
STATISTICAL MODEL-BASED SENSOR DIAGNOSTICS FOR
AUTOMATION SYSTEMS

Brian Sallans ∗ Dietmar Bruckner ∗∗ Gerhard Russ ∗

∗ {brian.sallans,gerhard.russ}@arcs.ac.at
Information Technologies,

ARC Seibersdorf research GmbH, Vienna, Austria
∗∗ bruckner@ict.tuwien.ac.at

Institute of Computer Technology,
Vienna University of Technology, Vienna, Austria

Abstract: A method for the automatic detection of abnormal sensor values in automation
systems is described. The method is based on statistical generative models of sensor behavior.
A model of normal sensor behavior is automatically constructed. Model parameters are
optimized using an on-line maximum-likelihood algorithm. Incoming sensor values are
then compared to the model, and an alarm is generated when the sensor value has a low
probability under the model. Model parameters are continuously adapted on-line. The system
automatically adapts to changing conditions and sensor drift, as well as detecting isolated
abnormal sensor values.

Keywords: automation, statistical inference, sensor failures, diagnostic tests

1. INTRODUCTION

Automation systems have seen widespread deploy-
ment in modern buildings, and include systems for en-
vironmental control, energy management, safety, se-
curity, access control, and remote monitoring. As the
cost of automation systems falls, and the technology
converges towards standardized protocols, we can ex-
pect automation to move from the office into the home.
It will also encompass not just building management
technology, but also entertainment, kitchen appliances
and communications devices.

Todays sensor and control systems are primarily based
upon the processing of sensor information using pre-
defined rules. The user or operator defines, for ex-
ample, the range of valid temperatures for a room
by a rule – when the temperature value in that room
is out of range (e.g. caused by a defect), the system
reacts (for example, with an error message). More
complicated diagnostics require an experienced oper-
ator who can observe and interpret real-time sensor
values. However, as systems become larger, are de-

ployed in a wider variety of environments, and are
targeted at technically less-sophisticated users, both
possibilities (rule-based systems and expert users) be-
come problematic. The control system would require
comprehensive prior knowledge of possible operating
conditions, ranges of values and error conditions. This
knowledge may not be readily available, and will be
difficult for an unsophisticated user to input. It is im-
practical for experienced operators to directly observe
large systems, and naive users can not interpret sensor
values.

The goal of this work is to automatically recognize
error conditions specific to a given sensor, actuator
or system without the need of pre-programmed error
conditions, user-entered parameters, or experienced
operators. The system observes sensor and actuator
data over time, constructs a model of “normality”,
and issues error alerts when sensor or actuator values
vary from normal. The result is a system that can
recognize sensor errors or abnormal sensor or actuator
readings, with minimal manual configuration of the
system. Further, if sensor readings vary or drift over

time, the system can automatically adapt itself to the
new “normal” conditions, adjusting its error criteria
accordingly.

2. BACKGROUND

The diagnostic system is based on statistical “gener-
ative” models (SGMs). Statistical “generative” mod-
els attempt to reproduce the statistical distribution of
observed data. As an example, one of the simplest
and most widely used statistical generative models
is the Gaussian distribution. The mean and standard
deviation are parameters which can be fit to data. The
model can then be used to determine how likely a
new data value is (its probability under the model),
or to “generate” new data (i.e. draw samples from a
Gaussian distribution with the same mean and stan-
dard deviation). 1

The Gaussian distribution is not appropriate for many
modeling tasks, because much data does not actually
come from a Gaussian-distributed source. Because of
this, recent work in generative models has focused
on non-Gaussian models (see for example (Hinton et
al., 1995; Hinton et al., 1998; Lee et al., 1999)). In
addition to the Gaussian distribution, the diagnostic
system uses a number of different SGMs to capture
the distribution of sensor data, including histograms,
mixture models (Bishop, 1995), hidden Markov mod-
els (Rabiner and Juang, 1986) and Bayesian networks
(Pearl, 1988).

Sensor and control data poses several challenges. The
data can be anything from very low level temper-
ature readings to higher level “fault” detectors or
occupancy data from building entry systems. This
very different data must be fused into a single sys-
tem. The volume of data requires fast algorithms
(Jaakkola, 1997; Frey, 1997; Jordan et al., 1999), and
algorithms that can work with on-line data as it arrives
(Neal and Hinton, 1998). The data values are time-
dependent, so a model must (explicitly or implicitly)
take time into account (Kalman, 1960; Rabiner and
Juang, 1986; Ghahramani and Jordan, 1997; Ghahra-
mani and Hinton, 1998; Sallans, 2000).

Previous work in applying statistical methods for fault
detection includes the use of methods from statistical
quality control (SQC) (see Fasolo and Seborg (1994)
and Schein and House (2003), for example). These
methods compare sensor values to prepared statistical
”charts”. If the sensor values vary from their expected
values over a prolonged period of time, the charts can
detect this variation.

1 For probability density models, such as the Gaussian, which are
functions of real-valued variables, the probability of the input value
is not directly computed from the model. Rather the probability of
either exceeding the given value, or of generating a value within a
small neighborhood of the given value is computed. See section 3.3
for more details.

These methods differ from the SGM method in a num-
ber of important respects. First, and most importantly,
because the charts are designed to detect small vari-
ations over a long time period, SQC methods require
collection of data and detection of faults over a rela-
tively long time window (for example, several faults
detected over the course of 1000 sensor readings) in
order to detect faults reliably. The SGM approach is
designed to detect individual sensor errors, by com-
paring each new sensor value to a statistical model.
Because of this, abnormal sensor values are detected
immediately by the SGM-based system.

Second, because SQC methods are designed for long-
term use, they can detect but not adapt to system
changes or sensor drift. The SGM method was specif-
ically designed to automatically accomodate system
behavior changes and long-term sensor drift.

There are several other approaches to fault detection.
In classical model-based detection, detailed domain
knowledge is used to build a model of the system.
Deviations between model predictions and system be-
havior are flagged as faults (see Isermann (1984) for
a survey). In pattern matching detection, faults are
induced in a system, and the resulting sensor values
are recorded. A classifier, such as a neural network, is
trained using this data set of normal and abonormal
behavior to detect failures (see House et al. (1999)
for example). These methods require either a working
system for experimentation, or an in-depth knowledge
of the system in question, both of which are lacking
for large building automation systems.

Despite their success in other domains, SGMs have
not been applied to error detection for building au-
tomation sensor and control data. There are two rea-
sons for this. First, it has only recently become possi-
ble (and economical) to collect a wide range of cross-
vendor sensor data at a central location. Second, most
algorithms to optimize the parameters of SGMs are
quite compute-intensive. Many algorithms have been
of only theoretical interest, or are restricted to small
toy problems. Only recently have powerful approx-
imation algorithms and powerful computers become
available that can handle large quantities of data in
real-time. The combination of fast, powerful optimiza-
tion algorithms, fast computers, and available multi-
sensor data makes the time ripe for probabilistic mod-
eling of sensor and control data.

3. THE DIAGNOSTIC SYSTEM

The goal of the diagnostic system is to automatically
detect sensor errors in a running automation system.
It does this by learning about the behavior of the
automation system by observing data flowing through
the system. The diagnostic system builds a model of
the sensor data in the underlying automation system,
based on the data flow. From the optimized model,
the diagnostic system can identify abnormal sensor

and actuator values. The diagnostic system can either
analyze historical data, or directly access live data (see
Figure 1).

Visualization Diagnostic Tool

Data
base

Data points (sensors, actuators, state values, etc.)

Fig. 1. The Automation System. Sensor and actuator
values are stored in a database, and simultane-
ously analyzed on-line by the error detection sys-
tem. Connections between the diagnostics system
and other system components are either direct, or
via the Database.

We use a set of statistical generative models to repre-
sent knowledge about the automation system. A sta-
tistical generative model takes as input a sensor value,
status indicator, time of day, etc., and returns a prob-
ability between zero and one. For example, the most
widely used example of a SGM is the Gaussian dis-
tribution. For each input value, a Gaussian computes
a weighted distance from the Gaussian mean, and re-
turns a decreasing probability as the value moves away
from the mean.

Using SGMs has several advantages. First, because
the model encodes the probability of a sensor value
occurring, it provides a quantitative measure of “nor-
mality”, which can be monitored to detect abnormal
events. Second, the model can be queried as to what
the “normal” state of the system would be, given an
arbitrary subset of sensor readings. In other words, the
model can “fill in” or predict sensor values, which can
help to identify the source of abnormal system behav-
ior. Third, the model can be continuously updated to
adapt to sensor drift.

3.1 The Statistical Models

The system implements a number of SGMs (see Table
1).

Table 1. Statistical Generative Models

Model Variable Type Parameters

Gaussian Real µ,σ2

Histogram Discrete, Real Bin counts

Mixture of Gaussians Real µi,σ2
i ,πi

Hidden Markov model Real Tij ,µi,σ2
i

Hidden Markov model Discrete Tij ,Bin counts

The more complex models add additional capabilities,
or relax assumptions in comparison to the Gaussian
model:

Histogram: This is a very general model that is ap-
propriate for discrete sensor values, as well as real-
valued sensors with an arbitrary number of modes.
One drawback is that a histogram requires a rather
large quantity of data before it becomes usable or
accurate.

Mixture of Gaussians: This model relaxes the Gaussian
assumption that the distribution has only one mode.
A mixture of Gaussians is composed of a num-
ber of Gaussian models, and each data value is
attributed to the Gaussian modes with a weighting
given by a “posterior probability”. See for example
(Bishop, 1995).

Hidden Markov Model: This model is the equiva-
lent of the Mixture of Gaussians model or the his-
togram model, but with the addition that the current
sensor value can be dependent on previous values.

3.2 Error Detection

Given an SGM, implementation of this functionality
is straight-forward. The system assigns to each newly-
observed data value a probability. When this probabil-
ity is high, the system returns that the new data value
is a “normal” value. When the probability falls be-
low a specific threshold, the system rates the value as
“abnormal”. The SGM system generates alarm events
when it observes abnormal sensor values. This leaves
open the question of how to assign the threshold for
normality. In practice, the user sets the threshold us-
ing a graphical interface. Initially, before the system
has learned normal system behavior, many alarms are
generated, and the user may decide to set the threshold
to a value near zero. As the system acquires a bet-
ter model of the sensor system, the threshold can be
raised. In any case, the threshold parameter tells us
how improbable an event should be to raise an alarm.
The system can also use a log-probability scale, so
that the threshold can easily be set to only register
extremely unlikely events.

3.3 Statistical Generative Models

The diagnostic system uses SGMs of automation data
points. For any given data value x, model M assigns a
probability to x: PM (x) → [0, 1].

Note that, for discrete distributions such as a his-
togram, the value assigned to x by the model PM (x) is
a well-defined probability, since the set of possible as-
signments to x is finite. For a probability density, such
as a Gaussian or mixture of Gaussians, the probability
value assigned to x by the model is the probability
density at that value. In order to convert this density
to a probability, the probability of generating a value

within a neighborhood ±δ around x is computed as∫ δ

−δ
PM (x+φ)dφ, and approximated as 2δPM (x) for

small δ. Alternatively the probability under the model
of equaling or exceeding the observed value can be
computed: PM (x′ ≥ x) =

∫ φ+∞
φ

PM (x + φ)dφ.

The data x can be a sensor reading such as a motion
sensor, door contact sensor, temperature sensor, and
so on. Given a new data value, the system can assign
a probability to this value. When the probability is
above a given threshold, the system concludes that this
data value is “normal”.

Given a sequence of sensor readings x = {x1, ..., xT }
from times 1 to T , the system must create a model of
“normal” sensor readings. The system uses maximum-
likelihood parameter estimation. We describe this
method below.

Assume that model M has parameters θ. For example,
the standard Gaussian distribution has two parameters,
a mean µ and a variance σ2. In this case, θ = {µ, σ2}.
The log-likelihood of the model parameters given the
data x is given by:

L(θ) = log PM (x|θ) (1)

where the notation P (x|θ) denotes a conditional prob-
ability: The probability assigned to x depends on the
current values of the parameters θ. The log-likelihood
tells us how “good” the parameters of the model are.
When it is high, the data values that we usually see
have a high probability under the model. That is, the
model captures what are “normal” data values.

The maximum-likelihood parameters are defined as
the parameter values which maximize the log-likelihood
over the observed data:

θML = argmax
θ

{log PM (x|θ)}

Again, take the Gaussian distribution as an example.
The log-likelihood of the 1D Gaussian is given by:

LGaussian(µ, σ2) =−
∑

i

[
1
2

log(2πσ2)

+
1

2σ2
(xi − µ)2

]

where xi ∈ x are independent, identically-distributed
data values. Taking the derivative of the log-likelihood
with respect to the parameters yields:

∂LGaussian(µ, σ2)
∂µ

=
∑

i

(xi − µ)
σ2

(2)

∂LGaussian(µ, σ2)
∂σ2

=
∑

i

(
− 1

σ
+

(xi − µ)2

σ3

)
(3)

We can now solve for the maximum-likelihood para-
meters. Setting the derivatives in Eq.(2) and Eq.(3) to
zero and solving the system of two equations yields:

µML =
1
T

∑
i

xi (4)

σ2
ML =

1
T

∑
i

(xi − µML)2

which are the familiar textbook definitions of mean
and variance of a Gaussian.

3.4 On-line Parameter Updates

In order for the system to continually adapt the model
parameters, we need a parameter update algorithm
that can incrementally change the parameters based
on newly observed sensor values. Such methods are
called “on-line” parameter update rules. On-line up-
dates have the advantage that there is no time during
which the system is in an “optimization” phase, and
unavailable for diagnostics.

One simple on-line method for computing locally-
optimal maximum-likelihood parameters is “stochas-
tic gradient ascent”. As each new data value xi is
observed, the parameters are adjusted so as to increase
the log-likelihood:

θnew
ML = θold

ML + ε
∂ log PM (xi|θ)

∂θ

where ε is a “learning rate”. Given appropriate condi-
tions on ε and the log-likelihood function, this algo-
rithm will find a local maximum of the log-likelihood.
In practice, the success and speed of the algorithm
depends on the form of the log-likelihood and the
order and frequency with which parameters are up-
dated. Good results can be achieved for many gen-
erative models, although convergence can be slow
(see for example (Dempster et al., 1977; Russell et
al., 1995; Olshausen and Field, 1996). Our diagnostic
system makes extensive use of this parameter update
rule.

For the example of a Gaussian model, the on-line
parameter update rules are given by:

µnew
ML = µold

ML + εµ
∂LGaussian(µ, σ2)

∂µ

σ2new
ML = σ2old

ML + εσ2
∂LGaussian(µ, σ2)

∂σ2

In some cases, as with the Gaussian, where parameters
can be explicitly solved for, another on-line parameter
update method can be used. The alternative to a gradi-
ent update is the on-line moving average, or “decaying
average”. Consider for example the expression for the
mean of a Gaussian (equation 4):

µML =
1
T

∑
i

xi

If the system receives new data values on-line, we can
not use the expression as given, because we do not

want to store the entire history of values {xi}, i =
1, ..., T . However, we can use a sliding window such
that:

µnew
SW =

1
N

t2∑
i=t1

xi

where we only store the last N = (t2 − t1) values. As
a final alternative, we can recompute the mean at each
step without storing previous values:

µnew
MA =

1
N

xi +
(N − 1)

N
µold

MA

which is a “decaying average” update, and approx-
imates a sliding window of length N . We call this
update rule an “on-line moving average” update rule.
This rule can be used for some models but is not as
generally applicable as the gradient update rule.

Figure 2 shows an example of parameter optimization
for the Gaussian model. The initial mean and variance
were set to {−5, 9} (the “X”). The contour lines show
lines of equal log-likelihood for the Gaussian model.
The “O” shows the true parameters for the model
{5, 4}. The curved (upper) line shows the path in
parameter space followed by the gradient-ascent rule,
from the original guess {−5, 9} to the true parameters
{5, 4}. The parameters are updated as each new data
value (sampled from a Gaussian with the true parame-
ters {5, 4}) arrives. Because the gradient is computed
using a single value, the “up-hill” direction is noisy,
resulting in the slightly “wandering” line we see. Also,
when the guess reaches the true parameter values, it
wanders around in this area, because for each new data
value, the “optimal” parameters are different.

Similarly, the straight (lower) line shows the path
in parameter space followed by the on-line moving
average rule. As we can see, the two rules follow
completely different paths in parameter space, but
arrive at the same answer. Which method works best
is an empirical question, and depends on the model
used, the learning rate, how much data is available,
and so on. We tend to use moving-average rules where
possible, because of their fast initial convergence, and
gradient-based rules otherwise.

4. RESULTS

The diagnostics system has been implemented in an
office environment with 20 rooms, an entrance area,
and two long corridors. In this environment, motion,
door state, luminosity, temperature and humidity sen-
sors have been installed. All sensors are wireless, and
report sensor values to a central computer with an
attached receiver station. The motion and door state
sensors are standard consumer “X10”-brand sensors.
The temperature, luminosity and humidity sensors
are custom-built wireless sensors (Mahlknecht, 2004).

Fig. 2. Example of gradient-based optimization and
on-line averaging for the Gaussian model.

The sensors are battery-powered, and the custom sen-
sors have built-in voltmeters which report the current
battery state. All data is stored in an SQL database.
At the time of writing, data has been collected over
the course of more than three weeks. The diagnosis
system can initialize its models by analyzing stored
historical data, or simply optimize on-line as it reports
error conditions.

4.1 Parameter Optimization

If the system begins reporting errors without first
analyzing historical data, it will initially report many
errors. This will continue until the system has acquired
enough knowledge of the automation network and
sensors to at least have rudimentary models of normal
sensor values. As analysis continues, the number of
alarms generated falls (see Figure 3).

The model log-likelihood, given by Eq.(1), is a mea-
sure of model quality. As the parameter values are
optimized on-line, the log-likelihood of the sensor
models increases. Figure 4 shows the average log-
likelihood during parameter optimization, on aver-
age, for the sensor models in the test system. The
log-likelihood increases with time, indicating that the
models improve over time. The log-likelihood does
not consistently increase, however, due to the on-line
fitting of parameters simultaneously with reporting of
abnormal sensor values. If sensors receive abnormal
values, the log-likelihood decreases, until the values
return to their normal range or the sensor model adapts
to the new range of values.

4.2 Optimized Sensor Models

After analyzing a quantity of data the system has mod-
els of typical sensor values. In the current implemen-
tation, the system uses one model per sensor, for every

0 2 4 6 8 10 12 14 16 18 20 22
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Days

P
ro

po
rt

io
n

of
 A

la
rm

s
(t

hr
es

ho
ld

=
0.

02
)

Fig. 3. Proportion of alarms generated (at a threshold
of log(PM (x)) = −4) as a function of training
time. The proportion of alarms is the ratio of
the number of alarms generated to the number
of sensor values received by the diagnostic sys-
tem. With time, the alarm rate drops to approxi-
mately match the chosen threshold, as the statisti-
cal models used by the system match themselves
to the actual behavior of the system.

0 2 4 6 8 10 12 14 16 18 20 22
−5

−4

−3

−2

−1

0

1

Days

A
ve

ra
ge

 L
og

−
lik

el
ih

oo
d

Fig. 4. Average learning curve for sensor models.
On average the log-likelihood for the model im-
proves over time. There is a rapid improvement in
the first days, followed by a slower improvement
over weeks.

half-hour interval. That is, there is a distinct model for
each half-hour interval.

The system also has models for “data period” (the
typical number of seconds between data packets from
a sensor). For sensors such as motion and door state,
it is informative to know how often the sensor state
changes, in order to detect sensor failures or abnormal
conditions. Models are fit to the typical time interval
between arrival of sensor data packets. Figure 5 shows
models for three sensors: Motion frequency, temper-
ature and luminosity. The first two are examples of
“mixture of Gaussians” models, while the third is a
simple Gaussian. Note that the temperatures, for ex-
ample, would not be well-characterized by a simple
Gaussian model.

a)

b)

c)

Fig. 5. Examples of models optimized by the system.
In some cases, the Gaussian model is sufficient,
and in other cases the model has (a) a non-
Gaussian shape or (b) multiple modes.
a) A motion sensor from 5:00pm-5:30pm;
b) A temperature sensor from 8:00am-8:30am;
c) A luminosity sensor from 6:00pm-6:30pm.

4.3 Error Detection and Drift Adaptation

We can see the trade-off between adaption to sensor
drift and detection of short-term behavior changes
by examining an individual model more closely. The
wireless sensors are powered by small batteries, which
leaves open the possibility that an unusual power drain
can deplete the batteries and cause a sensor failure.
The sensors are equipped with voltage sensors, indi-
cating the voltage currently available from the battery.
One of the sensors in the test system did in fact have
an unusual power drain during the test period. Figure
6 and 7 show the diagnostic system behavior for two
different speeds of parameter updates. In Figure 6,
the model parameters are optimized during the initial
days, and then held fixed. In this case, the drift is
detected relatively quickly.

In Figure 7, the model parameters are continuously
optimized on-line. In this case, the drift is detected by
the model, but does not result in an alarm until the drift
rate increases beyond the adaptation rate of the model.

In the case of battery voltage level, the initial behavior
may be more desirable. For other sensors (luminosity,

2005.04.03 2005.04.06 2005.04.09 2005.04.12 2005.04.15 2005.04.18
1.5

2

2.5

3

Date

P
ow

er
 (

V
ol

ts
)

a)

2005.04.03 2005.04.06 2005.04.09 2005.04.12 2005.04.15 2005.04.18

−4

−2

0

2

Date

Lo
g−

lik
el

ih
oo

d

b)

Threshold log(Pr)=−4

Fig. 6. a) Voltage as a function of time for a wireless
sensor. The sensor was faulty, resulting in battery
drain and a decrease in system voltage over time.
The available voltage increased at the end, when
the batteries were changed. The solid line is the
actual voltage, and the dashed line is the expected
voltage under the voltage model.
b) Log-likelihood curve for the voltage model.
Model parameters are quickly optimized for the
observed voltage level. Because the model pa-
rameters are not adapted after the initial period,
the model detects the slow voltage drift relatively
quickly.

2005.04.03 2005.04.06 2005.04.09 2005.04.12 2005.04.15 2005.04.18
1.5

2

2.5

3

Date

P
ow

er
 (

V
ol

ts
)

a)

2005.04.03 2005.04.06 2005.04.09 2005.04.12 2005.04.15 2005.04.18

−4

−2

0

2

Date

Lo
g−

lik
el

ih
oo

d

b)

Threshold log(Pr)=−4

Fig. 7. a) Voltage as a function of time for a wireless
sensor. The sensor was faulty, resulting in battery
drain and a decrease in system voltage over time.
The available voltage increased at the end, when
the batteries were changed. The solid line is the
actual voltage, and the dashed line is the expected
voltage under the voltage model.
b) Log-likelihood curve for the voltage model.
Model parameters are quickly optimized for
the observed voltage level. As the batteries are
drained, there is a slow drift downward. The
model continues to adapt, resulting in no alarm.
As the rate of drift accelerates, the change is too
rapid for the model to adapt, and an alarm is
triggered.

temperature) it may be preferable for the system to
adapt to drifting sensor values without generating an
alarm. Behavior such as shown in Figure 7 may be the

most preferable, where some drift can be accommo-
dated, but rapid changes will be detected.

5. CONCLUSION

This paper describes a method for the automatic de-
tection of abnormal sensor values, based on statistical
generative models of sensor behavior. The system can
automatically build a model of normal sensor behav-
ior. It does this by optimizing model parameters using
an on-line maximum-likelihood algorithm. Incoming
sensor values are then compared to the model, and
an alarm is generated when the sensor value has a
low probability under the model. The model parame-
ters are continuously adapted on-line. The result is a
system that automatically adapts to changing condi-
tions and sensor drift. As well as detecting isolated
abnormal sensor values, the system can either detect
or adapt to slower sensor drift, depending on the rate
of model parameter adaptation.

With the current system, some knowledge of the ex-
pected rate of sensor drift is required, in order to cor-
rectly set the parameter adaptation rate. An alternative
would be to use two error-detection mechanisms. For
isolated abnormal values, the current system would be
used. For the detection of long-term drift, changes in
model parameter values themselves would be moni-
tored over a longer time-scale. The result would be
a hierarchical model, with sensor values at the lower
level, and model parameters at the higher level.

The current system only detects abnormal values for
single sensors. The system is currently being extended
to include multivariate models which capture corre-
lations between sensor values. In this way, abnormal
groups of sensor values can be automatically detected.

6. REFERENCES

Bishop, C. M. (1995). Neural Networks for Pattern
Recognition. Oxford University Press Inc.. New
York NY.

Dempster, A. P., N. M. Laird and D. B. Rubin (1977).
Maximum likelihood from incomplete data via
the EM algorithm. J. Royal Statistical Society
Series B 39, 1–38.

Fasolo, Paul and Dale E. Seborg (1994). An SQC
approach to monitoring and fault detection in
HVAC control systems. In: Proceedings of the
American Control Conference. Baltimore, Mary-
land.

Frey, Brendan (1997). Continuous sigmoidal belief
networks trained using slice sampling. In: Ad-
vances in Neural Information Processing Sys-
tems (Michael C. Mozer, Michael I. Jordan and
Thomas Petsche, Eds.). Vol. 9. The MIT Press,
Cambridge. pp. 452–458.

Ghahramani, Z. and G. E. Hinton (1998). Varia-
tional learning for switching state-space models.
Neural Computation 4(12), 963–996.

Ghahramani, Z. and M. I. Jordan (1997). Factorial hid-
den Markov models. Machine Learning 29, 245–
273.

Hinton, G. E., B. Sallans and Z. Ghahramani (1998). A
hierarchical community of experts. In: Learning
in Graphical Models (M. I. Jordan, Ed.). pp. 479–
494. Kluwer Academic Publishers.

Hinton, G. E., P. Dayan, B. J. Frey and R. M. Neal
(1995). The wake-sleep algorithm for unsuper-
vised neural networks. Science 268, 1158–1161.

House, J.M., W. Y. Lee and D. R. Shin (1999). Clas-
sification techniques for fault detection and diag-
nosis of an air-handling unit. ASHRAE Transac-
tions 105(1), 1987–1997.

Isermann, R. (1984). Process fault detection based
on modeling and estimation methods – a survey.
Automatica 20(4), 387–404.

Jaakkola, T. S. (1997). Variational Methods for Infer-
ence and Estimation in Graphical Models. De-
partment of Brain and Cognitive Sciences, MIT.
Cambridge, MA. Ph.D. thesis.

Jordan, M. I., Z. Ghahramani, T. S. Jaakkola and
L. K. Saul (1999). An introduction to variational
methods for graphical models. Machine Learning
37, 183:233.

Kalman, R. E. (1960). A new approach to linear filter-
ing and prediction problems. Trans. ASME, Se-
ries D, Journal of Basis Engineering 82, 35–45.

Lee, T-W, M. Girolami and T. Sejnowski (1999). In-
dependent component analysis using an extended
infomax algorithm for mixed sub-gaussian and
super-gaussian sources.

Mahlknecht, S. (2004). Energy-Self-Sufficient Wire-
less Sensor Networks for the Home and Building
Environment. Institute of Computer Technology,
Technical University of Vienna. Vienna, Austria.
Dissertation thesis.

Neal, R. M. and G. E. Hinton (1998). A view of the
EM algorithm that justifies incremental, sparse,
and other variants. In: Learning in Graphical
Models (M. I. Jordan, Ed.). pp. 355–368. Kluwer
Academic Publishers.

Olshausen, B. A. and D. J. Field (1996). Emergence
of simple-cell receptive field properties by learn-
ing a sparse code for natural images. Nature
381, 607–609.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann. San Mateo, CA.

Rabiner, Lawrence R. and Biing-Hwang Juang (1986).
An introduction to hidden Markov models. IEEE
ASSAP Magazine 3, 4–16.

Russell, Stuart, John Binder, Daphne Koller and Keiji
Kanazawa (1995). Local learning in probabilistic
networks with hidden variables. In: Proc. Four-
teenth International Joint Conference on Artifi-
cial Intelligence. Montreal, Canada.

Sallans, B. (2000). Learning factored representa-
tions for partially observable Markov decision
processes. In: Advances in Neural Information
Processing Systems (S. A. Solla, T. K. Leen and
K-R Müller, Eds.). Vol. 12. The MIT Press, Cam-
bridge. pp. 1050–1056.

Schein, J. and J.M. House (2003). Application of
control charts for detecting faults in variable-air-
volume boxes. In: ASHRAE Transactions. Vol.
109. pp. 671–682.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

