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Wien, Österreich

A Novel Framework for

Clustering Parametric MIMO Channel Data

Including MPC Powers

Nicolai Czink, Pierluigi Cera

Gusshausstraße 25/389 1040 Wien AUSTRIA

Phone: +43 (1) 58801 38979

Fax: +43 (1) 58801 38999

Email: nicolai.czink@tuwien.ac.at



A Novel Framework for

Clustering Parametric MIMO Channel Data

Including MPC Powers

Nicolai Czink, Pierluigi Cera

Institut für Nachrichtentechnik und Hochfrequenztechnik

Technische Universität Wien

Austria

Abstract

We present a solution to the problem of identifying clusters from MIMO measurement data in a

data window, with a minimum of user interaction. Conventionally, visual inspection has been used

for the cluster identification. However this approach is impractical for a large amount of measurement

data. Moreover, visual methods lack an accurate definition of a “cluster” itself.

We introduce a framework that is able to cluster multi-path components (MPCs), decide on the

number of clusters, and discard outliers. For clustering we use the K-means algorithm, which iter-

atively moves a number of cluster centroids through the data space to minimize the total difference

between MPCs and their closest centroid. We significantly improve this algorithm by following

changes: (i) as the distance metric we use the multi-path component distance (MCD), (ii) the dis-

tances are weighted by the powers of the MPCs. The implications of these changes result in a

definition of a “cluster” itself that appeals to intuition.

We assess the performance of the new algorithm by clustering real-world measurement data from

an indoor big hall environment.

Keywords—MIMO channel; MPC clustering; geometry-based stochastic channel models

1 Introduction

Many advanced radio channel models base on the concept of multi-path clusters consisting of many

multi-path components (MPCs) showing similar parameters such as azimuth and elevation of arrival and

departure, and delay [1, 2]. The major problem of these models is the accurate parametrisation of clusters,

where the parameters have to be extracted from measurement data. In many papers visual inspection of

measurement data was used [3, 4], which becomes impractical for large amounts of measurement data.

Alas, currently there is no fully automatic clustering algorithm available to identify clusters from multi-

dimensional parametric MIMO channel estimates. Recently, a semi-automatic algorithm was introduced

in [5], which bases on clustering windowed parametric estimates and tracking the cluster centroids.

The window-based clustering algorithm was subsequently improved by using the multi-path component

distance (MCD) as the distance function in [6].

In this paper we propose to use a new framework consisting of three algorithms to significantly improve

the clustering performance: (i) a new clustering algorithm, (ii) a combined cluster validation metric and

(iii) an improved cluster shape pruning. This framework leads to an intrinsic and intuitive definition

of a “cluster” itself. In the following we will describe the framework, its single components and their

interaction. Finally we assess the performance of the new algorithm by applying it to measurement data.
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2 Problem description

The starting point is a large number of multi-dimensional parametric channel estimation data, obtained

from MIMO measurements. The measurements provide numerous snapshots of the impulse response of

the – typically time-varying – radio channel. These measurements are fed to a high-resolution algorithm,

e.g. SAGE [7], to estimate the channel parameters for each snapshot individually. It has been found

in several MIMO studies that these parameters tend to appear in clusters, i.e. in groups of multi-path

components (MPCs) with similar parameters, e.g. [3, 4]. The problem is to find an automatic procedure

to identify and track these clusters.

We consider one data window with a number of L MPCs, where every single MPC is represented by its

power Pl, l = 1 . . . L, and a parameter vector xl containing the delay (τ ), azimuth and elevation AoA

(ϕAoA, θAoA) and azimuth and elevation AoD (ϕAoD, θAoD). The data for all paths are collected in the

vector P = [P1 . . . PL]T and the matrix X = [x1 . . .xL]T .

3 Framework

To solve the problem of automatic clustering given one data window we use following algorithm.

Framework algorithm:

1. Do For all number of clusters K = Kmin To Kmax

a. Cluster window with K clusters:

RK = KPowerMeans(P,X, K)

b. Validate K clusters:

vK = CombinedValidate(RK)

c. Next K

2. Find optimum number of clusters:

Kopt = arg max
K

vK , Ropt = RKopt

3. Prune optimum cluster set:

Rp = ShapePrune(Ropt)

Initially, a range [Kmin, Kmax] for the possible number of clusters has to be specified. The number of

clusters, K, and the data from all MPCs, P and X, are external parameters for the clustering algorithm.

For each possible K, the clustering algorithm KPowerMeans is performed, the results are collected in the

data sets RK . Subsequently, each result is validated by CombinedValidate which provides the validation

index vK .

The optimum number of clusters Kopt is finally determined by the largest validation index vK with cor-

responding cluster set Ropt. The optimum set is then pruned by ShapePrune for improved visualisation

and future cluster position tracking over several data windows.

3.1 Clustering algorithm — KPowerMeans

The task of the clustering algorithm is to assign a cluster index to each of the L MPCs. The concept of

the K-means algorithm [8] is well suited for this challenge if one uses the appropriate distance function.

In the following we describe the resulting algorithm.
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KPowerMeans clustering algorithm:

1. Randomly choose K initial centroid positions c
(0)
1 , . . . , c

(0)
K

2. For i = 1 To MaxIterations

a. Assign MPCs to cluster centroids and store indices:

I
(i)
l = arg min

k

{Pl · MCD(xl, c
(i−1)
k )}, (1)

I(i) = [I
(i)
1 . . . I

(i)
L ], C

(i)
k = Indices

l
(I

(i)
l =k)

b. Recalculate cluster centroids c
(i)
k from the allocated MPCs to coincide with the clusters’

centres of gravity:

c
(i)
k =

∑

j∈C
(i)
k

(Pj ·xj)
∑

j∈C
(i)
k

Pj
(2)

c. If c
(i)
k = c

(i−1)
k for all k = 1 . . .K, then GoTo 3.

Else Next i

3. Return RK = [I(i), c
(i)
k ]

This algorithm iteratively minimizes the total sum of power-weighted distances of each path to its asso-

ciated cluster centroid. In the following the single steps of the algorithm are described in more detail.

Ad 1) The centroid starting positions are chosen randomly from the data X.

Ad 2a) Every MPC is associated with a cluster centroid such that the function of the total sum of differ-

ences

D =

L
∑

l=1

Pl · MCD(xl, cI(i)
l

) (3)

is minimized. We use the MCD as the basic distance function [9, 6] but also include the power of the

paths, which has not been considered in other works yet. Analytic treatment of this global distance results

in (1). The index I
(i)
l is the cluster number for the lth multi-path in the ith iteration step. Vice-versa, the

set C
(i)
k contains the MPC indices belonging to the kth cluster in the ith iteration step.

By including power into the distance function, cluster centroids are pulled to points with strong powers.

This is intuitive and yields massive performance improvements. Considering receiver design one usually

adresses the most dominant clusters, which are characterised by power. So, when future models are

developed, the weighting by power is quite natural. Furthermore, the global distance function (3) is an

inherent definition for a cluster:

For a given number of clusters, clusters are chosen such that they minimize the total distance

from their centroids.

This implies that clusters minimize the cluster angular and cluster delay spreads, which is again intuitive.

Ad 2b) In the second step of the iteration, the centroids move to the centres of gravity of the groups of

MPCs allocated in the previous step. Note that moving centroids can result in a new group of MPCs that

will be associated with the centroid in the next iteration step.

Ad 2c) If the centroids do not move any more the algorithm has converged to a stable solution. Should

this take too much time, it stops after a maximum number of iterations.
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Ad 3) The output of the algorithm are the index set I(i) and the associated cluster centroids c
(i), which

were obtained by the last iteration.

As usual, when using algorithms with random initial values, we perform KPowerMeans multiple times.

The best result is determined by the smallest value of (3).

3.2 Cluster validation — CombinedValidate

For cluster validation we used a combination of two methods well-known in literature [10], the Caliñski-

Harabasz index and the Davies-Bouldin criterion. Both indices and their proposed combination are

described in the next paragraphs.

Caliñski-Harabasz index When clustering L MPCs in K cluster, the Caliñski-Harabasz index (CH)

is given as

CH(K) =
tr(B)/(K − 1)

tr(W)/(L − K)
,

which corresponds to the ratio between the traces of the between-cluster scatter matrix B and the within-

cluster scatter matrix W [10]. Using the MCD as distance function, tr(B) and tr(W) are respectively

given as

tr(B) =
K

∑

k=1

Lk · MCD(ck, c)
2 ,

tr(W) =
K

∑

k=1

∑

j∈Ck

MCD(xj , ck)
2 ,

where Lk denotes the number of MPCs related to the kth cluster and

c =

∑L
l=1(Pl · xl)
∑L

l=1 Pl

denotes the global centroid of the entire data set.

If we calculate the CH index for different values of K, e.g. in the range [Kmin, Kmax], the number of

cluster KCH corresponding to the best partition is achieved as

KCH = arg max
K

{CH(K)} , (4)

corresponding to the partition with the most compact and separate cluster.

Davies-Bouldin index The Davies-Bouldin index (DB) is a function of intra-cluster compactness and

inter-cluster separation [10]. Using the MCD, the compactness Sk within the kth cluster is given as

Sk =
1

Lk

∑

l∈Ck

MCD(xl, ck),

and the separation, i.e. the distance, between two clusters i and j, is defined as

dij = MCD(ci, cj) .
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Finally the considered DB index is given as

DB(K) =
1

K

K
∑

k=1

Ri ,

where

Ri = max
j=1,...,K

j 6=i

{

Si + Sj

dij

}

.

When calculating the DB index for different values of K, the optimum number of cluster KDB, corre-

sponding to the best partition, is achieved as

KDB = arg min
K

{DB(K)} .

As for the CH index, also the DB index bases on seeking for the partition with the most compact but

separated clusters.

Combined Validation The basic idea of the CombinedValidate (CV) index is to restrict valid choices

of the optimum number of clusters by a threshold set in the DB index. Subsequently the CH index is

used to decide on the optimum number out of the restricted set of possibilities.

We consider the set of feasible choices F = {K1, . . . , KN} ⊆ [Kmin, Kmax] containing only the values

Ki for which the following condition is satisfied,

DB(Ki) ≤ t · min
K

{DB(K)} ,

where we chose t = 2. The optimum number of clusters Kopt is then obtained as

Kopt = arg max
K∈F

{CH(K)} .

In the unrestricted case F ≡ [Kmin, Kmax] we obtain Kopt using (4).

3.3 Cluster pruning — ShapePrune

After successfully finding the optimum number of clusters, we use the ShapePrune cluster pruning al-

gorithm for discarding outliers. This is achieved by removing data points that have largest distance

from their own cluster centroid. As a constraint, cluster power and cluster spreads must not change

significantly. This last condition allows to preserve the clusters’ original power and shape, which is fun-

damental to achieve consistent results. In the following we describe the resulting algorithm.

5



ShapePrune algorithm:

1. Initialize pruned result set with optimum set: R(p) = Ropt

2. For k = 1 To Kopt

a. Save the original power and spread of the kth cluster:

P
(0)
k =

∑

j∈Ck
Pj ,

S
(0)
k = [στ , σϕAoA , σϕAoD , σθAoA

, σθAoD
]T

b. While P
(cur)
k > p · P

(0)
k And S

(cur)
k > s · S

(0)
k , remove the MPC with largest distance

– Find MPC with largest distance to current centroid ck

– Remove MPC from R(p)

– Recalculate P
(cur)
k and S

(cur)
k .

c. Restore the last deleted MPC

d. Next k

3. Return R(p)

For each cluster, the algorithm discards the MPCs with the largest distance to the cluster centroid, until

one of the constraints is not fulfilled. The single steps of the algorithm are described in the following.

Ad 2a) Before starting to prune the kth cluster, the algorithm stores the original values of its cumulative

power to P
(0)
k , and its (vector-valued) cluster spread to S

(0)
k , where στ , σϕAoA , σϕAoD , σθAoA

, σθAoD

denote the rms cluster spreads of delay, and azimuth and elevation angles of departure and arrival of

cluster k, respectively.

Ad 2b) Until the power of the cluster and its cluster spreads are below the two respective specified

thresholds, the algorithm removes the MPC with largest distance to the centroid from the cluster, where

we use the MCD as distance function. We define the power and spread thresholds as a factor p of the

original power and factor s of the original cluster spreads, respectively. Since we have to cope with a

vector-valued spread, we define the condition S
(cur)
k > s · S

(0)
k to be satisfied, when it holds true for all

dimensions separately.

Ad 2c) Since we want the cluster power and spread to be larger than the specified thresholds, we have to

restore the last pruned MPC. This implementation simply allows to speed up computation time.

Ad 3) The output of the algorithm is the pruned set of MPCs R(p).

4 Results

Using MCD as distance function The advantage of using the MCD as distance function for cluster-

ing algorithms is discussed extensively in [6], where the performance is compared to different distance

measures. It was shown that using the MCD significantly improves clustering performance.

CombinedValidate We tested the performance of the cluster validation scheme at different angular

cluster spreads. For this we used synthetic MIMO channel data obtained from the 3GPP spatial channel

model (SCM) [11], implemented by [12], but we extended the model to cope with varying angular

spreads. For the following evaluation, we used 200 different samples of MIMO channels with 6 clusters,

where each cluster consisted of 8 MPCs.
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Figure 1: Comparing performance of validity indices

Figure 1 demonstrates the performance of the different cluster validation indices, i.e. the novel Com-

binedValidate, the Caliñski-Harabasz, and the Davies-Bouldin index. The Figure shows the fraction of

the correctly estimated number of clusters versus the cluster angular spreads. The CH index has troubles

with finding the correct number of clusters with low cluster spreads. On the other hand the DB index

decreases with larger cluster spreads. The CombinedValidate index always outperforms the CH index

and outperforms the DB index for cluster angular spreads larger than 2.5◦.

KPowerMeans + CombinedValidate To test our clustering algorithm we used real-world MIMO mea-

surements conducted with the wideband radio channel sounder PropSound CS in a big hall with 8 Tx

and 16 Rx antennas [6]. In a post-processing step parametric channel estimates were gained using the

SAGE algorithm [7]. We consider a sample data set of a line-of-sight (LOS) measurement scenario.

Figure 2 shows the considered snapshot of the MIMO channel, MPCs are colour-coded with their power.

Visual inspection gives the impression of nicely separated clusters in space.

Applying our clustering framework without user interaction (yet without pruning) to this data, we obtain

the result depicted in Figure 3. The resulting partition into seven clusters realizes the optimum trade-off

between cluster compactness and separation. Since the two small groups of MPCs, denoted by purple

and light blue colour, represent an insignificant contribution to the total power, they are combined with

the two larger clusters, represented by the corresponding colours. Surprisingly, the large group of MPCs

(around 27 ns), holding most of the total power, is split into four separate clusters. The MPCs powers in

this group are strongly varying, cluster centres are attracted by strong powers. Thus, it is most sensible

to split up this group into several clusters. Here, the algorithm is able to split up clusters that cannot be

seen by visual inspection.

KPowerMeans + CombinedValidate + ShapePrune Using the pruning algorithm, outlier paths are

removed. Figure 4 shows results of applying the whole framework algorithm including pruning. The

clustering algorithm results in well-defined separable clusters. The pruning algorithm improves the visi-

bility without changing cluster parameters and allows for simpler cluster tracking. Clusters can be well

identified, they are indicated as MPCs showing the same colour.

Obviously, the weak-powered cluster at large delay was pruned. This makes sense as its power did not

add much to the channel. Also the large light blue cluster, around 28 ns now looks smaller, but still has

7



−2

0

2

−2

0

2

26.5

27

27.5

28

28.5

29

29.5

AoA / radAoD / rad

d
e
la

y
 /
 n

s

P
 /

 d
b

−60

−55

−50

−45

−40

Figure 2: Unclustered MIMO measurement data in LOS scenario; power of MPCs is colour-coded

similar properties to the original one.

5 Conclusions

One of the main problems in evaluating channel measurements is the identification of multi-path clusters.

We presented a scalable framework to automatically identify multi-path clusters from MIMO channel

measurement data that is novel in four respects: (i) The framework algorithm enables to cluster MIMO

channel parameters automatically with a minimum of user input; (ii) by including power and the MCD

into the K-means concept, we make it applicable to clustering in propagation research; (iii) the cluster

validation provides a trustworthy estimate of the correct number of clusters; (iv) the implemented cluster

pruning algorithm does not change the cluster behaviour significantly, but improves visibility and future

tracking performance. Furthermore, the clustering algorithm introduces a convincing, inherent definition

of a cluster itself.

We evaluated the performance of our clustering algorithm with both, synthetic and real-world MIMO

channel data. We could demonstrate that the algorithm even outperforms visual inspection.

Acknowledgements

We thank Jari Salo, Ernst Bonek, Jukka-Pekka Nuutinen and Juha Ylitalo for many valuable inputs to

this work. Furthermore we are grateful for the strong support of Elektrobit Testing Ltd. This work was

conducted in the framework of the EC funded Network of Excellence NEWCOM.

References

[1] A. Molisch, “Modeling the MIMO propagation channel,” Belgian Journal of Electronics and Com-

munications, no. 4, pp. 5–14, 2003.

[2] L. Correia, Ed., Towards Mobile Broadband Multimedia Networks, COST 273 Final Report. To

be published by Elsevier, 2006.

8



−2

0

2

−2

0

2

26.5

27

27.5

28

28.5

29

29.5

AoA / radAoD / rad

d
e
la

y
 /

 n
s

Figure 3: Automatically clustered environment without pruning, 7 clusters were identified

−2

0

2

−2

0

2

26.5

27

27.5

28

28.5

29

29.5

AoA / radAoD / rad

d
e

la
y
 /

 n
s

Figure 4: Results of clustering: weak components were removed

9



[3] K. Yu, Q. Li, D. Cheung, and C. Prettie, “On the tap and cluster angular spreads of indoor WLAN

channels,” in Proceedings of IEEE Vehicular Technology Conference Spring 2004, Milano, Italy,

May 17–19, 2004.

[4] C.-C. Chong, C.-M. Tan, D. Laurenson, S. McLaughlin, M. Beach, and A. Nix, “A new statisti-

cal wideband spatio-temporal channel model for 5-GHz band WLAN systems,” IEEE Journal on

Selected Areas in Communications, vol. 21, no. 2, pp. 139 – 150, Feb. 2003.

[5] J. Salo, J. Salmi, N. Czink, and P. Vainikainen, “Automatic clustering of nonstationary MIMO

channel parameter estimates,” ICT’05, May 2005, Cape Town, South Africa.

[6] N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen, and J. Ylitalo, “Automatic clustering of MIMO

channel parameters using the multi-path component distance measure,” in WPMC’05, Aalborg,

Denmark, Sept. 2005.

[7] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen, “Channel parameter

estimation in mobile radio environments using the SAGE algorithm,” IEEE JSAC, no. 3, pp. 434–

450, 17 1999.

[8] J. Han and M. Kamber, Data mining, Concepts, and Techniques. Morgan Kaufmann Publishers,

2001.
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