA prototype creation. Based on these several stages are concretized
and refined, more precisely the following is established:

• Actual C to VHDL conversion methodology.
• FPGA embedding of the Prototype.
• Prototype access and control.

Before a prototype can be implemented on FPGAs, it must exist as HDL
module written in RTL style, such that it is possible to apply hardware
synthesis with common tools as, e.g. Mentor Graphics’ Leonardo Spectrum
[22]. To maintain automation in RPT the prototype must be generated from
Generic-C code, unlike manual porting in [30]. Ideally, the prototype should
exist as entity-architecture pair to ease integration into other VHDL code.
Fortunately, Generic-C language constructs, in particular INPUT_PORT and
OUTPUT_PORT, allow for direct mapping into a VHDL entity.

4.4.1 A|RT Builder

Since compiling an untimed C/C++ algorithm4 into synthesis compliant
VHDL is very difficult, as pointed out in Section 2.3, designing such a tool

4This does not apply for SystemC which is timed and, amongst others, designed for
HW synthesis; the terms timed and untimed are explained in Section 2.3.
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void Prototype (

const Int<4> a,

const Int<4> b,

short & c)

{

#pragma OUT c

}

library ieee;

use ieee.std_logic_1164.all;

use work.artbuilderpack_numeric.all;

use ieee.numeric_std.all;

entity Prototype is

port (

a: in std_logic_vector(3 downto 0);

b: in std_logic_vector(3 downto 0);

c: out std_logic_vector(15 downto 0)

);

end Prototype;

Figure 4.4: C function and corresponding VHDL entity.

would be enough work for a PhD thesis. Hence I selected the third party
tool A|RT Builder, based upon the following reasons:

• Unfortunately Catapult-C was not available to me.
• A|RT Builder comes with a fixed-point library implemented both in

C++ and synthesizable VHDL.
• A|RT Builder does not require its input to be modified with propri-

etary language constructs (except compiler pragmas).
• A|RT Builder was available to me from the first day of my diploma

thesis.

Unfortunately A|RT Builder is no longer commercially available, since Ade-
lante Technologies sold its A|RT technology to ARM, which accordingly
prohibits commercial use of RPT. Nevertheless A|RT Builder is suitable for
“proof of concept.”

A|RT Builder Hardware Semantics

A|RT Builder’s hardware semantics is described in detail in [1] while here a
brief overview about key concepts is provided.

In general, A|RT Builder creates HW as parallel as possible. For each
C++ operation an equivalent RTL VHDL operation is generated, which
is, in other words, a “one to one” mapping. A VHDL component is gen-
erated from a C function whereas its parameter list is mapped into input
and output ports, as indicated in Figure 4.4. In particular outputs in the
parameter list have to be indicated to A|RT Builder with the OUT pragma.
The template type Int<4> is one of the fixed-point types from the A|RT Li-
brary, mentioned in Section 4.2.2. As shown by the bit widths in the VHDL
entity, A|RT Builder supports these types and, furthermore, A|RT Builder
supports corresponding HW arithmetics. Calls of other C functions from
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the outermost function result in instantiated VHDL components and, thus,
a function hierarchy gives a VHDL component hierarchy or, in other words,
a facility to describe structure.

Combinational Logic

Combinational logic is generated from C operations like addition, if state-
ments or for loops. The function in Figure 4.4 could be extended with some
functionality as exemplified in the left of Figure 4.5. To its right the resulting
architecture is shown, with only a purely combinational process containing
the C function’s operations in data-dependency correct sequence.5 I.e., for
instance variables for intermediate results may be removed for optimization,
however, the sequence of operations is preserved. As Figure 4.5 shows not
only the operation sequence but also operations themselves are preserved.
Hence, e.g., the C if becomes a VHDL if, the C | becomes a VHDL or and
also the for loop is maintained. For satisfying VHDL syntax requirements,
being tighter than in C, A|RT Builder adds casting operations. Further-
more A|RT Builder sets VHDL variable bit-widths automatically for correct
arithmetics as shown in the COMPUTE_PROC process’ declaration section in
Figure 4.5. E.g., n2 is a 20 bit variable (19 downto 0) since it gets assigned
the product of a four bit and a 16 bit variable (refer to the for loop’s body).

According HW synthesis rules this VHDL description will become a
purely combinational circuit because no clock is involved and the output
is solely a function of the inputs. Synthesis tools will infer HW operators
for VHDL operators, a multiplexer for the if and the for loop will be unrolled
into separate multiply accumulates (MACs), i.e. each operation is mapped
into an associated HW unit, which is fully parallel implementation. So far
outputs at a specific time are a pure function of the inputs. However often it
would be useful to equip a design with state, i.e. to remember values. This is
required to realize particular behavior like counting and, furthermore, when
area limitations force resource sharing or a design should be pipelined, i.e.
its long critical paths are split up by register insertion.

Sequential Logic

When state is demanded a notion of time must be introduced. One execution
of the top-level C function will consume one set of inputs and produce one
set of outputs. This single execution is called a time frame, corresponding
to one clock cycle. Since outputs are a function of both inputs and the
present state, A|RT Builder’s generated architecture can be imagined as a
Mealy machine, illustrated in Figure 4.6. When values in a C function are
preserved beyond one time frame, i.e. one execution of the function, state
is modeled. Common techniques are the use of variables with a static

5cast() is an A|RT Builder specific type conversion.
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#include <fxp.h>

void Prototype (

const Int<4> a,

const Int<4> b,

short & c)

{

#pragma OUT c

Int<4> d = a + b;

Int<4> e = d + Int<4>(1);

Int<4> f = e | d;

if (f > e)

c = f - e;

else

c = e - f;

for (short i = 0; i<4; ++i)

c += a*i;

}

architecture rtl of Prototype is begin

COMPUTE_PROC: process(a, b)

variable a_n1:signed(3 downto 0);

variable b_n1:signed(3 downto 0);

variable c_n1:signed(15 downto 0);

variable d: signed(3 downto 0);

variable e: signed(3 downto 0);

variable f: signed(3 downto 0);

variable n1: boolean;

variable n2: signed(19 downto 0);

variable n3: signed(15 downto 0);

variable n4: signed(15 downto 0);

variable n5: signed(15 downto 0);

variable n6: signed(15 downto 0);

variable n7: signed(15 downto 0);

begin

a_n1 := signed(a);

b_n1 := signed(b);

d := a_n1 + b_n1;

e := d + signed’("0001");

f := e or d;

n1 := f > e;

if (n1) then

n6 := cast(f,12,0);

n7 := cast(e,12,0);

c_n1 := n6 - n7;

else

n5 := cast(f,12,0);

n4 := cast(e,12,0);

c_n1 := n4 - n5;

end if;

for i in 0 to 3 loop

n2 := a_n1 * to_signed(i,16);

n3 := cast(n2,-4,0);

c_n1 := c_n1 + n3;

end loop;

c <= std_logic_vector(c_n1);

end process;

end rtl;

Figure 4.5: C function and corresponding VHDL architecture.

storage class specifier or those declared in a global scope. They typically
preserve their value(s) for the entire program execution time and they are
initialized all together at program start — behavior similar to hardware
state. When A|RT Builder finds one of these constructs it maps them into
synthesizable VHDL register code in a sequential process as illustrated in
Figure 4.7. This process updates its signals, i.e. the system’s state, only at
clock edges or changes of the reset signal, as common in synchronous design.
The two state signals, q_gc_Statexx_r and index_r, are modeled in C as
global fixed-point array and static fixed-point integer, respectively. Clock
and reset are signals which do not occur in the C code, thus A|RT Builder
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Translation Concepts

A|RT Builder Adelante Technologies 69

4.3 Architecture of the VHDL/Verilog Output

One execution of the top-level C function, will consume one set of inputs and 
produce one set of outputs. This single execution is called a time frame. 

To model this frame-based execution of the C algorithm, the VHDL and Verilog are 
structured as Mealy machines, a sequential network, the output of which is a 
function of both the present state and the input to the network.

Figure 4-3 illustrates the default architecture generated by A|RT Builder for the 
case where the design is contained in a single C function. A|RT Builder first 
generates a compute process and then one or two reset/update processes. 

By default, the tool places these processes directly in the HDL component. This is 
the easiest method. 

You may want to have these processes generated as separate components 
however, since this gives you more control over the design, by changing the 
default setting either globally in the Build Options dialog box (see page 44 and 
following), or - for a specific function - by inserting a pragma in the function body.

Two pragmas ARTB_COMPUTE_COMPONENT and ARTB_UPDATE_
COMPONENT are available for this. Detailed information on all pragmas can be 
found in Appendix A.

These two specify that separate components have to be generated for that 
function and overrule the Build Options settings.

If you override the default settings, a separate component will be generated which 
contains a single process. Then the HDL component proper is generated, 
representing the design and containing instantiations of the separate compute 
and/or reset/update components. The process in the compute component 
calculates the outputs and the next state, while state initialization and update are 
handled by the process(es) within the reset/update component(s) (see Section The 
Reset and Enable Inputs on page 78).

Figure 4-3 :
HDL component

architecture for a single
C function

HDL Component

compute component
(combinational)

reset/update component(s)
(sequential)

compute process
(combinational)

reset/update process(es)
(sequential)

Inputs Outputs

clk rst(_a) enable

<state>_r <state>_nxt

Figure 4.6: A|RT Builder’s HDL component architecture.

RESET_UPDATE_PROC: process(clk,rst_a)

variable q_gc_Statexx: signed_15d0_array_6d0; -- (state)

variable index: unsigned(7 downto 0); -- (state)

begin

if (rst_a = ’1’) then

for i_n2 in 0 to 6 loop

q_gc_Statexx(i_n2) := signed’("0000000000000000");

end loop;

index := unsigned’("00000000");

-- copy local variables to next value for state

for d0 in 6 downto 0 loop

q_gc_Statexx_r(d0) <= std_logic_vector(q_gc_Statexx(d0));

end loop;

index_r <= std_logic_vector(index);

else

-- update state at clock transition only

if (clk’event AND clk = ’1’) then

if (enable = ’1’) then

q_gc_Statexx_r <= q_gc_Statexx_nxt;

index_r <= index_nxt;

end if;

end if;

end if;

end process;

Figure 4.7: A|RT Builder-generated sequential process.
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adds them automatically to the VHDL entity when it finds state in C. Often
it is desired to prevent state updates for some clock cycles, e.g. when input
data has to arrive. This behavior is achieved by usage of flip-flops with
enable input, also automatically added to the entity by A|RT Builder.

Furthermore A|RT Builder supports advanced HW design methodologies
such as pipelining or clock gating, realized by obeying particular coding
styles or by using A|RT Builder #pragma instructions, respectively. Detailed
descriptions are available in [1].

A|RT Builder has been selected to perform C to VHDL conversion in the
design flow. Key concepts of HW generation, including combinatorial and
sequential HW, are explained in detail enabling to understand later design
examples.

4.4.2 Coding Style

Since A|RT Builder cannot support all C++ constructs, as while loops or so-
phisticated pointer usage, only a subset of C++ is allowed. When designers
code Generic-C prototypes this must be regarded, because the Generic-C
function bodies are mapped directly into the A|RT Builder source code.
When describing an algorithm in a C function, designers usually write the
function such, that one invocation produces the desired output. Thus, ac-
cording to A|RT Builder’s time frame concept, as explained in Section 4.4.1,
all functionality had to take place in one clock cycle, consuming vast amounts
of HW resources. Furthermore, since Generic-C data rates are realized by
block processing, as depicted in Section 4.3, and an entire data block with
size N is processed in one block invocation, the HW is instantiated N times.

In order to fit prototypes into the FPGA a resource sharing methodology
is used. Multiple invocations of the algorithm share the same HW, thus
producing the output step by step. How many clock cycles, or time frames
in A|RT Builder terminology, are used is the designer’s choice. They just
have to set the system flag done in the last cycle to indicate algorithm
termination as demonstrated in Figure 4.8. In order to preserve algorithm
advances they must be stored in a state variable, which typically is a counter
like index. Algorithm termination has to be tested in each invocation and,
once it is true, the counter must be reset. The algorithm itself may be
described by a construct like

y[index] = DoIt(u[index]);

The prototypes functionality is contained in DoIt() which is shared over
all inputs u[index]. No matter how many times the algorithm is invoked
DoIt()-HW resources are allocated only once, while different inputs are
applied by means of the indexing operator. In general, indexed read oper-
ations, like u[index], result in HW in multiplexors (MUXs), while address
decoders are inferred for indexed write operations.
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static Uint<8> index = 0;

...

++index;

if (index == N) // N is the data rate

{

index = 0;

done = true;

}

}

Figure 4.8: Generic-C coding style example.

Obviously the entire Generic-C code is styled for A|RT Builder but nev-
ertheless it must also be implementable as S-Function to obtain correct
behavioral prototypes. By invoking the algorithm function iteratively until
done is set, behavioral results are equal to HW results. However state vari-
ables cause simulation errors, when their block is instantiated more than
once. Since a static or global variable exists only once, no matter how often
an S-Function block exists in one Simulink model, these blocks will influence
mutually and thus falsify simulation results. To provide each block with a
distinct set of state variables, S-Function dynamic link libraries (DLLs),
referred to as MEX files, should be created separately for each block.

Generic-C prototypes must be described in a style which is mainly deter-
mined by A|RT Builder. Algorithm functions are invoked iteratively until
termination is indicated by a system flag.

4.4.3 Prototype Embedding

Once the VHDL prototype has been generated it must be possible to access it
from the “outside world” for supplying it with simulation data. The “outside
world” constitutes an already existing outermost or top shell, provided by
ARCS, for RPT. This top shell makes the CPU bus connected to the FPGA
(see Section 3.1) available, which transmits simulation data. In order to offer
simulation data for more than one bus cycle it must be stored in some kind
of memory, constituting an interface between top shell and prototype. This
IF, referred to as wrapper, encapsulates the prototype and provides a non
generic, bus compliant IF on the top shell’s part. Furthermore it should be
possible to use an arbitrary number of ports, and thus an arbitrary number
of memories. Hence, the wrapper is generated. Each prototype port can have
its own data type, always being an assembly of bits, and its own data rate,
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Figure 4.9: Wrapper performance in grades: 1-best, 5-worst.

which will result in different memory sizes. To keep the middleware6 on the
prototyping platform’s CPU simple, all input port memories are mapped
onto a contiguous memory map, correspondingly all output ports on their
own memory map.

Wrapper Architectures

Three wrapper architectures, each with distinct attributes, have been identi-
fied. They are classified by their IF memory type as illustrated in Figure 4.9.
Area and speed, two classical HW criteria, are compared along with flexi-
bility. Flexibility means here, how much and what data is accessible in one
clock cycle. The y-axis displays a performance estimation, in grades from
one, being the best, to five, accordingly the worst. Diagram contents are
supported in the following:

Register Wrapper: Most powerful of all wrappers, this one uses slice flip-
flops as IF memory. Flip-flop memories are beneficial in terms of
data accessibility, i.e. they always provide all data. A useful feature
for highly parallel prototypes, requiring up to the entire memory in
a single clock cycle. Hence the register wrapper is awarded a one
in flexibility. Despite this perfect flexibility flip-flops are costly in
terms of chip area, giving a five in area. Flip flops have their outputs

6µCLinux adapted for Motorola’s Coldfire is used to handle communication and pe-
ripheral tasks [15], described in Section 5.2.2.
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established “immediately” after their active clock edge, thus being
very fast. Nevertheless, I awarded a three in speed for the register
wrapper, since large MUX trees are required to pick out a word of
a register file. Although delay times grow logarithmic only, they are
substantial, even for small memories. Furthermore, the MUX effort
supports the area grade.

RAM Wrapper: Another memory option are Xilinx specific block RAMs,
existing in form of hard macros7 on Virtex II FPGAs. Compared to
register files they provide the advantage of integrated address decod-
ing, saving MUX trees, although the address must still be computed
by the prototype itself, which gives, in a whole, a two for area con-
sumption. Block RAMs have a registered data output, which intro-
duces a latency cycle, but eliminates combinatorial delay. Address-
computation combinatorial delay included, speed is also awarded a
two. Thus, in terms of area and speed, RAM wrappers are superior to
register wrappers, but RAM wrappers have shortcomings in flexibility.
Since RAMs cannot provide more than one data word per read access,
highly parallel prototypes, requiring more than one word simultane-
ously, will lack efficiency when used along with RAM wrappers. The
RAM must be read iteratively until all words are present, resulting in
a three for flexibility.

Alternative to block RAMs Xilinx FPGAs offer distributed RAMs,
assembled from configurable logic blocks (CLBs), the FPGA’s general
purpose resource. Unlike BRAMs distributed RAMs support arbitrary
bit widths and furthermore these RAMs are read asynchronously, i.e.
RAM outputs appear immediately when applying the address (after a
combinatorial delay). However, I did not consider distributed RAMs
in Figure 4.9. Distributed RAMs consume significantly more area than
block RAMs, but offer, on the other hand, more flexibility.

FIFO Wrapper: FIFO memories are a substantially different from the pre-
vious types in that they do not allow random access. Thus a FIFO
just allows read and write operations without an address, having se-
vere consequences on Generic-C descriptions. Since data words are
provided in a predetermined sequence (first in, first out), indexing
operations, e.g., u[index], do not make sense. Using just the port
names themselves, e.g., u, is a reasonable solution. In addition each
FIFO write access enqueues a new data word while each read access
removes one, disallowing redundant accesses. Multirate systems, hav-
ing FIFO sizes depending on data rates, are thus more difficult to code
because the number of accesses must fit exactly to the size. In view

7Hard macros are “mini ASICs” integrated on the FPGA.
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of these tight restrictions I awarded FIFO wrappers a five in flexibil-
ity. However, this is not such a severe drawback, since most streaming
operations, in particular those with a single rate, do not require more
flexibility.

Due to FIFO restrictions area and speed consuming logic can be saved.
More precisely, since FIFOs compute their addresses internally no ad-
dressing logic is required, whereby the data path only includes the al-
gorithm’s operations. Regarding this along with efficient block RAM
implementations of FIFOs, speed and area are issued a one.

Interfacing Concept

Simulation data is sent to the prototyping platform, and further to the
FPGA, in a block bus operation via the CPU’s 32 bit bus. Wrapper memo-
ries are filled in one continuous write operation, since they are mapped in a
contiguous memory map. When the middleware finished data transmission
to the input ports, the prototype is enabled by setting a control register
in the FPGA which subsequently will begin computation. Depending on
the number of iterations, scheduled in the Generic-C source, the prototype
finishes computation after the equivalent amount of clock cycles and sets an
interrupt flag, while putting itself into idle state. This interrupt flag is set
by the done variable, mentioned in Section 4.4.2. The control register, used
to enable FPGA computation and initially set by the middleware, is reset
when the interrupt occurs. The board CPU’s interrupt handler uploads the
prototype’s results via the CPU bus and Ethernet to the PC and eventually
resets the interrupt flag on the FPGA.

Clocking

Prototypes can have, according to their C algorithm, very long critical paths.
In real time systems, which operate at a constant data rate and thus a
constant clock frequency, this is a problem when timing constraints cannot
be met. It is possible to adjust the clock frequency to the critical path. To
leave all other FPGA hardware unaffected a separate clock is used solely
by the prototype. This prototyping clock is generated by an on-chip phase
locked loop (PLL) in a Digital Clock Manager (DCM) unit and derived
from the board CPU’s clock. Since it is synchronous to the DCM source
clock it is, in turn, synchronous to the board’s CPU clock. This renders
synchronization logic needless, however, care must be taken when using
arbitrary, asynchronous clocks!

FPGA prototype creation was discussed in detail, including the C to
VHDL conversion methodology, prototype wrapping and interfacing con-
cepts.
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4.5 Software Generation

In order to obtain a behavioral prototype it must be generated from the
Generic-C source just as well as the FPGA prototype as illustrated in Fig-
ure 4.1. This section explains in detail what these S-Functions comprise.

“Simulink generation,” the first branch in Figure 4.1, mentioned in Sec-
tion 4.1, illustrates how Simulink blocks are generated. Two Simulink blocks,
the Behavioral prototype and the Hardware in the Loop block, are gen-
erated from Generic-C. However, in Section 4.2.2 this high-level Generic-C
generation concept has already been refined, resulting in a database as gen-
erator source. User defined Simulink blocks must be written as S-Functions,
which are described in Section 3.2.1 in detail. I preferred to use C++ S-
Functions, although Simulink supports Ada, Fortran and m code as well.

4.5.1 Encapsulation

The Behavioral prototype, which does not access external resources, can
be generated from solely the database. The Hardware in the Loop block,
in contrast, needs to access the FPGA, implying that additional information
is required. An approach to create these S-Functions is to use a standard
S-Function, e.g., the template provided by The MathWorks, and copy in-
formation extracted from the Generic-C source along with the standard
S-Function callbacks directly into a file as used in [18]. This is a good solu-
tion when S-Functions are short and requirements do not change. However
I decided to separate S-Function specific code from prototype functionality,
providing easy reuse of prototype code, e.g. in a C++ test bench. Thus
the prototype is encapsulated in a C++ module, consisting of header file
and implementation. S-Functions include the header (by #include), in-
stantiate a prototype object and access its functionality via class methods.
Since S-Functions access prototype functionality from another file they can
be written prototype independent, which allows to use always the same S-
Function template with just its name adapted to the prototype. In order
to handle arbitrary port counts, sizes and types these S-Function templates
are written generically to be customized by the C++ preprocessor.

Prototypes, particularly the FPGA prototype, are accessed via software
layers. Figure 4.10 illustrates this software layers, coarsely split into a PC
section and a RTS-DSP board section. The left branch for the behavioral
prototype is explained in the following section.

4.5.2 Behavioral Prototype Block

Behavioral prototypes are compiled from the behavioral S-Function tem-
plate along with the prototype module, called Behavioral prototype and
Prototype module in Figure 4.10 respectively. The latter contains a pro-
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Figure 4.10: Data flow between Simulink and the prototype.

totype class, being the prototypes behavioral model. To adequately model
prototype behavior this class offers two methods to S-Functions: an ini-
tialization method and an algorithm method, just as the Generic-C source
itself. At simulation start-up Simulink invokes the initialization callback,
which subsequently invokes the prototypes initialization method, placed in
this callback. The algorithm method is placed in the output callback, which
is invoked at sample time hits. The S-Function only provides input and
output data pointers to the prototype. Port counts and sizes are set by the
preprocessor, which replaces formal values with actual ones from the proto-
type module. Port types are set to double precision floating point format at
this position, since the template S-Function is type independent and con-
version to Generic-C port types takes place in the prototype module. As
Section 4.4.2 describes, the algorithm is invoked iteratively to satisfy area
criteria of FPGA prototypes. Since the Generic-C algorithm itself is copied
into the prototype module “as is,” these iterations must be also performed
in SW, which is implemented by a loop, invoking the algorithm until the
system variable done indicates to exit the loop.

4.5.3 Hardware In The Loop Block

Unlike the algorithm S-Function (behavioral model) the prototype S-Function
does not execute behavioral code. Its task is solely accessing the FPGA pro-
totype, as obvious in the right branch of Figure 4.10. The Simulink part of
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the Hardware in the Loop S-Function, describing input and output ports,
is equal to the behavioral prototype S-Function. Although no algorithmic
prototype functionality is used here, the prototype module is still required
since it contains two functions which convert simulation data from double
precision floating point format to binary fixed-point data and vice versa.
Binary fixed-point format is required by the FPGA prototype. I decided
to put all generated Simulink data into one module to get a moderate file
count. The two data conversion functions are generated, since they have
to use Generic-C port types and sizes. When all input port data has been
converted to binary format, it is packed into one array. Multiple input ports
are mapped into the array in a determined sequence, also known by the
VHDL wrapper to enable data assignment to input port memories. Then
the array is sent via Ethernet to the RTS-DSP board. A C++ library for
the RTS-DSP board offers transmit, receive and control functions. After
the prototype has received its input data a control command, issued in the
S-Function, enables prototype computation by setting the corresponding
FPGA flag. Once the prototype finished, all results are sent to the PC,
converted back to double precision floating point format and finally made
available to Simulink.

Summarized, all code intended for use in Simulink and generated from
Generic-C is encapsulated in a prototype module, specific for each prototype.
Simulink blocks are compiled from this module and generic S-Function tem-
plates. Board library functions allow to access the FPGA from Simulink.

4.6 Refined Design Flow

Based upon all insights and refinements of the generation concept, won
in this chapter, the simple design flow in Figure 4.1 can be enhanced. Fig-
ure 4.11 illustrates the design flow including details required for implementa-
tion. However this design flow focusses only on data and their corresponding
transformations. The final, implemented flow with all tools is introduced in
Chapter 5.

Prototypes must be represented by a single source written in Generic-C.
This source is used to generate a behavioral prototype S-Function, a HIL
S-Function and its associated FPGA prototype.
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Figure 4.11: Refined design flow, including details.



Chapter 5

Implementation

By means of the refined design flow, presented at the end of Chapter 4 in
Figure 4.11, prototyping tasks are identified and presented in a tool chain,
the realized design flow. Its elements, these are the programmed tools and
libraries, are described in detail. Finally the graphical user interface, inte-
grating all tools in an application, is introduced.

5.1 Realized Design Flow

On the basis of the refined flow in Figure 4.11 a tool chain was established,
described in this section. Each arrow, indicating data transformation, im-
plies that a tool has to take on the corresponding task. Figure 5.1 illustrates
the final, complete design flow, including all tools, both internal and third
party. The flow begins in the upper left corner with the Generic-C source.
It is analyzed by the parsing tool GCParser, saving its results in a database
file, constituting the input for generation tools. Then the flow splits up in
two branches, equal to the simple flow in Figure 4.1:

1. Simulink code generation and compilation.
2. Hardware generation, implementation and download.

In the first branch the database is read by GCWriter, which generates the
prototype module. It is compiled, along with the behavioral and the “Hard-
ware in the Loop” S-Function template, by Microsoft’s Visual Studio C++
compiler into the respective Simulink blocks. Hardware is generated (in the
second branch) by creating a hardware C source for A|RT Builderand con-
verting it into the VHDL prototype. VHDLWriter reads both the database
and the VHDL prototype in order to generate a VHDL wrapper. The VHDL
top shell, along with the embedded wrapper and prototype, is synthesized
by Xilinx’ ISE and further implemented as FPGA bitstream. All imple-
mentation constraints and other required sources are taken from a template
project.

45
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Figure 5.2: Class diagram for GCParser.

Finally the FPGA is reconfigured without a board reset by the ARCS tool
LanFlasher, which loads the bitstream into the SDRAM (see Section 3.1.1)
and activates the DSP to update the FPGA.

In the following all internal tools are described. Those implemented by
myself feature the following common attributes:

• Written in object oriented C++.
• Tool wide C++ exception handling.
• Usage via command line.

5.1.1 Generic-C Scanner-Parser

Since the prototyping approach involves analyzing a programming language,
a Generic-C parsing tool, called GCParser, is used. I decided to write it
in object oriented C++ since I am experienced with it and useful stream
processing libraries are provided. A first implementation in a single class
turned out to be very faulty, since the amount of code got huge. In an
evolution-like process I separated input based string processing from higher
level token based syntax evaluation. The developed software model is illus-
trated in Figure 5.2.1 As shown in the diagram, the actual Generic-C parser
ParseGC inherits from a general parser Parse, providing scanner like string

1Please note that classes in the diagram contain only a selection of characteristic meth-
ods and members.



CHAPTER 5. IMPLEMENTATION 48

processing methods and basic parsing functionality, for instance analyzing
numbers. ParseGC analyzes Generic-C statements and extracts their infor-
mation. Generic-C IF information is saved in a state structure State, an
input and an output port map PortCont. Finally the command line tool
GCParser invokes ParseGC’s methods to analyze the Generic-C source and
save its results in the database.

Scanning Part

First, Parse opens the input source file source, provided to the construc-
tor. To keep memory usage low, the file is not read at once but in delimiter
separated strings. Any character may be used as delimiter, however, my
parser mostly uses carriage return line feed (CRLF), semicolon and braces.
They are required to read preprocessor instructions, statements and C++
blocks, respectively. While an input stream is read character by charac-
ter, it is transformed into a token string (not stream). I defined it to be
a string with at least one space character between each token in order to
allow for distinguishing them. Since in C operators, or anything else being
not a word,2 may not be separated by white spaces, token recognition for
further processing is enabled by insertion of token delimiters (space charac-
ters). Whensoever an operator is recognized, a token delimiter is inserted.
Since some operators are a subset of another operator ambiguities may oc-
cur, e.g. in this operation: a+++b;. Parse performs left to right scanning,
i.e. the mentioned operation is evaluated as a ++ + b, however, evaluation
as a + ++ b is syntactically correct, too. Each alphanumeric character and
the underscore character are considered valid for identifiers and hence they
are not separated. Furthermore, valid C++ line comments // and section
comments /* ...*/ are removed from the input stream such that all input
to the parser consists solely of valid tokens. Since the parser operates on
tokens its input should be a sequence of token-objects, rather than the string
with tokens. Thus the intermediate token string format is transformed into
a token stream, represented by a C++ vector of strings, which offers su-
perior Standard Template Library (STL) functionality, like iterator access,
for further processing by the actual (Generic-C) parser. Moreover special
functionality for verbatim extraction of C function definitions is included. A
function definition is all source code starting from the first left brace to the
corresponding right brace ({ ...}). This verbatim extraction is required to
generate the prototype module, the HW C source for A|RT Builder and to
read code from template files.

2Any alphanumeric string (including underscore characters), whereas the first character
is not a decimal digit (0 - 9).
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Generic-C Parser

Expanding the general parser Parse, this one adds Generic-C specific syntax
evaluation. Eleven Generic-C keywords are recognized by ParseGC, whereas
Prototype is the Generic-C file name without extension:

1. INCLUDE

2. DEFINE

3. INPUT_PORT

4. OUTPUT_PORT

5. RATE

6. STATE

7. RAM

8. DRAM

9. PARAMETER

10. Prototype

11. init_Prototype

When such a keyword is found at the begin of a token stream, the corre-
sponding Generic-C statement is assumed and evaluated. However, INCLUDE
and DEFINE are Generic-C preprocessor keywords, why they must be pre-
ceded by #. For parsing, the Generic-C description has been split in two
parts, illustrated in Figure 5.3:

1. Preface.
2. Generic-C description.

The “preface” contains all code ranging from the begin of the file to the first
Generic-C statement (not Generic-C preprocessor instructions mentioned
above). The separation in two parts is required in order to inherit comments
from the preface in generated code, improving its readability. Thus, the
preface is pasted verbatim into generated code, except that only Generic-C
preprocessor keywords are translated to their lower case counterpart.

Once the preface has been read the parser expects Generic-C statements
and function definitions only, starting with one of the above mentioned
keywords, except INCLUDE and DEFINE. Section 4.2.1 provides a detailed
lineup of fully supported Generic-C statements, described in EBNF. These
statements form the specification for ParseGC. Compared to the keywords
listed above no statements for RAM, DRAM and PARAMETER are provided, since
they are not supported by RPT (for reasons refer to Section 4.2.1). When
GCParser encounters one of these keywords it issues an error like: “currently
not supported”. Whenever a supported statement occurs, it is analyzed and
only its information is stored in the parser’s database objects. The database
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#INCLUDE "mylib.h"

#INCLUDE "fix.h"

// define size

#define N 128

// constants for X

#define THIS 13

#define THAT THIS/3

// this is the last "preface" line

INPUT_PORT(1) Fix<16,15> * u;

OUTPUT_PORT(1) Fix<16,15> * y;

STATE int x [THIS];

RATE(INPUT_PORT(1)) = N;

RATE(OUTPUT_PORT(1)) = 2*N;

init_X()

{

for (int i = 0; i<(THIS); ++i)

x[i] = 0.0;

}

X()

Figure 5.3: Generic-C partition in header and preface.

// check for GenericC keywords

switch (IsKeyWord(*itor))

{

case INPUT_PORT:

if (!IsPort(itor, INPUT_PORT))

throw PARSEGC_ERR+4;

port = GetPort(itor);

// add successfully read port to data structure

if (!(mInPorts.first.insert(port.index, port)))

throw PARSEGC_ERR+5;

if (!(mInPorts.second.insert(port.identifier.c_str(), port)))

throw PARSEGC_ERR+6;

break;

Figure 5.4: Generic-C parsing methodology.
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includes all information from the Generic-C file in a uniform representa-
tion, presented in detail in the following Section 5.1.2. Figure 5.4 illustrates
the parsing methodology by example code. For each supported Generic-C
statement exists a method to test the statements syntax and a method to
evaluate the statement, e.g., IsPort() and GetPort() for both INPUT_PORT
and OUTPUT_PORT. These methods get a token stream as input and are im-
plemented according to the statement’s EBNF, whereas IsPort() returns
true or false and GetPort() returns a Port object. However, GetPort() is
invoked only once the statement’s syntax has been verified, ensuring that
only valid Port objects exist. Eventually the port is added to the database
(mInPorts in Figure 5.4), which is immediately checked for consistency, i.e.,
the port index and the port name must be unique. mInPorts is of type
PortCont, as depicted in Figure 5.2. As shown by the cardinality a second
PortCont is used for output ports.

Similar to the INPUT_PORT statement, presented in Figure 5.4, all other
statements are analyzed. The State object in Figure 5.2 is created, when
the STATE statement is encountered. When it occurs a second time an error
is issued, according to the Generic-C definition in Section 4.2.1. A RATE
statement updates an existing port’s data rate or causes an error when the
port does not exist. Generic-C functions are added verbatim to the database.
Once parsing has been accomplished the database is saved in a file in order
to make it persistent.

User Interface

Thrown exceptions are caught in GCParser’s main function, where an ac-
cording error message is issued on the standard error output. GCParser
takes the Generic-C source filename, including the .gc extension, as input
parameter and produces an equally named output file with .dat extension
in the working directory.

5.1.2 Database

As shown in Figure 5.1 the database is created by GCParser and input by
GCWriter and VHDLWriter. A Generic-C description grants various degrees
of freedom and can contain errors, because it is human-created. Purpose
of the database is to describe a Generic-C prototype in a uniform, flawless
representation in order to allow generator tools being implemented straight
forward. Additionally it is persistent (because it is a file) which allows for
processing it at a later time. The database models the Generic-C IF, state
variable, functions and the preface. Hence, it contains all information from
the Generic-C source.

In order to be created or used the database must also exist in a runtime
representation, or, in other words, as variable(s) in the tool’s memory. To
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PortCont
_______________
Write()
Read()
Insert(Port)
Port Get(size_t)

Port
_________________
size_t index
string identifier
string type
string rate
_________________
operator < (Port)
Write()
Read()

State
_________________
string size
string identifier
string type
_________________
Write()
Read()

1
n

Figure 5.5: Database classes.

this end I use a State structure for the state, strings for the Generic-C
functions and a PortCont container for input and output ports as depicted
in Figure 5.5. PortCont is a unique pair associative container, i.e., all ele-
ments are associated with a unique key. I used an STL map as unique pair
associative container, since it allows insertion and selection of elements by
their key and provides mature, standardized, superb access methodology.
Detailed information on the STL is provided by Silicon Graphics, Inc. in
[28]. The element type of the map is Port, representing a single Generic-C
port, consisting of an index, a data type, an identifier and a rate. Map is
also a sorted container, thus requiring its element type to provide a strict
weak ordering, i.e., Port provides the operator <, which compares two ports
by their indices. The key, associated with a Port, is again its index. Thus,
per definition of unique associative containers, there cannot be two ports
with the same index in PortCont. Since port identifiers have also key char-
acter, a second map ensures that port identifiers are unique. Thus, actually
a PortCont is a pair of two map’s, allowing to select a port by either its
name or its index. As shown in Figure 5.2 two PortCont instances are
used, since input ports and output ports are separated and have their own
indices. In order to be persistent, as previously mentioned, a PortCont ob-
ject can be written to a file by the WritePortMap() and reconstructed by
ReadPortMap().

State is a simple structure, comparable to Port. It contains the Generic-
C states data type, identifier and array size. As can be seen on the basis of
the STATE EBNF presented in Section 4.2.1 it must always be declared as
array. Since at most one state variable per prototype can exist, no container
is required.

A database is introduced in order to provide a uniform, consistent input
to generator tools. It contains all information from the Generic-C source:
input and output ports, initialization and definition function, state and pref-
ace.
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GC
____________________
string preFace
string initFunc
string defFunc
____________________
GC(string file)
WriteAlgorithmSFun()
WritePrototypeSFun()
WriteTypeConvSFuns() 
WriteArtFun()

PortCont

State

1

1

2

Figure 5.6: C++ generator class diagram.

5.1.3 C++ Generator

As illustrated in Figure 5.1 all Simulinkblocks and the HW C source for
A|RT Builder are generated by the C++ generator GCWriter. It inputs the
aforementioned database files. Actually GCWriter invokes an object of type
GC to generate output, which is illustrated in Figure 5.6. Upon construction
of a GC object the database file, specified in the constructor, is read and the
runtime database representation is established. Then the four functions of
GC, listed in the class diagram, can be invoked to generate output.

Behavioral Prototype S-Function

The function WriteAlgorithmSFun() generates all C++ code required to
create a behavioral prototype block. According to Figure 5.1 this is the
prototype module and the algorithm S-Function. The prototype module
provides a prototype class with a static IF, i.e., it can always be accessed in
the same way, independent from the Generic-C source. This results in the
important fact, that the algorithm S-Function may be copied from a tem-
plate. This template file, named _GC_SFunTmpl.cpp, and all other template
files are located in a dedicated template folder mentioned in Appendix B.
In general, the S-Function template is written generic, such that it can be
compiled with any prototype module, regardless of the number and size of
I/O and state. This is realized by means of preprocessor constructs, which
use definitions (#define) in the prototype module to adjust the S-Function.
As already described in Section 3.2.1, S-Functions use callback functions to
integrate user functionality. The callback mdlInitializeSizes() defines
the IF to the simulation model, including number, size and type of input
and output ports. Figure 5.7 shows the template’s code for defining the
inputs of the block (outputs are defined similarly). The uppercase words,
preceded by _GC_, are preprocessor constants. The array inPortWidths
contains each input port’s data rate and thus the template can realize any
number of inputs with each having a different size or, in Generic-C termi-
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size_t i;

if (!ssSetNumInputPorts(S, _GC_IN_PORTS)) return;

#if _GC_IN_PORTS

size_t inPortWidths [_GC_IN_PORTS] = _GC_IN_PORT_RATES;

for (i = 0; i<_GC_IN_PORTS; ++i)

{

ssSetInputPortWidth(S, i, inPortWidths[i]);

ssSetInputPortDirectFeedThrough(S, i, 1);

}

#endif

Figure 5.7: Template S-Function simulation interface code.

nology, a different data rate. Note, that even zero inputs are possible, which
enables the realization of pure source blocks, e.g., waveform generators. A
similar methodology as exemplified in Figure 5.7 is applied in the callback
for the block outputs: mdlOutputs(). Simulink input data, output data
and state pointers are handed over to the prototype, which creates a new
set of outputs:

Prototype p;

// create a new set of outputs in ssOutPorts

p.Do(xdisc, ssInPorts, ssOutPorts);

The prototype class and its methods are explained in detail in the following
section.

Summarized, the behavioral prototype S-Function is compiled from a
template S-Function and a generated prototype module, containing the pro-
totype’s functionality in form of a class.

Prototype Class

The prototype class, named Prototype, represents the core of the behavioral
prototype. It contains the function definitions from Generic-C and provides
a unified IF to the behavioral S-Function.

The skeleton of this prototype class is independent from Generic-C. Al-
though it could be integrated into the program code in form of string con-
stants I decided to put this skeleton into a template module, alike the S-
Function templates. This allows to modify prototype generation without
recompiling GCWriter just by editing the template module. This tem-
plate module consists of two template files: a header file and a defini-
tion file. The header template, named _GC_PrototypeTmpl.h, contains a
C++ class declaration statement, offering two public methods: Do() and
Init(). These are the ones used in the S-Function callbacks mentioned
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above. _GC_PrototypeTmpl.cpp is the implementation template and con-
tains the definitions of Prototype. The private methods _Do() and _Init()
contain the original Generic-C code obtained from the corresponding func-
tions. Recall from the Generic-C definition, that _Do() has implicit access
to ports and state, though not listed as parameters. Thus the IF variables
for _Do() are created from pointer arrays in Do().

Basically two possibilities exist for prototype port and state memory
management. Either Simulink memory may be used directly in the proto-
type or dedicated prototype memory is created. In order to enable both
variants I selected pointers to implement the prototype IF. However Simu-
link memory may only be used directly, when data ports connected to the
prototype block carry Generic-C data types. Since I use double precision
floating point routing, data must be converted to the Generic-C type in the
prototype class, which subsequently means that port and state memory has
to be created inside the prototype class. The S-Function passes Simulink
memory to Do() in form of arrays, whose size will be determined by gener-
ated constants. Once all port and state variables have been created, _Do()
is called iteratively until it sets the completion flag done, as defined in the
coding semantics in Section 4.4.2.

void Prototype::Do (double * _s, // state

double const * const * _ssInPorts [], // input

double * _ssOutPorts []) // output

{

// create Generic-C typed variables for _Do()

...

while (!done)

_Do();

// write results into Simulink memory ...

...

The initialization function Init() analogously creates the state variable
before calling the original Generic-C code in _Init().

Hardware in the Loop S-Function

Relating to Figure 5.6 WritePrototypeSFun() creates all code required to
compile the HIL S-Function. This, unlike in the behavioral S-Function, does
not include any verbatim Generic-C function code.

It just copies the template S-Function _GC_SFunRPTTmpl.cpp and adapts
names to the current prototype. This is again enabled by the generic style,
already described above. The IF to Simulink is equal to the behavioral
S-Function, introduced in Figure 5.7. However block behavior, more pre-
cisely the mdlOutput() callback, is different, since this blocks task is solely
accessing the FPGA prototype. In order to access the HW platform and
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subsequently the FPGA via Ethernet I developed the RPTPlatform class,
explained in Section 5.2.3 in detail. Amongst others it provides RX(), TX()
for transmission and GetArray(), PutArray() for assembling transmission
packets. Data transmitted by the library must already exist in binary for-
mat, i.e., one scalar port value is mapped into a 32 bit array. ANSI C
types already are binary, however A|RT Library types are converted by the
A|RT method to_int(). The function SimulationToBinary() assembles
an array containing all binary input data for the FPGA and is called in the
S-Function prior to data transmission. Since each input port has different
types, SimulationToBinary() must be generated. Hence it is not placed
in the template but in the prototype module mentioned above. When pro-
cessed (binary) data is received from the FPGA the inverse functionality
is required. BinaryToSimulation creates output port data from received
data. In order to support all A|RT types I wrote the template function

template<typename T> T
PrototypeRPT::IntToFix (int val)

which creates any A|RT type T from a 32 bit value.

Fixed-Point Conversion S-Function

Sometimes it is desired to perform fixed-point conversion in an own block in
order to observe quantization and overflow effects in the simulation model.
Additionally, when A|RT Library types are used in model routings for pro-
totype I/O, conversion blocks are also required. However, in the current
version of GCWriter only double routing is used, which is Simulink default.
Conversion functions are created from the _GC_SFunFromTypeTmpl.cpp and
the _GC_SFunToTypeTmpl.cpp template. WriteTypeConvSFuns() is called
to write a fixed-point conversion S-Function for each A|RT Library type
found in the database. The S-Function name is created according to the
name of the associated A|RT Library type, e.g., for a Fix<4,3> a file
DoubleFix_4_3_.cpp is created.

A|RT Builder Source

As illustrated in Figure 5.1 GCWriter also generates the HW C source, by
calling WriteARTFun(). This A|RT Builder source contains the behavioral
function from the database. Since A|RT Builder creates the IF, i.e., the
VHDL entity, from the functions parameter list, database ports are mapped
there. Additionally done, introduced in Section 4.4.2, is appended to the list
in order to allow routing the IR flag to the FPGA pins. Thus all variables,
used in the behavioral function, have been declared, except the Generic-C
STATE variable. Since it is initialized by a dedicated function, only declar-
ing it is not sufficient. This initialization function must be called immedi-
ately when the variable is created, and, beyond it, the initialization must
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INPUT_PORT(1) Fix<16,15> * u;

RATE(INPUT_PORT(1)) = N;

OUTPUT_PORT(1) Fix<16,15> * y;

RATE(OUTPUT_PORT(1)) = 2*N;

STATE Fix<16,15> x [TAPS];

init_SRRCOpt()

{

for (int i = 0; i<TAPS; ++i)

x[i] = 0.0;

}

struct _gc_TState

{

Fix<16,15> x [TAPS];

_gc_TState ()

{

for (int i = 0; i<TAPS; ++i)

x[i] = 0.0;

}

};

_gc_TState _gc_State;

#define x _gc_State.x

void Prototype (bool & done,

const Fix<16,15> u [N],

Fix<16,15> y [2*N])

{

#pragma OUT done

done = false;

Figure 5.8: Generic-C IF and corresponding A|RT Builder source.

be mapped into the reset section of the sequential VHDL process. Fortu-
nately A|RT Builder supports structures and their constructors by creating
appropriate sequential logic. Hence, the state variable is mapped into a
state structure and the initialization function into its default constructor.
Figure 5.8 demonstrates the mapping concept with a small example.

User Interface

GCWriter reads the database file, specified by the corresponding input pa-
rameter Project.dat, and creates its output files in a subfolder _gc_Project
of the current working directory. Outputs are:

• Prototype module: _GC_Project.h, _GC_Project.cpp.
• Behavioral prototype S-Function: Project.cpp.
• Hardware in the Loop S-Function: ProjectRPT.cpp.
• Hardware C source: Project.cxx.

Additionally the S-Functions for explicit type conversion are provided in the
subfolder _gc_TypeConversion for each A|RT Library fixed point type used
in the Generic-C IF.

5.1.4 VHDL Generator

VHDL Wrappers are generated in order to fit all possible prototypes with
arbitrary port counts, sizes and types. As illustrated in Figure 5.1 this is
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Parse
__________________
ifstream source
__________________
GetParseableLine()
GetSequence()
IsWord()

ParseVHDL
____________________________
____________________________
GrabVHDLTypes()
WriteVHDLWrapperRegistered()

PortCont
1 2

Figure 5.9: VHDL parser/generator class diagram.

performed by VHDLWriter, whereas it inputs both the database and the
VHDL prototype. One may suppose that the database already contains all
information to build the wrapper, however, VHDL types are unknown. It
is more effort to build a tool generating A|RT Builder VHDL types, than
scanning them from the prototype. Fortunately A|RT Builder inserts a
port cross-reference list into the prototype comments, which associates each
Generic-C type with the corresponding VHDL type.

Since analysis of this comments requires a lot of parsing functionality,
already delivered by the general parser, I decided to reuse it as depicted in
Figure 5.9. Since wrapper generation requires only input and output ports,
the runtime database of ParseVHDL only includes the two PortConts.

First VHDLWriter creates a ParseVHDL object and invokes the method
GrabVHDLTypes(). This method parses the cross-reference list in the VHDL
prototype for VHDL type strings and adds them to the respective port con-
tainer. By means of the expanded database the wrapper can eventually
be generated by WriteVHDLWrapperRegistered(). The wrapper IF to the
ARCS FPGA design is described in Figure 5.10. iAddr, iData and oData
along with the control lines iEnInput and iEnWr constitute the IF to the
CPU. Only a slice of the CPU address is provided to RPTShell, since bits
beyond 19 are used in an external address decoder, which, among others,
provides iEnInput. The last two signals are most important for controlling
the prototype. iInDataRdy is a flip-flop set by the middleware. It enables
the prototype and is reset as a side-effect of the prototype’s “done” sig-
nal oOutDataRdy, which sets the output-ready IR flag. Since this entity is
prototype independent only the architecture is generated.

Two sequential processes model the input and the output register files.
The prototype is instantiated and connected to A|RT Builder typed input
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entity RPTShell is

port (

iClk : in std_logic; -- CPU clock

iClkRPTCalc : in std_logic; -- prototype clock

iRst : in std_logic;

iAddr : in std_logic_vector(19 downto 0);

iData : in std_logic_vector(31 downto 0);

oData : out std_logic_vector(31 downto 0);

iEnInput : in std_logic; -- address decoding CS

iEnWr : in std_logic; -- write enable

iInDataRdy : in std_logic; -- data receive done

oOutDataRdy : out std_logic -- interrupt

);

end RPTShell;

Figure 5.10: VHDL wrapper interface.

and output signals, which are mapped on the input and output register
files, respectively. As mentioned in Section 4.4.3 the prototype has a dis-
tinct clock. Input port registers are written by the CPU, thus they are
clocked by the CPU clock, unlike output registers, which are clocked by
the prototype clock iClkRPTCalc. The latter is created in top_config.vhd
and may be adjusted to individual prototyping needs. No synchronization
logic is required between the two clock domains, since these clocks are cre-
ated in a PLL which guarantees that they are synchronous. Additionally
the prototype and the output registers are not enabled until all input data
is registered. The input register file is 32 bits wide and its length equals
the sum of all input port data rates. A|RT Builder’s prototype inputs are
mapped in the sequence, determined by the database file, on this array. This
sequence is the same as used in the S-Function on the PC. Due to the input
register size of 32 bits some bits are unmapped when prototype inputs are
smaller. These unmapped bits of the input register file remain unused and
are eventually discarded by the synthesis tool, thus no “dangling” flip-flops
waste FPGA area. Similar to inputs, prototype outputs are registered and
then mapped on a contiguous, 32 bit wide output memory map, wherefrom
the board CPU reads words by indexing it with iAddr. Unfortunately, for
big output register files, large MUX trees are inferred, which substantially
contribute to the delay time and area consumption. This can be alleviated
by using smaller output register files and subsequently smaller Generic-C
data rates.

VHDLWriter takes two input parameters: a database Project.dat and
a VHDL prototype. It generates the wrapper RPTShell-RTL-a.vhd in the
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subdirectory _gc_Project_FPGA.

5.1.5 FPGA Configuration

LANFlasher is a tool for the manipulation of the Flash memory attached
to the DSP on the RTS-DSP board. It can read, write and erase the Flash
contents using only the Ethernet interface of the RTS-DSP board (without
requiring a JTAG interface) [17].

As presented in Section 3.1 this Flash is used to configure the FPGA
during the boot process. Thus LANFlasher is used to save new FPGA
configurations on the ARCS RTS-DSP board. However, attention must
be paid to the FPGA configuration files. According to [17] LANFlasher
requires a dual ported RAM (the Common RAM) in the FPGA for opera-
tion. If an FPGA configuration with faulty Common RAM communication is
flashed, LANFlasher will not be able to access the Flash again. Fortunately
LANFlasher has been extended with the ability to load FPGA configurations
into the DSP’s SDRAM, which in turn reconfigures the FPGA in seconds, i.e.
without a board reset. Assumed an invalid FPGA configuration is used for
the “dynamic reboot,” a simple board reset restores the former FPGA sta-
tus. RTS-DSP boards are identified by their rack and board identities (IDs),
arising from the original application in channel simulator racks. LANFlasher
requires these IDs and a source file (.bit extension) to reconfigure the FPGA.
More details are provided in [17].

The design flow comprises the tools GCParser, GCWriter, VHDLWriter
and ARCS LANFlasher. Furthermore it uses the third party tools A|RT
Builder, Xinlinx ISE and Visual Studio C++.

5.2 Communication

When a Hardware in the Loop block is used in co-simulation it needs to
access the FPGA. Figure 4.10 on page 42 illustrates this communication
and involved layers. This section goes into more detail and presents the
implementation of these layers bottom up for better understanding of design
decisions.

Basically the entire communication concept is tailored to the FPGA pro-
totype, since its overall aim is to transfer input port data to the prototype
and get back output port data to the PC. As shown in Figure 3.1 data must
be passed over the Coldfire micro controller (µC), in order to be transferred
via Ethernet to the PC, where it is provided to Simulink with my proto-
typing library. Three identified communication sections are described in the
following.
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5.2.1 FPGA Prototype

Communicating with the FPGA prototype is comprised of two tasks. First,
input port data is received from the Coldfire µC and, secondly, output port
data is sent back to it. In order to handle arbitrary port counts a general
scheme must be found. I decided to map all input ports on a contiguous
input port memory map and equally all output ports on an output port
memory map. Contiguous means, that ports follow each other directly in
the addressing space, without unused space in between them. Hence all data
can be downloaded to the FPGA in a single block bus operation. For data
input the wrapper incorporates an address decoder, which enables just the
correct register at write accesses. However, assumed a wrapper with RAM
memories a contiguous memory map leads to HW overhead, since a complex
enabling logic is be required, which can be avoided by address-aligned port
memories. The µC’s address space is partitioned as follows:

Registers FF000000h – FF0FFFFF: This space includes registers con-
taining status information or parameters of importance to the middle-
ware, such as “Input Request Size” or “Common RAM Size”. These
registers are all contained in the file cold_reg.vhd, located in the
FPGA template project folder.3 For rapid prototyping there are two
registers of utmost importance: “FPGA Control” and “Coldfire IR.”
The former is located at FF000038h and provides bit zero as prototype
enable to the wrapper. This flip-flop is connected directly to the wrap-
per input iInDataRdy mentioned in Figure 5.10. Once the middleware
transferred all input data it sets iInDataRdy causing to begin proto-
type computation. Once the prototype finished it sets oOutDataRdy,
which subsequently triggers the Coldfire external interrupt, located in
“Coldfire IR” (address FF00001Ch) at bit zero. In parallel the proto-
type enable flip-flop is reset. The interrupt flag is, as customary, reset
by the µC.

Further used registers for rapid prototyping are read-only and provide
design parameters to the middleware as described in the following:

Input RAM Size: This read only register (at FF000028h) provides
the size of the input memory and is used to allocate buffers in
the middleware. It is set to the size of the wrapper input port
memory map.

Output RAM Size: Analogously to the input RAM size the output
RAM size (at FF00002Ch) contains the output memory size.

Input Request Size: (at FF000030h) contains the actual size of re-
quested input data. Unlike the input RAM size this register is

3More information on tool structure is provided in Appendix B.
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evaluated at runtime. However it is mirrored to input RAM size
for rapid prototyping.

Output Available Size: (at FF000034h) is the output equivalent to
the input request size.

Common RAM FF100000h – FF1FFFFF: The Common RAM, men-
tioned in Chapter 3, is not used directly for rapid prototyping. How-
ever, LANFlasher requires it for operation.

Input Memory FF200000h – FF2FFFFF: Input memories are written
to this address space by the µC, up to the number of bytes contained
in the Output RAM Size register. As previously mentioned they are
concatenated to one contiguous space starting at address zero. This
address space is not readable by the µC.

Output Memory FF300000h – FFF3FFFFF: This address space con-
tains a prototype’s output port memory map and is read-only for the
µC.

According to the address space at most 220 Bytes = 1 MByte of input and
output memory, respectively, can be addressed. However, FPGA resources
will set limits much closer anyway.

5.2.2 Middleware

The term “Middleware,” widely used in this document, refers to the OS on
the Motorola Coldfire µC. As shown in Figure 4.10 it interfaces the Ethernet
and the prototype wrapper.

This OS is µClinux, customized for the Motorola Coldfire and described
in [15]. It runs processes, which accept incoming TCP/UDP4 Ethernet
connections. These processes have been extended by to handle rapid pro-
totyping data packets, distinguished by a particular identifier. When such
a packet is found it is unpacked and its content is written into the FPGA’s
input memory section at FF200000h. A second packet identifier allows to
write the FPGA control register to start the prototype. When the FPGA
triggers an interrupt (IR) the output memory section is read and the IR flag
is reset by the interrupt service routine (ISR). The Output Available Size
register determines the number of bytes, which are packed and sent back to
the PC.

5.2.3 Prototype Platform Interface

Accessing the FPGA is a vital for HIL simulations. I encapsulated the RTS-
DSP board in the prototype platform IF providing functionality to access
and control prototypes on a high level from S-Functions.

4transmission control protocol/user datagram protocol.
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The class RPTPlatform provides all required functionality with a few
member functions. Internally RPTPlatform uses the ARCS C library NetPC
for communication tasks, more precisely, RPTPlatform is an additional com-
munication layer comprised of the following methods:

RPTPlatform (boardID, rackID): This overridden constructor takes the
rapid prototyping platform’s rack ID and board ID. Since this con-
structor is the only one, ID’s are always known after construction. It
just creates the object in memory and does not call any functionality.

Connect (): This method is called first after creating an RPTPlatform.
Since rack ID and board ID are known by construction no parame-
ters are required to connect to the board. First Connect () tries to
discover the specified board on the net. When the board exists, a con-
nection is established, and RPTPlatform data transfer methods may
be called.

GetArray (data, bytes, offset): Prototype input port data is packed
by GetArray() into RPTPlatform’s internal FPGA input data struc-
ture. It must contain a clone of the input port memory map as ex-
plained in the last sections. GetArray() was designed to copy a single
input port at a particular position, so the parameter offset is re-
quired to indicate the position in the memory map. The data itself is
determined by the pointer data and its size by bytes. An prototype
with n ports requires GetArray() to be called n times.

RX (): Receive (viewed from the board) transfers the internal memory map
to the board and then issues the prototype enable command, intro-
duced above.

TX (): Transmit gets back outputs, which are placed in the FPGA output
data structure. Actually no data is transferred via Ethernet during
this call, since the middleware sends back output data immediately
when an interrupt occurs. Thus RPTPlatform’s TX() just sends data
from a buffer to the application and empties this buffer.

PutArray (data, bytes, offset): As a counterpart to GetArray() the
method PutArray() copies an output port from the internal FPGA
output data structure to user memory. The output port’s position
and size is specified by offset and bytes, respectively, and the target
memory by data.

ErrorMsg (): The methods described above return with a code in case of
an error. Additionally they create a human readable error message,
which can be retrieved by calling ErrorMsg().
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Figure 5.11: Graphical User Interface

Although I developed this class for use in HW in the loop S-Functions it
may be used in any other C++ program as well, demonstrated with the
demo example project mentioned in Appendix B.

Communication with the FPGA prototype is established by means of
a board library on the PC, allowing to access µClinux on the RTS-DSP
board. µClinux in turn accesses the FPGA wrapper and subsequently the
prototype.

5.3 Graphical User Interface

Comfortable operation of RPT is enabled by a GUI, providing buttons for
applying the presented design flow on Generic-C sources.

Initially RPT was controlled by MATLAB scripts, however, it turned out
soon that scripts do not provide the demanded comfort. Furthermore the
tedious launch of MATLAB just for compiling a Generic-C file displeased
users. To tackle these problems I created a simple, quick GUI, presented in
Figure 5.11. It provides six buttons for executing the design flow, presented
in Figure 5.1, on a Generic-C file. Its name must be entered, without exten-
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sion, in the Generic-C Project name entry. When enter is pushed and the
file exists all buttons become activated and serve the following purposes:

Compile Generic-C allows to create a behavioral prototype and a HW
in the loop block. First, GCParser analyzes the source and saves re-
sults in the associated database file. GCWriter is invoked to read the
database and generate the prototype module. Finally, the Visual Com-
piler creates the MEX DLLs for Simulink by compiling the template
S-Functions with the included prototype module. Refer to the left
branch of the design flow tree in Figure 5.1.

Generate Hardware uses GCWriter to generate the C++ input for A|RT
Builder, which subsequently generates the VHDL entity architecture
pair. This VHDL description along with the database is used by
VHDLWriter to generate the corresponding VHDL wrapper. All gen-
erated VHDL sources are compiled by ModelSim’s VHDL compiler
vcom. Refer to the right branch of the design flow tree in Figure 5.1.
This button finally produces a synthesizable VHDL design.

Synthesize invokes Xilinx’ synthesis tool to synthesize the VHDL design
and output a net list.

Implement The net list is translated, mapped, placed and routed by the
corresponding Xilinx tools as mentioned in Section 3.3.1. Finally the
programming file for FPGA configuration is created.

Dynamic reboot uses LanFlasher along with the configuration file to re-
configure the FPGA without a board reset.

Flash updates the flash memory with the configuration file, which requires
a board reset to update the FPGA.

When any of the buttons is busy, it starts to flash yellow. Eventually it
switches to green, when it accomplished its task, or to red when a failure
has occurred.

Output is logged in the window at the GUI’s bottom. Execution logs
of tools (external processes) are printed in black, whereas the associated
command line instruction is printed underlined in blue, as exemplified in
Figure 5.11. GUI outputs are printed blue and preceded by the GUI token
#. Warnings and errors in execution logs are highlighted yellow and red
respectively to allow for easy navigation in large logs.

5.3.1 Tcl/Tk

Tcl means Tool Command Language and Tk Tool Kit; the GUI is imple-
mented in Tcl/Tk. Tcl is an interpreted language, i.e. a program interprets
an ASCII source file at runtime. This is advantageous because, compared
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to binary executables, no compiling and building is required, allowing for
quick modification of programs. These programs consist of commands, sep-
arated by line breaks. Each command consists of a name and one or more
arguments, separated by white space. Tcl provides a rich set of commands
for string manipulation, list and file processing. Furthermore it allows for
easy launch and observation of external processes.

Tk is a graphics library providing window utilities like buttons, text
windows or user entries. Theses so-called widgets are used as any other
Tcl command. Geometry manager commands allow to automatically place
and update these widgets. A Tk program (or GUI) is event based, i.e.the
program is interpreted once at start up and event handlers are set up for
widgets. These event handlers may again be Tcl scripts performing various
actions. E.g., the push of a button may clean all files in a directory and
print “cleaned.” [25] is an excellent introduction to Tcl/Tk.

Tool Integration

In order to implement the design flow, the tools, described in Section 5.1,
have to be coordinated. Tcl provides the exec command to call them as
external processes. However, this command takes as long as the process
lives. Placed in an event handler it blocks the event loop until the process
terminates, making the GUI unresponsive. For processes with a runtime of
milliseconds this does not matter, but HW implementation steps block for
over 10 minutes. Of course these processes can be executed in the back-
ground, causing exec to return immediately and subsequently keeping the
GUI responsive. Unfortunately all log info will be lost in this case, which is
unacceptable.

Event-Driven Pipe

An event-driven pipe solves all above mentioned problems. It allows to
execute processes in the background, while new log info triggers events whose
handler prints the information in the GUI’s log window. Thereto I developed
the new command Run, taking a command line call as argument. It executes
this command as pipe in the background, which is treated as file handler in
Tcl. Then it sets up a file event handler, called whenever the pipe becomes
readable. This file event handler prints the pipe’s output on the log window.

5.3.2 Remote Operation

A|RT Builder runs on a Linux server and is unavailable for new installations.
Thus RPT needs to access this server in order to call A|RT Builder.

The Secure Shell (SSH) is used to launch A|RT Builder and the secure
file transfer protocol (SFTP) to upload sources to the server and download
results from it. Putty, a free SSH client, and Psftp, a free SFTP client,
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perform these tasks. Accessing the server requires to log into an account,
protected by a password. This password entry prevents full automated tool
operation. However, with a private/public key pair and an authentication
agent automation can be maintained. A password entry is required only
once to activate the key in the authentication agent, called Pageant. Then
both Putty and Psftp use this agent to access the server.

The implemented rapid prototyping flow and its tools GCParser, GCWriter
and VHDLWriter, were presented in detail. Simulink blocks use a prototyp-
ing library to access the middleware, which, in turn, accesses the FPGA.
The prototyping flow is controlled via RPT’s GUI buttons, whereas tool
outputs are collected in the GUI’s log window.



Chapter 6

Application and Results

The prototyping environment’s potential is demonstrated by it’s application
on an example. A typical wireless field simulation model is used for co-
simulation with a behavioral prototype and the corresponding HW in the
loop, automatically generated by application of Rapid ProtoTyper (RPT)
on the model’s SRRC transmit filter.

Assume a designer builds a radio frequency (RF) satellite link as illus-
trated in Figure 6.1. At the present design stage this model works perfectly
fine. To get closer towards a product, for some processing-intensive parts the
HW feasibility should be verified. The designer decides to first implement
the SRRC transmit filter, since this is typically implemented in HW. An
HIL simulation with an FPGA prototype would be optimal. To save valu-
able simulation time the SRRC Filter is put into a separate model, used for
the co-simulations. Filters are linear time invariant (LTI) systems, which are
characterized by their impulse response. Hence a Dirac sequence, applied to
the various filters, is used for prototype verification in co-simulation. The
corresponding model is depicted in Figure 6.2. According to the simulation
semantics, defined in Section 4.3, data is processed in blocks whose size is
determined by the Generic-C data rate. This results in distinct sample times
once the blocks are unbuffered, as indicated by the sample time colors in
Figure 6.2. For this example I chose a data rate (block size) of eight, as
indicated by the signal dimensions in the figure. Smaller data rates result
in less wrapper memory, which in turn alleviates the FPGA implementation
effort.

SRRC filters are used to limit the required bandwidth of transmitted
symbols in wireless systems by shaping them with a finite, cosine approxi-
mated pulse form. Figure 6.3 illustrates the general finite impulse response
(FIR) filter implementation (tapped delay line) with the order M , which is
described by

y(n) = b0x(n) + b1x(n − 1) + · · · + bMx(n − M) (6.1)

68
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Figure 6.2: Simulation model for prototype verification.

=
M∑

m=0

bmx(n − m) (6.2)

According to (6.2) each output sample is a sum of M + 1 products (coeffi-
cients multiplied with the delay line’s input samples). Generalized to a filter
with arbitrary impulse response (any M and bx) the output is a convolution
of input and impulse response.

RPT is applied to a Generic-C implementation of the filter in order
to create the Simulink blocks and the FPGA prototype. The complete
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Figure 6.3: General finite-impulse-response (FIR) digital filter

Generic-C source and RPT’s generated files are on the CD-ROM as listed
in Section C.2. The following sections describe the typical usage of RPT in
the provided sequence, viewed from the designers perspective.

6.1 Specification

First of all, before writing Generic-C code, a specification must be obtained
for the targeted block, i.e., the SRRC filter. It is specified by the following
parameters, taken from the transmit filter in Figure 6.1:

• Roll off factor: α = 0, 18
• Upsampling factor: K = 2
• Group delay (number of symbols): Tg = 3

The number of FIR coefficients M + 1 (length of the impulse response) is
obtained with the filter’s order:

M = 2 · K · Tg (6.3)

Evaluation for the given specifications results in 13 coefficients. Simulink
allows to save the filter block’s coefficients to the workspace, wherefrom they
can be obtained for Generic-C modeling.

6.2 Generic-C Source

A direct implementation of Figure 6.3 would lead to a filter requiring M
unit delays and M + 1 multiply-accumulates (MACs) resulting according
to the specification in 12 registers and 13 multiplications. Although this
should fit easily into the FPGA (see Section 3.1.1), even if implemented fully
parallel, the computational effort can be decreased by using mathematical
optimizations, which is very probably closer to a product than the expensive
direct implementation. A closer look at SRRC filters reveals that their
impulse response is symmetric (bn = bM−n) and their number of coefficients
M + 1 is always odd due to (6.3). Symmetry allows samples of identic
coefficients to be firstly added and then the product to be built. Upsampling
requires the insertion of zeros into the input signal. Since a product of zero
and any coefficient will be zero, this implies that every Kth multiplication
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has to be performed. Additionally, since each Kth input value (including
inserted zeros) is used, the length of the delay line reduces to M/K + 1.

Finally, a fixed-point representation of 16-bit width (fractional) has been
chosen empirically. A second, decimated output port was added to the IF to
have, at a time, an output with a data rate equal to the input. Three parts
are used to present the source: the header, the initialization function and
the algorithm function. The Generic-C header describes the filter interface:

#INCLUDE "fxp.h" // A|RT lib

#define TAPS 13 #define DEL_LENGTH TAPS/2+1

// define block size

#define N 8

INPUT_PORT(1) Fix<16,15> * u; RATE(INPUT_PORT(1)) = N;

OUTPUT_PORT(1) Fix<16,15> * y; RATE(OUTPUT_PORT(1)) = 2*N;

// decimated output

OUTPUT_PORT(2) Fix<16,15> * y_dec; RATE(OUTPUT_PORT(2)) = N;

STATE Fix<16,15> x [DEL_LENGTH];

The delay line is implemented as the system’s state and initialized by:

init_SRRCOpt() {

for (int i = 0; i<(DEL_LENGTH); ++i)

x[i] = 0.0;

}

The optimized filter’s declarations:

SRRCOpt() {

static Uint<8> index = 0;

bool even = index[0] == 0;

Fix<16,15> coeff_even [TAPS/4+1];

Fix<16,15> coeff_odd [TAPS/4];

coeff_even[0] = Fix<16,15>(-0.02584730312872);

coeff_odd[0] = Fix<16,15>(0.065168614718020);

coeff_even[1] = Fix<16,15>(0.030577805550879);

coeff_odd[1] = Fix<16,15>(-0.13418905377870);

coeff_even[2] = Fix<16,15>(-0.03369143649198);

coeff_odd[2] = Fix<16,15>(0.444705414395022);

coeff_even[3] = Fix<16,15>(0.741884497481248);

Even (b0, b2, b4 . . .) and odd (b1, b3, b5 . . .) in variable names reference here
to the coefficient indices, whereas duplicate coefficients have been omitted.
The variable index is used to iterate over the port arrays; the flag even is
used to switch coefficients.
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// delay line

short i;

if (even)

{

for (i = TAPS/2; i; --i)

x[i] = x[i-1];

x[i] = u[index>>1];

}

// filter output

for (i = 0, y[index] = 0; i<TAPS/4; ++i)

{

Fix<16,15> coeff, symSum;

if (even) // even

{

coeff = coeff_even[i];

symSum = x[i]+x[TAPS/2-i];

}

else

{

coeff = coeff_odd[i];

symSum = x[i]+x[TAPS/2-1-i];

}

y[index] += coeff*symSum;

}

if (even)

{

// unique coefficient

y[index] += coeff_even[TAPS/4]*x[TAPS/4];

y_dec[index>>1] = y[index];

}

The delay line shifts only each second iteration since each second input value
is a zero and, hence, contains no new information. Coefficient multiplexing
(the if in the body) and symmetry utilization allow to reduce the number
of required MAC units substantially.

++index;

if (index == 2*N)

{

index = 0;

done = true;

}

}

This last algorithm fragment is required for termination. By setting the
system flag done, programmers can determine when computations are com-
pleted. Since index is static its value is kept after the function SRRCOpt()
returns, whereas it is invoked iteratively until done is set. Although all work
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Figure 6.4: Simulation model with behavioral prototype in co-simulation.

can be done in one invocation, this would result in substantially larger HW
prototypes, as explained in Section 4.4.2.

6.3 Behavioral Co-Simulation

The next step is to apply RPT on the completed Generic-C description in
order to obtain a behavioral prototype for functional verification.

By pushing the “Compile Generic-C” button, as mentioned in Section 5.3,
one obtains this behavioral prototype, which can be added to the previously
presented verification model for performing co-simulation, as shown in Fig-
ure 6.4. The second, decimated is not used here to avoid overloading the
model. Once the simulation is run, both impulse responses can be compared
on the scope. They are equal except for the expected quantization error in
the order of magnitude of 10−5, caused by the 16 bit fixed-point represen-
tation. Thus the behavior has been verified and HW can be generated for
HIL simulations. Please note, that the behavioral co-simulation performed
in this section is optional. If one is confident, FPGA prototypes can be
generated immediately.

6.4 Hardware Results

Clicking the “Generate Hardware” button generates VHDL sources, as men-
tioned in Section 5.1. A|RT Builder’s VHDL sources are hardly human read-
able, however subsequent synthesis results may be more interesting. Since
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the algorithm was optimized to use not more than four multiplications per
iteration resource utilization is expected to corroborate this assumptions.
The design’s (top shell, wrapper and prototype) synthesis report summary
indicates this being correct:

Device utilization summary:

---------------------------

Selected Device : 2v2000bg575-5

Number of Slices: 1738 out of 10752 16%

Number of Slice Flip Flops: 986 out of 21504 4%

Number of 4 input LUTs: 3173 out of 21504 14%

Number of bonded IOBs: 113 out of 408 27%

Number of BRAMs: 12 out of 56 21%

Number of MULT18X18s: 4 out of 56 7%

Number of GCLKs: 3 out of 16 18%

Number of DCMs: 2 out of 8 25%

Synthesizing the entire design without wrapper and prototype yields the
following performance:

Device utilization summary:

---------------------------

Selected Device : 2v2000bg575-5

Number of Slices: 315 out of 10752 2%

Number of Slice Flip Flops: 373 out of 21504 1%

Number of 4 input LUTs: 519 out of 21504 2%

Number of bonded IOBs: 113 out of 408 27%

Number of BRAMs: 12 out of 56 21%

Number of GCLKs: 3 out of 16 18%

Number of DCMs: 2 out of 8 25%

Although results cannot be compared directly, because Xilinx Synthesis Tool
(XST) performs hierarchy dependant optimizations, they provide a rough
estimation on the wrapper’s and prototype’s resource consumption.

The synthesis timing estimation is important for conclusions whether
the prototype can be driven by the prototyping clock. This clock can be
adjusted to individual real-time requirements and defaults to a tenth of the
board’s CPU clock, that is 66/10 MHz. A look at the timing summary of
the full design including wrapper and prototype asserts that the prototype
can be operated at this frequency (indeed at even higher frequencies).

Timing Summary:

---------------

Speed Grade: -5

Minimum period: 10.807ns (Maximum Frequency: 92.530MHz)

Minimum input arrival time before clock: 5.228ns

Maximum output required time after clock: 6.953ns

Maximum combinational path delay: 4.088ns
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Figure 6.5: Behavioral prototype and Hardware in the loop co-simulation.

Although net delays are yet unknown and just roughly estimated by XST,
the actual clock frequency, after place and route, should not be less than 6.6
MHz. Clicking the GUI’s “Implement” button creates an FPGA bitstream
and “Dynamic Reboot” reconfigures the FPGA on the RTS-DSP board with
the new bitstream.

6.5 FPGA Prototype Co-Simulation

An HIL co-simulation verifies the generated FPGA prototype. Once more
the verification model is expanded as shown in Figure 6.5. All filter rep-
resentations are driven by the same source and have to produce the same
result. Figure 6.6 approves this assumption, since all three impulse responses
are equal, except for the mentioned quantization errors. The verified SRRC
filter can be used to replace the original Simulink filter in Figure 6.1, and
gradually further Simulink blocks can be replaced by their HIL counterparts.

RPT has been successfully applied on a real industry problem. An SRRC
filter has been modeled in Generic-C and both the behavioral prototype and
the FPGA prototype have been verified in co-simulation.
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Figure 6.6: Upsampled filter impulse response for Figure 6.5.



Chapter 7

Conclusions and
Recommendations

This chapter gives a summary on the work, showing its limitations and
capabilities. In addition future optimizations, such as integration of better
tools, are suggested.

7.1 Conclusions

A rapid prototyping design flow has been proposed, implemented in a tool,
and proven by example. Other publications describe concepts of design flows
which have similarities to the presented [27, 3, 5]. However, unlike these the
presented design flow was implemented in a real, executable tool, empha-
sizing its realizability in a product, as claimed by ARCS. The prototyping
flow requires mere the single source as input, except tool options, since all
other sources for tools in the flow are generated. Compared to manual im-
plementation, creation times for prototypes are substantially reduced. For
instance, the application example presented in Chapter 6 was implemented
in seven hours, including concept, coding and tool application.

The EDA industry has been struggling for years to increase design pro-
ductivity. Typically, ASIC/FPGA designs are built by manual HDL coding.
Assuming the amount of HDL code a designer produces is roughly constant
over time, productivity is increased by decreasing the code size for a specific
piece of HW. Behavioral synthesis, as presented in Section 2.3, is claimed to
revolutionize HW design. However, this methodology has not been widely
accepted in the EDA industry, since quality of results is insufficient. If de-
signers think of using the presented prototyping tool for product design, the
following should be considered.

C++ to VHDL translation is a crucial part in the design flow. A|RT
Builder’s VHDL code is huge in size and difficult to read, which makes
it nearly impossible to understand or enhance it. Additionally, synthesis

77
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results are only suboptimal, since the abstraction prohibits the access of
particular HW signals (e.g., flip-flop enable lines) which results in slightly
higher resource consumption. Hence, this methodology is not applicable for
highly optimized ASIC designs, produced in large quantities, since using
fewer gates improves costs. Another concern are designs with high speed
requirements and high resource utilization. It may not be possible to address
all HW details in Generic-C, which is required to make the design fit into the
given FPGA; or atomic C++ instructions may not be split up for register
insertion to optimize critical paths. These problems still must be solved
by providing manually optimized VHDL designs, which implies that the
approach with A|RT Builder is not applicable for building optimized, ASIC
like products.

Compared to behavioral synthesis tools like Catapult-C A|RT Builder
is clearly at a disadvantage. Its “one to one” mapping concept requires an
RTL like modeling style in C++ and thus nullifies any abstraction gains by
using a high level language.

Nonetheless, designers, unfamiliar with VHDL but familiar with HW
basics, such as latency, data dependency and parallelism, can use RPT to
create FPGA prototypes. By using the GUI designers just have to create
a Generic-C algorithm, from for instance a formal specification, and push
buttons to invoke a 100% automated, comfortable tool chain. Although
results are suboptimal, depending on HW design skills, a prototype can
prove a design’s feasibility and exhibit some of a final product’s features
as discussed in Chapter 1. Furthermore, the created HIL blocks allow for
integration of FPGA prototypes into complex models, which in turn allows
for comfortable FPGA design verification at a very high system level.

7.2 Recommendations

The above mentioned constraints are hints for future optimizations. Clearly,
C-to-VHDL conversation has to be improved. Catapult-C from Mentor
Graphics [21] seems to be the most promising tool to replace A|RT Builder.
Another option, avoiding Catapult-C’s high license cost, is Impulse Accel-
erated Technologies’ CoDeveloper [11], which uses C-to-VHDL conversion
technology from Stanford University.

Besides C-to-VHDL conversion, there is additional space for improve-
ments. It would be useful to incorporate Simulink’s integrated fixed-point
types as prototype I/O in S-Functions, since they are widely supported, for
instance, Mentor’s “Link for ModelSim” uses these types.

In case of errors in HIL simulations, precious design time can be saved
by performing co-simulation with a second behavioral prototype, comprising
the prototype’s VHDL sources. If designers have cause for concern, they
would start synthesis only once the co-simulation with the VHDL sources
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has succeeded.
As suggested in Section 4.4.3, there exist other concepts for wrapping

the prototypes, differing in speed, area and flexibility. In particular the pre-
sented FIFO wrapper allows for substantially higher data rates, accelerating
simulation. Since the presented flow offers only one wrapper, the others can
be implemented, too, and selected by designers via tool options.

Finally, a very promising approach is to unite structural and behavioral
synthesis in RPT. That means using the structure of a Simulink model, like
Xilinx’ System Generator [32] does, for interconnection of several Generic-C
blocks and, subsequently, VHDL entities.



Appendix A

Installation

RPT was tested under Windows XP only and this installation procedure
is therefore only applicable for this OS. The RPT executables are the in-
tellectual property of ARCS and protected by copyright law. The reader
might obtain a copy by contacting ARCS member Gerhard Humer (email:
gerhard.humer@arcs.ac.at).

A.1 Requirements

RPT requires installations of:

• Xilinx ISE 6.3i or better.
• Microsoft Visual Studio 6.0 or better.
• Mentor Graphics ModelSim 5.5f or better.
• The MathWorks MATLAB 7.0.1 R14 SP1 or better.

A.2 Procedure

In order to install the prototyping system RPT all folders in the direc-
tory /RPT, as mentioned in Appendix B, have to be copied into a directory
RootRPT on the PC. RootRPT must not contain spaces. The following mod-
ifications have to be carried out:

• Open the file RootRPT/RPT/tcl/RPT.tcl and:

– set the Tcl variable matlabDir to the MATLAB installation di-
rectory.

– set rackID to your prototyping boards rack ID.
– set boardID to your prototyping boards board ID.

• Open RootRPT/RPT/bin/mexopts.bat and adjust the compiler set-
tings:
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– Go to line 14 and set MSVCDir to RootVS/VC98 whereas RootVS

is the Visual Studio installation directory.
– Add RootRPT/RPT/inc to the compiler include path variable

INCLUDE on line 17.
– Add RootRPT/RPT/lib to the linker library path variable LIB on

line 18.

• Open the properties menu of the link RPT in RootRPT/RPT/exmpl and
enter:

RootRPT\RPT\bin\wish84.exe -f RootRPT\RPT\tcl\RPT.tcl

in the target entry. When typing in the string for RootRPT note, that
windows accepts the \ directory separator only.

At the first start up of the tool the password for the SSH key must be entered
(if the key is password protected). The authentication agent will keep the key
file until it is closed. Without an activated key in the authentication agent
no C-to-VHDL translation is possible. Nevertheless, behavioral prototypes
can be generated server-independent.

A.3 Typical Usage

RPT itself and all its integrated sub-tools, as described in Figure 5.1, are
designed to operate in arbitrary working directories (WD). Hence users typi-
cally choose their model’s directory as WD since all S-Functions are required
to be in this directory and our tool creates all final output data in its WD.
Typically users place a link to the prototyping tool in the WD. This link
starts the Tcl/Tk interpreter with my GUI script. As shown in Figure 5.11
the GUI displays its WD, which thus can be easily verified by users.
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RPT

RPT’s file structure and contents are described here. The structure is very
similar to common tools as presented in the following.

Path: /RPT/

bin/ . . . . . . . . . . . . . . Binaries.
doc/ . . . . . . . . . . . . . . Documentation.
exmpl/ . . . . . . . . . . . . Generic-C examples for RPT

application.
inc/ . . . . . . . . . . . . . . Includes folder with C++ sources.
lib/ . . . . . . . . . . . . . . Libraries for Tcl/Tk and C++.
tcl/ . . . . . . . . . . . . . . Tcl sources of the GUI.
tmpl/ . . . . . . . . . . . . . Template folder with S-Function

templates and an FPGA template
project.

B.1 Binaries

Path: /RPT/bin/

cat.exe . . . . . . . . . . . Unix cat tool, used for input output
piping.

GCParser.exe . . . . . . . . The Generic-C parser and database
generator.

GCWriter.exe . . . . . . . . S-Function and C++ HW source
generator.

LANFlasher.exe . . . . . . Flash tool used for FPGA
reconfiguration.

mexopts.bat . . . . . . . . . MEX options for S-Function
compilation.
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pageant.exe . . . . . . . . . Authentication client for SSH and
SFTP protocols.

humer private key.ppk . . Private authentication key file from
Gerhard Humer.

psftp.exe . . . . . . . . . . SFTP tool for uploads and downloads.
putty.exe . . . . . . . . . . SSH client for remote operation.
puttygen.exe . . . . . . . . Key generator/converter for SSH key

files.
VHDLParser.exe . . . . . . Prototype parser and VHDL wrapper

generator tool.
wish84.exe . . . . . . . . . Tcl/Tk interpreter.

B.2 Documentation

Path: /RPT/docs/

art builder mn urf.pdf . A|RT Builder user manual.
art library mn urf.pdf . A|RT Library user manual.
book.p1.pdf . . . . . . . . . “Tcl and the Tk Toolkit,” part one.
book.p2.pdf . . . . . . . . . “Tcl and the Tk Toolkit,” part two.
book.p3.pdf . . . . . . . . . “Tcl and the Tk Toolkit,” part three.
book.p4.pdf . . . . . . . . . “Tcl and the Tk Toolkit,” part four.
MBD05.pdf . . . . . . . . . . Model Based Design conference paper

about RPT.
Tkexampl.pdf . . . . . . . . Tcl example on an event-based exec

logger.
xst.pdf . . . . . . . . . . . XST documentation .

B.3 Examples

Path: /RPT/exmpl/

Faltung.gc . . . . . . . . . Convolution of an arbitrary input with
a 40 tap trapezoid ramp.

Filter.gc . . . . . . . . . . Nine tap SRRC FIR filter.
RectGen.gc . . . . . . . . . Square wave signal generator,

demonstrates source modeling.
SRRC.gc . . . . . . . . . . . SRRC transmit filter with symbol rate

three, upsampling factor two and 13
coefficients. Consumes 12 multipliers.
Outputs one sample per cycle.
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SRRCSimBehavioral.mdl . Behavioral verification model.
Co-simulates the behavioral prototype.

SRRCSimHIL.mdl . . . . . . Extends the behavioral verification
model with the HW in the loop block.

SRRCOpt.gc . . . . . . . . . Optimized SRRC transmit filter. Uses
coefficient multiplexing and further
optimizations. Consumes 4 Multipliers.
Outputs one sample per cycle.

TripleMUX.gc . . . . . . . . Multiplexes three inputs on a
triple-rate output and on a decimated
output. Demonstrates Generic-C
multi-rate modeling.

RPT . . . . . . . . . . . . . . Shortcut to the RPT GUI.

B.4 Includes

Path: /RPT/inc/

fxp.h . . . . . . . . . . . . . A|RT Library for fixed-point numerics
include header.

WinFPGARXTX.h . . . . . . . ARCS RTS-DSP board access library
header.

WinFPGARXTX.cpp . . . . . . ARCS RTS-DSP board access library
implementation.

RPTLibDemo/ . . . . . . . . . A demonstration for using the RPT
library in a C++ program.

WinTools/ . . . . . . . . . . The NetPC library from ARCS.
Tools/ . . . . . . . . . . . . Additional sources for the NetPC

library.

B.5 Libraries

Path: /RPT/lib/

fxpvcc.lib . . . . . . . . . Visual Studio library of the A|RT
Library.

tcl8.4/ . . . . . . . . . . . Tcl library.
tk8.4/ . . . . . . . . . . . . Tk library.

B.6 Tcl Sources

The sources comprise a start-up file for the GUI, and a file for each button.
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Path: /RPT/tcl/

com.tcl . . . . . . . . . . . VHDL compile script for ModelSim.
comGC.tcl . . . . . . . . . . Tcl procedure for the GUI’s “Compile

Generic-C” button.
confDyn.tcl . . . . . . . . . Event handler for the “Dynamic

Reboot” button.
confStat.tcl . . . . . . . . Event handler for the “Flash” button.
genHW.tcl . . . . . . . . . . Script file for the “Generate HW”

button.
imp.tcl . . . . . . . . . . . Tcl procedure for the “Implement”

button.
RPT.tcl . . . . . . . . . . . GUI start-up file. Creates all widgets

such as the buttons and the log
window.

syn.tcl . . . . . . . . . . . Tcl procedure for the “Implement”
button.

tkcon.tcl . . . . . . . . . . Jeffrey Hobbs Tcl/Tk console.
Excellent for debugging or coding from
scratch.

wish84.exe . . . . . . . . . Link to the wish executable in the
binaries directory. Intended for use
with the tkcon.tcl console start up
file.

B.7 Template Files

Path: /RPT/tmpl/

FPGATemplateProject/ . . Contains all non-generated files for
building an FPGA prototype. This
project is not synthesizable on its own.

GC PrototypeTmpl.cpp . . Prototype module implementation file
template.

GC PrototypeTmpl.h . . . Prototype module header file template.
GC SFunFromTypeTmpl.cpp Fixed-point type to double conversion

S-Function template.
GC SFunRPTTmpl.cpp . . .
GC SFunTmpl.cpp . . . . .
GC SFunToTypeTmpl.cpp . Double to fixed-point type conversion

S-Function template.



Appendix C

CD-ROM Contents

File System: Joliet1

Mode: Single-session (CD-ROM)2

C.1 Diploma Thesis

The diploma thesis PDFs and its LATEX sources are contained in the root
directory of the CD-ROM.

Path: /

dt.pdf . . . . . . . . . . . . Diploma thesis for use with Acrobat
Reader (PDF-File).

dtPrint.pdf . . . . . . . . . Diploma thesis prepared for printing
(PDF-File).

dt.tex . . . . . . . . . . . . Diploma thesis main LATEX source.
literature/ . . . . . . . . . Literature folder containing all

bibliography items denoted with “Copy
on CD-ROM” and additionally some of
the remaining bibliography items.

images/ . . . . . . . . . . . Contains all images of the thesis.
Vector graphics exist in PDF format
and pixel graphics in PNG format.

images/sources/ . . . . . . Graphics source files are placed in this
folder, including PowerPoint files for
block diagrams and Simulink models.

1or ISO9660 – for digital versatile discs (DVDs) accordingly different specs.
2or Multi-session (CD-ROM XA).
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C.2 Example Files

This folder contains the wireless field SRRC example presented in Chapter 6.

Path: /example/

SRRCOptRPT.dll . . . . . . Simulink HIL FPGA prototype access
S-Function for co-simulation, generated
by RPT.

SRRCOpt.dll . . . . . . . . . Simulink behavioral prototype
S-Function for co-simulation, generated
by RPT.

FilterSim.mdl . . . . . . . Simulink model file, used for
co-simulation of the behavioral
prototype and the HIL block.

SRRCOpt.gc . . . . . . . . . Generic-C source, containing the
optimized SRRC filter.

SRRCOpt.dat . . . . . . . . . Database file, generated by RPT’s
GCParser.

RPT . . . . . . . . . . . . . . Link for starting up RPT.
SRRCCoefficients.mat . . MATLAB data file, containing SRRC

filter coefficients generated by
MATLAB’s filter designer tool.

GCCmd . . . . . . . . . . . . . Temporary command file for batch
operation of the remote tools (putty
etc.).

gc TypeConversion/ . . . Folder containing type conversion
S-Functions.

gc SRRCOpt FPGA/ . . . . . Folder with the VHDL project.
gc SRRCOpt/ . . . . . . . . Folder with all generated C++ sources.

C.2.1 FPGA Project

Path: /example/ gc SRRCOpt FPGA/

artbuilderpack numeric.vhd A|RT Builder’s fixed point
implementation in HW.

cold reg.vhd . . . . . . . . Registers for the Motorola Coldfire
CPU.

top shell.vhd . . . . . . . Outermost VHDL shell, provided by
ARCS.

top config.vhd . . . . . . . Clock generation unit creates the
prototyping clock among others,
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provided by ARCS.
RPTShell-e.vhd . . . . . . Non-generated VHDL wrapper entity.
RPTShell-RTL-a.vhd . . . Wrapper architecture, generated by

VHDLWriter.
design.vhd . . . . . . . . . Prototype, generated by A|RT Builder

from the HW C source.
top shell.bit . . . . . . . FPGA configuration file, ready for use

with LANFlasher.

C.2.2 C++ Sources

Path: /example/ gc SRRCOpt/

SRRCOptRPT.cpp . . . . . . S-Function source code for the HIL
block.

SRRCOpt.cpp . . . . . . . . . S-Function source code for the
behavioral prototype block.

GC SRRCOpt.h . . . . . . . . Prototype module header file.
GC SRRCOpt.cpp . . . . . . Prototype module implementation file.
SRRCOpt.cxx . . . . . . . . . A|RT Builder’s HW C source.
mexopts.bat . . . . . . . . . Compiler options for MATLAB’s mex

utility, which in turn passes them to
the VC++ compiler.
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