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Abstract

The demand for mobile communication systems with high datesrhas dramatically increased in recent
years. New methods are necessary in order to satisfy this émmmunications demand, exploiting the
limited resources such as bandwidth and power as efficigmssble. MIMO systems with multiple an-
tenna elements at both link ends are an efficient solutiofutare wireless communications systems as
they provide high data rates by exploiting the spatial donuaider the constraints of limited bandwidth
and transmit power. Space-Time Block Coding (STBC) is a MIk&hsmit strategy which exploits
transmit diversity and high reliability. STBCs can be d&dfdinto two main classes, namely, Orthogonal
Space-Time Block Codes (OSTBCs) and Non-Orthogonal Spane-Block Codes (NOSTBCs). The
Quasi-Orthogonal Space-Time Block Codes (QSTBCs) belorgaiss of NOSTBCs and have been an
intensive area of research. The OSTBCs achieve full diyevsith low decoding complexity, but at
the price of some loss in data rate. Full data rate is achievatzonnection with full diversity only in
the case of two transmit antennas in case of complex-valyetba transmission. For more than two
transmit antennas full data rate can be achieved with QS™Matsa small loss of the diversity gain.
However, it has been shown that QSTBCs perform even beter@STBCs in the SNR range of prac-
tical interest (up to 20 dB) that makes this class of STBCsadiive area of research.

The main goal of this work is to provide a unified theory of Q®J&Bfor four transmit antennas and
one (or more) receive antennas. The thesis consists of tvilo pazts: In the first part we analyze the
QSTBCs transmission without any channel knowledge at #iestnitter and in the second part we an-
alyze transmission with QSTBCs assuming partial chanré SICSI) information at the transmitter.
For both cases, the QSTBCs are studied on spatially catekatd uncorrelated frequency flat MIMO
channels applying a Maximum Likelihood receivers as weladew complexity linear Zero-Forcing
receivers. The spatial correlation is modelled by the diedd&ronecker Model. Measured indoor chan-
nels are also used in our simulations to show the performainttee QSTBCs in real-world environment.

In the first part of this thesis we give a consistent definittdrQSTBCs for four transmit antennas.
We show that different QSTBCs are obtained by linear transftions and that already known codes
can be transformed into each other. We show that 4he {) MIMO channel in the case of applying
quasi-orthogonal codes can be transformed into an equivhlghly structured virtual4 x 4) MIMO
channel matrix. The structure of the equivalent channel vdtal importance for the performance of the
QSTBCs. We show that the off-diagonal elements of the Mikbhannel matrix are responsible for some
signal self-interference at the receiver. The closer tléfsgiagonal elements of the virtual channel ma-
trix are to zero, the closer is the code to an orthogonal cBdsed on this self-interference parameter it
can be shown that only 12 QSTBC types with different perfaroeaexist.

In the second part of the thesis we provide two simple methodsnprove the QSTBC transmis-
sion when partial CSI is available at the transmitter. Weppse two novel closed-loop transmission
schemes, namely channel adaptive code selection (CACS)remuhel adaptive transmit antenna selec-
tion (CAAS). By properly utilization of partial CSI at theainsmitter, we show that QSTBCs can achieve
full diversity and nearly strict orthogonality with a smalinount of feedback bits returned from the re-
ceiver back to the transmitter. CACS is very simple and meguonly a small amount of the feedback
bits. With CAAS full diversity of four and a small improvemtensf the outage capacity can be achieved.
The CAAS increases the channel capacity substantiallyfHauitequired number of the feedback bits
increases exponentially with the number of available trahantennas.






Zusammenfassung

Die Nachfrage nach Mobilfunksystemen mit hoher Datenratilibertragungsqualitat ist in den letzten
Jahren dramatisch gestiegen. Zur Deckung des hohen Korkatiomsbedarfs werden neue Technolo-
gien benotigt, welche die knappen Ressourcen, wie Baitdlwad Sendeleistung, optimal ausnutzen
konnen. MIMO Systeme, bestehend aus mehreren Sende- upfaigsantennen, stellen eine ef-
fiziente MaRnahme fir eine deutliche Steigerungldleertragungskapazitat gegenuiber konventionellen
Kommunikationssystemen (mit je einer Sende- und Empfarigeae) bei gleicher Sendeleistung und
Ubertragungsbandbreite dar. Die Raum-Zeit Block Codigr(8TBC) ist einUbertragunsverfahren,
das neben der zeitlichen und der spektralen auch die réuenDimension detlbertragungsstrecke
ausnutzt. Man unterscheidet zwischen orthogonalen RagiinBIock Codes (OSTBCs) und nicht-
orthogonalen Raum-Zeit Block Codes (NOSTBCs). Die quasiegonalen Raum-Zeit Block Codes
(QSTBCs) sind eine Unterklasse der NOSTBCs. OSTBCs esricolle Diversitat mit einem ein-
fachen Decodierungsalgorithmus, jedoch mit einer eirfgésikten Datenrate. Volle Datenrate und volle
Diversitat sind gleichzeitig nur in MIMO Systemen mit zv&@ndeantennen erreichbar. In MIMO Syste-
men mit mehr als zwei Sendeantennen kann man volle Datemrataittels QSTBCs erreichen, welche
aber einen Diversitatsverlust zur Folge haben. Es wurstgdstellt, dass im SNR Bereich bis zu 20 dB
QSTBCs sogar weniger Fehler anfallig sind als OSTBCs. Aesetin Grund sind QSTBCs ein wichtiges
Forschungsgebiet geworden.

Das Ziel dieser Arbeit ist die Formulierung einer vereitligiten Theorie Uber QSTBCs flr vier Sendean-
tennen und eine (oder mehrere) Empfangsantennen. DietAnnésst zwei Themenschwerpunkte: Im
ersten Teil, analysieren wir die QSTBdbertragung ohne Kanalkenntnis am Sender und im zweiten
Teil analysieren wir Leistungsvermogen von QSTBCs un&rAhnahme, dass der Sender den Kanal
nur teilweise kennt. In beiden Fallen werden QSTBCs tdamiich korrelierte und raumlich unkorre-
lierte echofreie Funkkanale unter der Verwendung von khaxn-Likelihood Empfangern sowie auch
unter Verwendung von einfachen Zero-Forcing Empfangetersucht. Die raumliche Korrelation wird
mit dem so genannten Kronecker Modell eingebracht. Um zyereiwie sich QSTBCs in realen MIMO
Kanalen verhalten, haben wir in unseren Simulationen Megsn aus einem Biroraum-Szenario ver-
wendet.

Im ersten Teil dieser Dissertation definieren wir QSTBOsWVigr Sendeantennen. Wir zeigen, dass
verschiedene QSTBCs durch lineare Transformationen koagtwerden konnen und dass die bereits
bestehenden Codes ineinander uberfuhrt werden kornnemalle von QSTBCs wird in dieser Arbeit
gezeigt, dass deft x 1) MIMO-Kanal in einen aquivalenten, hoch-struktuierterrtuellen (4 x 4)
MIMO-Kanal transformiert werden kann. Die Struktur desiigglenten Kanals ist von zentraler Be-
deutung fur Eigenschaften von QSTBCs. Die Elemente, veetith nicht auf der Hauptdiagonale der
virtuellen Kanalmatrix befinden, konnen als kanalablgergSelbstinterferenzparamet&rinterpretiert
werden. Wir zeigen, dask eine bedeutende Wirkung auf die Systemeigenschaften aadtleiher X

ist, um so naher ist der Code einem orthogonalen Code. iBasi@uf dem Parametéf, wird gezeigt,
dass es nur 12 verschiedenen Typen von QSTBCs gibt.

Im zweiten Teil dieser Dissertation schlagen wir zwei eshiaMethoden vor, um das Leistungsvermogen
von QSTBCs zu verbessern. Unter der Annahme, dass der Sdadekanal nur teilweise kennt,

schlagen wir eine kanaladaptive Codeselektion (CACS) lind kanaladaptive Sendeantennenselek-
tion (CAAS) vor. Bei richtiger Anwendung der partiellen Kakenntnis am Sender, zeigen wir, dass



QSTBCs volle Diversitat und beinahe volle Orthogonalgéeichen kbnnen. Dabei wird nur wenig
Kanalinformation vom Empfanger zum Sender gesendet. NEEist sehr einfach und braucht nur
1-2 Ruckkopplungsbits pro Schwundblock um die volle Dsitét vier zu erreichen. Leider erhoht sich
bei diesem Verfahren die Kanalkapazitat nicht wesentliflem gegentber erhoht sich die Kanalka-
pazitat bei Verwendung der CAAS betrachtlich! Die Anzdld notigen Riickkopplungsbits steigt aber
exponentiell mit der Anzahl der vorhandenen Sendeantennen
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Chapter 1

Introduction

Communication technologies have become a very importahbpauman life. Wireless communication
systems have opened new dimensions in communicationslePempbe reached at any time and at any
place. Over 700 million people around the world subscribexisting second and third generation
cellular systems supporting data rate® @fkbps to2 Mbps. More recently, IEEE 802.11 wireless LAN
networks enable communication at rates of around 54 Mbpsavelattracted more tharp billion USD

in equipment sales. Over the next ten years, the capadibfithese technologies are expected to move
towards the 100 Mbps - 1 Gbps range and to subscriber numbevertwo billion. At the present time,
the wireless communication research community and ingulitcuss standardizations for the fourth
mobile generation (4G). The research community has geteinumber of promising solutions for
significant improvements in system performance. One of thstmromising future technologies in
mobile radio communications is multi antenna elementsetrdmsmitter and at the receiver.

MIMO stands formultiple-input multiple-outpuand means multiple antennas at both link ends of
a communication system, i.e., at the transmit and at theweside. The multiple-antennas at the
transmitter and/or at the receiver in a wireless commuioicdink open a new dimension in reliable
communication, which can improve the system performanbstautially. The idea behind MIMO is that
the transmit antennas at one end and the receive antenhasodlhér end are "connected and combined”
in such a way that the quality (the bit error rate (BER), or da¢a rate) for each user is improved.
The core idea in MIMO transmission $pace-timesignal processing in which signal processing in time
is complemented by signal processing in the spatial dinoenisy using multiple, spatially distributed
antennas at both link ends.

Because of the enormous capacity increase MIMO systems siffeh systems gained a lot of interest
in mobile communication research [1], [2]. One essentiabf@m of the wireless channel is fading,
which occurs as the signal follows multiple paths betweenttansmit and the receive antennas. Under
certain, not uncommon conditions, the arriving signald adld up destructively, reducing the received
power to zero (or very near to zero). In this case no reliablaraunication is possible.

Fading can be mitigated by diversity, which means that tf@mation is transmitted not only once but
several times, hoping that at least one of the replicas wilumdergo severe fading. Diversity makes use
of an important property of wireless MIMO channels: differsignal paths can be often modeled as a
number of separate, independent fading channels. Thesaalsacan be distinct in frequency domain
or in time domain.

Several transmission schemes have been proposed thze titid MIMO channel in different ways,
e.g., spatial multiplexing, space-time coding or beamfognSpace-time coding (STC), introduced first
by Tarokh at el. [3], is a promising method where the numbeheftransmitted code symbols per time
slot are equal to the number of transmit antennas. Thesesywodleols are generated by the space-time



2 1.1. OUTLINE OF THE THESIS

encoder in such a way that diversity gain, coding gain, asasdhigh spectral efficiency are achieved.

Space-time coding finds its application in cellular comngations as well as in wireless local area
networks. There are various coding methods as space-taitis todes (STTC), space-time block codes
(STBC), space-time turbo trellis codes and layered spaoe-{LST) codes. A main issue in all these
schemes is the exploitation of redundancy to achieve hitgibrkty, high spectral efficiency and high
performance gain. The design of STC amounts to find code e¢eatthat satisfy certain optimality crite-
ria. In particular, STC schemes optimize a trade-off betwtbe three conflicting goals of maintaining a
simple decoding algorithm, obtaining low error probabpjleind maximizing the information rate.

In the last few years the research community has made an energffort to understand space-
time codes, their performance and their limits. The purpafsiis work is to explain the concept of
space-time block coding in a systematic way. This thesigsiges an overview of STBC design princi-
ples and performance. The main focus is devoted to so-cailadi-orthogonal space-time block codes
(QSTBCs). Our goal is to provide a unified theory of QSTBCddarr transmit antennas and one receive
antenna and to analyze their performance on different MINi@naoels, with and without channel state
information (CSI) available at the transmitter.

1.1 Outline of the Thesis

This thesis consists of six chapters and three appendiceis anganized as follows:

Chapter 2introduces MIMO systems. We describe multiple antenneaesystand the corresponding
statistical parameters [1]-[15] . The potential of MIMO ®rss as well their problems are described. We
present two channel correlation models which will be useduphout this thesis [16]-[22]. The Signal-
to-Noise Ratio (SNR) definition used in this thesis is expadiin detail. At the end of this chapter, the
most important parameter of a MIMO system, the channel ¢gpapresented [1], [2].

Chapter 3deals with space-time coding techniques and their perfocenan slow and fast fading
MIMO channels. It provides a systematic discussion of STiiessets the framework for the rest of this
thesis. We start with the performance and the design aitdrSTCs defined in [3]. We provide a more
systematic discussion of space-time block coding (STB@)fivst explain the Alamouti STBC [29] that
provides a transmit diversity of two. Orthogonal and quasirogonal designs [30] -[34] are presented
and their performance is evaluated by simulations.

Chapter 4is devoted to the analysis of quasi-orthogonal STBCs in épep transmission systems.
The complete family of OSTBCs is well understood, but for @EE only examples have been reported
in the literature [42]-[47] without systematic analysisdgorecise definition. E.g., in [48] the character
matrices of known QSTBCs have been analyzed and new versiddSTBCs have been presented. In
[49] the design of the receiver structure for the QSTBC pseglain [42] has been studied.

The primary goal of this chapter is to provide a unified theofYQSTBCs for four transmit antennas
and one receive antenna. Our aim is to present the topic asstamt as possible. The chapter starts
with an overview on known QSTBCs and their performance iiclg recent analytic findings and their
experimental validation [42]-[44]. We introduce a concepextending OSTBCs to QSTBCs and show
how families of codes with essentially identical code priipe but different transmission properties in
spatially correlated channels can be generated. No rémraguer dared to define exactly what a quasi
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orthogonal code exactly is. The word quasi is not well defineslich context. We give a consistent def-
inition of QSTBCs for four transmit antennas and show thaees8ally only 12 QSTBCs with different
performance exits. We analyze the structuring properthefaquivalent virtual MIMO channel matrix
(EVCM) resulting from the QSTBCs due to which we can reforatelthe transmission problem in an
equivalent form much more suitable for the system perfoaamalysis. Finally, we discuss the per-
formance of various receivers under QSTBC transmissionMBgte Carlo simulations we evaluate the
BER performance of the 12 different QSTBCs on i.i.d. chasiaal well as on correlated and measured
indoor MIMO channels.

The QSTBCs treated in this chapter do not exploit at leadigb@hannel knowledge at the transmitter.
However in some applications, the transmitter can expl@nnel state information (CSl) to improve the
overall performance of the system, especially in case dfalyacorrelated channels [66], [67], [80].

Chapter 5provides very simple methods to improve the QSTBC trandorisstrategy when the trans-
mitter knows the channel. Evaluating the performance of BGS with feedback of CSI has been an
intensive area of research resulting in various transonissirategies [64] - [67]. In these works (and
references therein) it has been shown that partial chamusVledge can be advantageously exploited to
adapt the transmission strategy in order to optimize theesyperformance. In this chapter we study two
low complexity closed-loop transmission schemes relyimgartial CSl feedback showing that QSTBCs
can achieve full diversity even if only a small amount of amginstate information is available at the
transmitter. We present a simple version of a code seleatiora simple version of an antenna selection
method in combination with QSTBCs. In both cases the receatarns a small amount of the CSI that
enables the transmitter to minimize the interference patanresulting from the non-orthogonality of
all QSTBCs. In this way full diversity and nearly full-ortgonality can be achieved with a maximum
likelihood (ML) receiver as well as with a simple zero-fargi(ZF) receiver.

Chapter 6highlights the content of the thesis and summarises thermegalts.

Appendix Ashows 16 different2 x 2) Alamouti-like code matrices for two transmit antennas sece
sary for the design of QSTBCs in ChapterAppendix Bpresents some examples of useful QSTBCs for
four transmit antennas explained in Section 4. Appendix Cexplains the principle of the maximum-
likelihood detection algorithm discussed in Section 4.602Appendix D in the thesis oftentimes used,
acronyms are listed.
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Chapter 2

Multiple-Antenna Wireless
Communication Systems

2.1 Introduction

The invention of the radio telegraph KBuglielmo Marconimore than hundert years ago marks the com-
mencement of wireless communications. In the last 20 y&aegapid progress in radio technology has
activated a communications revolution. Wireless systeave been deployed through the world to help
people and machines to communicate with each other indepeid their location.”Always best con-
nected”is one of the slogans for the fourth generation of wirelessroanications system (4G), meaning
that your wireless equipment should connect to the netwodystem that at the moment is the "best”
for you.

Wireless communication is highly challenging due to the plax, time varying propagation medium. If
we consider a wireless link with one transmitter and oneivecethe transmitted signal that is launched
into wireless environment arrives at the receiver alongraber of diverse paths, referred to as multi-
paths. These paths occur from scattering and rejectiond@dtead energy from objects (buildings, hills,
trees ...) and each path has a different and time-varyiraydahgle of arrival, and signal amplitude. As
a consequence, the received signal can vary as a functioagqfdncy, time and space. These variations
are referred to akading and cause deterioration of the system quality. Furtherpwireless channels
suffer ofcochannel interferenc@CCl) from other cells that share the same frequency chaleasling to
distortion of the desired signal and also low system peréoee. Therefore, wireless systems must be
designed to mitigate fading and interference to guaranteadle communication.

A successful method to improve reliable communication eveireless link is to use multiple antennas.
The main arguments for this method are:

e Array gain
Array gain means the average increassignal to noise ratiqSNR) at the receiver that can be
obtained by the coherent combining of multiple antennaaggat the receiver or at the transmitter
side or at both sides. The average increase in signal povgeojmrtional to the number of re-
ceive antennas [9]. In case of multiple antennas at thertrigigs, array gain exploitation requires
channel knowledge at the transmitter.

e Interference reduction
Cochannel interference contributes to the overall noiske$ystem and deteriorates performance.
By using multiple antennas it is possible to suppress iatirg signals what leads to an improve-
ment ofsystem capacitylnterference reduction requires knowledge of the chaohtie desired
signal, but exact knowledge of channel may not be neces8ary [

5
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e Diversity gain
An effective method to combat fading is diversity. Accoglito the domain where diversity is
introduced, diversity techniques are classified imwe, frequencyandspace diversity Spaceor
antenna diversity has been popular in wireless microwave commtioica and can be classified
into two categoriesreceive diversityandtransmit diversity[4] , depending on whether multiple
antennas are used for reception or transmission.

— Receive Diversity
It can be used in channels with multiple antennas at thevemetle. The receive signals
are assumed to fade independently and are combined at thigeneso that the resulting
signal shows significantly reduced fading. Receive ditgiisicharacterized by the number
of independent fading branches and it is at most equal touhebar of receive antennas.

— Transmit Diversity
Transmit diversity is applicable to channels with multipi@nsmit antennas and it is at most
equal to the number of the transmit antennas, especialheitransmit antennas are placed
sufficiently apart from each other. Information is procesatthe transmitter and then spread
across the multiple antennas. Transmit diversity was duited first by Winters [5] and it
has become an active research area [3], [7].

In case of multiple antennas at both link ends, utilizatibdieersity requires a combination of the
receive and transmit diversity explained above. dhersity orderis bounded by th@roduct of

the number of transmit and receive antennéthe channel between each transmit-receive antenna
pair fades independently [8].

The key feature of all diversity methods is a low probabibfysimultaneous deep fades in the various
diversity channels. In general the system performance d@wtbrsity technigues depends on how many
signal replicas are combined at the receiver to increasevi’ll SNR. There exist four main types of
signal combining methods at the receiveglection combining, switched combining, equal-gain damb
ing andmaximum ratio combiningVIRC). More information about combining methods can be tbim
[91, [10].

Wireless systems consisting of a transmitter, a radio atleeamd a receiver are categorized by their
number of inputs and outputs. The simplest configuratiorsiagle antenna at both sides of the wireless
link, denoted as single-input/single output (SISO) systeising multiple antennas on one or both sides
of the communication link are denoted as multiple inputhipléd output (MIMO) systems. The differ-
ence between a SISO system and a MIMO system wjitinansmit antennas and. receive antennas is
the way of mapping the single stream of data symbols;tstreams of symbols and the corresponding
inverse operation at the receiver side. Systems with nieliptennas on the receive side only are called
single input/multiple output (SIMO) systems and systemihwiultiple antennas at the transmitter side
and a single antenna at the receiver side are called muitiplé/single output (MISO) systems. The
MIMO system is the most general and includes SISO, MISO, SByi€'ems as special cases. Therefore,
the term MIMO will be used in general for multiple antennateyss.

Thefundamentaproblem of MIMO systems is the mapping operation at the tratter and the corre-
sponding inversion at the receiver to optimize the overatfgrmance of the wireless system. Mostly,
researchers concentrate on the following system parasadii¢rate, reliability andcomplexity. The
goal is to design a robust and low complex wireless systetptioaides the highest possible bit rate per
unit bandwidth.
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2.1.1 Multi - Antenna Transmission Methods

To transmit information over a single wireless link, diffat transmission and reception strategies can
be applied. Which one of them should be used depends on thddahge of the instantaneous MIMO
channel parameters at the transmitter side. If the chamaiel mformation (CSI) is not available at the
transmitterspatial multiplexing(SM) or space-time codingSTC) can be used for transmission. If the
CSl is available at the transmittdseamformingcan be used to transmit a single data stream over the
wireless link. In this way, spectral efficiency and robustef the system can be improved.

It is difficult to decide which of these transmission methadhe best one. It can be concluded that the
choice of the transmission model depends on three entitipsriant for wireless link design, namely bit
rate, system complexity and reliability. A STC has low coextly and promises high diversity, but the
bit rate is moderate. SM provides high bit rate, but is leablke. Beamforming exploits array gain, is
robust with respect to channel fading, but it requires CSI.

In this thesis we will only consider STC transmissions. la fist part of the thesis, we will analyze
STC transmission without any channel knowledge at the tnétexr side and in the second part of the
thesis, we will analyze STC transmissions with partial Sha transmitter. We will propose some low
complexity feedback methods which improve the overall@ystjuality without increasing the system
complexity substantially.

In most cases the complexity of signal processing at themnéter side is very low and the main part
of the signal processing has to be performed at the recelNw.receiver has to regain the transmitted
symbols from the mixed received symbols. Several receivategjies can be applied:

e Maximum Likelihood (ML) Receiver
ML achieves the best system performance (maximum diveasity lowestbit error ratio (BER)
can be obtained), but needs the most complex detectionithlgor The ML receiver calculates
all possible noiseless receive signals by transforming@dkible transmit signals by the known
MIMO channel transfer matrix. Then it searches for that aigralculated in advance, which
minimizes the Euclidean distance to the actually receivgiles The undisturbed transmit signal
that leads to this minimum distance is considered as the ket transmit signal.
Note that the above described detection process is optimwarise of BER for white Gaussian
noise. Using higher signal modulation, this receiver api® extremely complex. There exist
approximate receive strategies, which achieve almost Mitopaance and need only a fraction of
the ML complexity [11], [12], [13].

e Linear Receivers
Zero Forcing (ZF) receivers and Minimum Mean Square ErroM@IE) receivers belong to the
group of linear receivers. The ZF receiver completely nails the influence of the interference
signals coming from other transmit antennas and detecty el&ta stream separately. The dis-
advantage of this receiver is that due to canceling the infle®f the signals from other transmit
antennas, the additive noise may be strongly increasedharsdthe performance may degrade
heavily. Due to the separate decision of every data strelaencamplexity of this algorithm is
much lower than in case of an ML receiver.
The MMSE receiver compromises between noise enhancemeérsigmal interference and mini-
mizes the mean squared error between the transmitted syanddhe detected symbol. Thus the
results of the MMSE equalization are the transmitted da&astis plus some residual interference
and noise. After MMSE equalization each data stream is agggrdetected (quantized) in the
same way as in the ZF case. In practice it can be difficult taipltorrect parameter values of the
noise that is necessary for an optimum signal detection ahdaosmall improvement compared
to the ZF receiver can be obtained. Therefore, this rec&vant used in practice.
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e Bell Labs Layered Space-Time (BLAST) nulling and canceling

These receivers implementilling and Cancelinglgorithm based onRecision Feedbacktrat-
egy. Such receivers operate similar to the Nulling and dameenethod used by multiuser de-
tectors explained in [14] or to Decision Feedback equaizerfrequency selective SISO fading
channels [15]. In principle, all received symbols are eiqedl according to the ZF approach
(Nulling) and afterwards the symbol with the highest SNR(itan easily be calculated with the
knowledge of the MIMO channel) is detected by a grid decisiime detected symbol is assumed
to be correct and its influence on the received symbol vestaunbtracted (Canceling). The perfor-
mance of these nulling and canceling receivers lies in betviiee performance of linear receivers
(ZF and MMSE) and ML receivers.

Along this thesis, the ML receiver and the ZF receiver for St@hsmissions will be discussed in detail.

2.2 Modelling the Wireless MIMO System

To analyze the wireless communication system, appropmatgels for signals and channels are needed.
In this section we will present the necessary prerequifitethe models used in the thesis. We will give
an overview over the MIMO channels and the signal models asdribe parameters of interest such as
antenna correlation, noise and SNR definition.

2.2.1 System (and Channel) Model

Let us consider a point-to-point MIMO system with transmit andn,. receive antennas. The block
diagram is given in Fig. 2.1 Lét; ; be a complex number corresponding to the channel gain betwee

hi1

RX,
ha 1

RX,

"

RXn,

Figure 2.1: MIMO model withu, transmit antennas and. receive antennas.

transmit antenng and receive antennalf at a certain time instant the complex signéds, s, - - - , sy, }
are transmitted via; transmit antennas, the received signal at antérmaa be expressed as:

e
yi= Y hijs;+ni, (2.1)
j=1
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wheren; is a noise term (to be discussed later). Combining all recgignals in a vectay, (2.1) can be
easily expressed in matrix form
y = Hs +n. (2.2)

y is then, x 1 receive symbol vectol] is then, x n; MIMO channel transfer matrix,

hii - hip,
: : 2.3)

b, oo By

s is then; x 1 transmit symbol vector and is then, x 1 additive noise vector. Note that the system
model implicitly assumes a flat fading MIMO channel, i.e.achel coefficients are constant during the
transmission of several symbols. Flat fading, or frequammy-selective fading, applies by definition to
systems where the bandwidth of the transmitted signal ishrsamaller than the coherence bandwidth of
the channel. All the frequency components of the transthitgnal undergo the same attenuation and
phase shift propagation through the channel.

Throughout this thesis, we assume that the transmit synatbelancorrelated, that means

E{ssf} =PI, (2.4)

where P; denotes the mean signal power of the used modulation fornesch transmit antenna. This
implies that only modulation formats with the same mean paweall transmit antennas are considered.

2.2.2 Channel Model

In this thesis, two different spatial channel models aresred, namely spatially uncorrelated and
spatially correlated channels.

2.2.2.1 Spatially Uncorrelated Channel

Spatially uncorrelated channels are modeled by a randomixmath independent identically distributed
(i.i.d.), circularly symmetric, complex Gaussian entngth zero mean and unit variance [3], [2]:

H ~ N2X™(0,1). (2.5)

This is usually a rough approximation and such a model carbberged in scenarios where the antenna
elements are located far apart from each other and a lot ¢tledog surround the antenna arrays at
both sides of the link. In practice, the elementdbfare correlated by an amount that depends on the
propagation environment as well as on the polarization eftfitenna elements and the spacing between
them. For this reason it is necessary to consider corretdtadnels too.

2.2.2.2 Spatially Correlated Channel

In many implementations, the transmit and/or receive arg#grcan be spatially correlated. For exam-
ple, in cellular systems, the base-station antennas aigatlypunhindered and have no local scattering
inducing correlation across the base-station antennagenfAa correlation informs about the spatial
diversity available in a MIMO channel. If antennas are hygbbrrelated, very small spatial diversity
gain can be achieved. In principle, correlated MIMO chasimain be modeled in two ways. There are
geometricallybased [17], [18] andtatisticallybased [19], [20] channel models. In this thesis the focus
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lies on statistical models.
Channel correlation models
A very simple and appropriate approach is to assume theesrufithe channel matrix to be complex

Gaussian distributed with zero mean and unit variance wotihpgiex correlations between all entries
[19]. The full correlation matrix can then be written as:

hlhg hlhg hlhrgt
hoh?  hohY ... hoh”

Ru=£{ .. .2 =~ 7m (2.6)
hmh{{ hnthg hmhnHt

whereh; denotes the i-th column vector of the channel matrix. Kngwah complex correlation coeffi-
cients, the actual channel matrix can be modeled as:

H = (hihy---hy,,) with (hfhI .. hI)7T = (Ru)' % (2.7)

gis aniid. (n, - ny) x 1 random vector with complex Gaussian distributed entrieth @weéro mean
and unit variance. This model is calledudl correlation model The big drawback of this model is that

a huge number of correlation parameters, nangely- n;)*> parameters, are necessary to describe and
generate the correlated channel matrices necessary faeNGarlo simulations.

To reduce the huge number of necessary parameters, thdleiCanecker Modehas been intro-
duced [19], [21], [22]. The assumption of this model is theg transmit and the receive correlation can
be separated. The model is described by the transmit chorelaatrix

R, = Eg{H H"}, (2.8)
and the receive correlation matrix:
R, = Fx{HH"}. (2.9)
Then, a correlated channel matrix can be generated as:
1
H=—_ R/2VR/T, (2.10)
tr(R,)

where the matriXxV is an i.i.d. random matrix with complex Gaussian entriew#ro mean and unit
variance. With this approach the large number of model paters is reduced to? + n? terms. A
big disadvantage of this correlation model is that MIMO afela with relatively high spatial correlation
cannot be modeled adequately, due to the limiting heuragBumption. More information about the
Kroncker model can be found in [23], [24].

In this thesis, we use the Kronecker model with the followaisgumptions:
The coefficients corresponding to adjacent transmit agigane correlated according to:

Eh{‘hi,j h;k,j—l—l‘} =p, JE {1 LN — 1}, (211)
Pt € R, 0 < Pt < 1.

independent from the receive anteninaln the same way the correlation of adjacent receive antenna
channel coefficients is given by:

En{lhij hipi Y = pes GE€{l...n,—1} (2.12)



CHAPTER 2. MULTIPLE-ANTENNA WIRELESS COMMUNICATION SYSTHEIS 11

pre€R, 0<p. <1.

and does not depend on the transmit antenna ifdex
In this way, we obtain specifically structured correlatioatricesR; (transmit correlation matrix) and
R, (receive correlation matrix):

1 o, g p?t_;
pt 1 pt v P?t_g
R, =R ={ »ni »m A (2.13)
pnt—l p?t—Q p:zt—?) . 1
1 propr e Pt
pr 1 pr e PR
R, =R’ ={ o Lo L (2.14)
pnr—l pnr—2 p?r—?) . 1

with real-valued correlation coefficients
pe.pr €ER,0<ppr <1.

TheseToeplitzstructured correlation matrices are quite appropriatefodelling the statistical behavior
when the antenna elements at the transmitter as well as egdbirer are collocated linearly [25].

2.2.2.3 Noise Term and SNR-Definition

We assume the noise samples at the receive antennas to ilalyspédtite circularly symmetric complex
Gaussian random variables with zero mean and variafice

n ~ NZ<H0,02). (2.15)

Such noise is calleddditive white Gaussian noigdWGN). There are two strong reasons for this as-
sumption. First, the Gaussian distribution tends to yieithmmatical expressions that are easy to deal
with. Second, a Gaussian distribution of a disturbance tamoften be motivated via the central limit
theorem of many statistical independent small contrilmgtio

In this thesis, the simulation results are presented ingesfmbit error ratios (BERS) either as a
function of the average SNR or as a function of the average f&thit, SNR;;. The average SNR is
defined as the ratio of the total received signal power antbtiaé noise power:

- rs{Ibl) EH,S{HHsH%}, 016

Ea{lmlizy  Ea{lll3}

where||.||2 denotes thé;-norm operator. Assuming white Gaussian noise at eachveeagitenna and
uncorrelated symbols with powet;, (2.16) yields:

Z?:H 2521 EH{ |hi7j|%}PS

n,o2

SNR= (2.17)
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Normalizing the MIMO channel matrix defined in (2.1) accoglito EH{]hm-]%} = 1, the final result

for the mean SNR is obtained as:
nynePs  nyPs

SNR= = (2.18)
nyo; oy
Note that the SNR definition is symbol based and bit baseditiefiris given by:
SNR
SNRy;; = —— 2.19

where|.A| denotes the cardinality of the modulation format.

2.3 Channel Capacity

Information-theoretic studies of wireless channels haenlperformed extensively. It has been shown
that the increase of MIMO capacity is huge compared to thadgpof a SISO system. One of the
most important fields in the research area of MIMO system®\g to exploit this potential increase in
channel capacity in an efficient way. There are a lot of apgres, which can mainly be subdivided into
space-time coded and uncoded transmission systems.

The maximum error-free data rate that a channel can suppadlied thechannel capacity The
channel capacity for SISO AWGN channels was first derived lau@: Shannon [26]. In contrast to
AWGN channels, multiple antenna channels combat fadingcaudr a spatial dimension.

The capacity of a deterministic SISO channel with an inputpuot relationr = Hs + n is given by [2]

C = log, (1 + p|H|?) [bits/channel use (2.20)

where the normalized channel power transfer characteisstil |>. The average SNR at each receiver
branch independent af, is p = P/o2 and P is the average power at the output of each receive antennas.
The channel capacity of a deterministic MIMO channel is gitg [2]:

C = log, [det(ln,, + nﬁHHH )] [bits/channel uge (2.21)
t

and for random MIMO channels, the mean channel capacity, clliedthe ergodic capacityis given
by [1]:

C= E,’H{Iog2 [det(ln,, + nﬁHHH )] } [bits/channel uge (2.22)
t

where&y denotes expectation with respectBh The ergodic capacity grows with the numbeiof
antennas (under the assumption= n,, = n), which results in a significant capacity gain of MIMO
fading channels compared to a wireless SISO transmission.

The capacity of STBC will be discussed in detail in Chapter 6.

Example 2.1 Channel Cpacity of Spatially Uncorrelated MIMO Systems

In Fig. 2.2 the ergodic channel capacity vs. the mean SNRoigegl for several uncorrelated MIMO
systems withn; = n, = n. The channel capacity for the SISO system € n,, = 1) at SNR=10 dB

is approximately 2,95 bit /channel use. By applying mu#tiphtennas, it is obvious that the channel
capacity increases substantially.(Ax 4) MIMO system (with four transmit and four receive antennas)
can transmit more than 10,9 bit / channel use and the MIMQegystith eight transmit and eight receive
antennasy x 8 MIMO) promises almost the ten fold capacity (29,7 bit/ chelnrse) of the SISO channel
at this SNR value.
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Figure 2.2: Ergodic MIMO channel capacity vs. SISO chanagkcity (spatially uncorrelated channel).

2.4 Summary

This chapter provided an introduction into multiple antersystems. Transmit and receive methods
have been discussed and a brief overview on the algebraieivark used to describe MIMO channel
has been given. Two channel correlation models have beseresl and the corresponding statistical
parameters, which will be used throughout this thesis haes lexplained. One of the most important
parameters of a MIMO system, the channel capacity, has ladied. The basic concepts which are
relevant to understanding the MIMO channel capacity haenlggven. By means of one example we
illustrated the capacity of different MIMO systems and camgal them with a SISO system.
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Chapter 3

Space-Time Coding

3.1 Introduction

Space-Time Codes (STCs) have been implemented in cellolmmainications as well as in wireless
local area networks. Space time coding is performed in bp#tiad and temporal domain introducing
redundancy between signals transmitted from various aateat various time periods. It can achieve
transmit diversity and antenna gain over spatially uncaglediems without sacrificing bandwidth. The
research on STC focuses on improving the system performaneenploying extra transmit antennas.
In general, the design of STC amounts to finding transmiticeithat satisfy certain optimality criteria.
Constructing STC, researcher have to trade-off betweae thoals: simple decoding, minimizing the
error probabilty, and maximizing the information rate. ®Hssential question i$iow can we maximize
the transmitted date rate using a simple coding and decodiggrithm at the same time as the bit error
probability is minimized?

3.2 Space-Time Coded Systems

Let us consider a space-time coded communication systemmnyitransmit antennas and. receive
antennas. The transmitted data are encoded by a spacertiogee. At each time slot, a block of - n;
binary information symbols

ci=[ct,c2, - ,c:”'"t]T (3.1)

is fed into the space-time encoder. The encoder maps th& bfoe: binary data inton; modulation
symbols from a signal set of constellatidh = 2" points. After serial-to-parallel (SP) conversion, the
n; symbols

St:[sgﬁsa”'?S?t]T 1<t N (3.2)

are transmitted simultaneously during the gldtom n; transmit antennas. Symbse],1 < i < ny,
is transmitted from antenniaand all transmitted symbols have the same duration of T ske.V&ctor
in (3.2) is called aspace-time symbeaind by arranging the transmitted sequence in an array,-aN
space-time codeword matrix

31 32 SN
OO
S:[517527"' 7SN]: . . . (33)
nt ne nt
31 82 SN
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can be defined. Thieth rows’ = [s¢, sb, - - sN] is the data sequence transmitted formitile transmit
antenna and thg-th columns; = [3]1, s?, 8] 5" is the space-time symbol transmitted at tifné <
J<N.
As already explained in Section 2.2, the received signabveran be calculated as

Y =HS + N. (3.4)

The MIMO channel matrixt corresponding tar; transmit antennas and. receive antennas can be
represented by am, x n; matrix:

hzm h?z . hzl -

h h ... h

H— 2,1 2.,2 | 2,04 7 (3.5)
hir, P o - hf%,m

where theji-th element, denoted U;él is the fading gain coefficient for the path from transmiteama

1 to receive antenna We assume perfect channel knowledge at the receiver sitithariransmitter has
no information about the channel available at the transmdide. At the reciver, the decision metric is
computed based on the squared Euclidian distance betwideypathesized receive sequences and the
actual received sequence:

: (3.6)

Ny ng 9
J t i
E Yy — E hj,ist
t =1 i=1

J
Given the receive matriY the ML-detector decides for the transmit matfxvith smallest Euclidian
distanced?, .

3.2.1 Performance Analysis

To unterstand the properties of the STC, we will give an oesnon the performance analysis first de-
veloped by Tarokh [3] and Vucetic [27].

For the performance analysis of STCs it is important to eatalithepairwise error probability
(PEP) The pairwise error probabiliti (S, S) is the probability that the decoder selects a codeword

S = [S1,82, - ,Sn], when the transmitted codeword was in fact [s1,s9, - ,sy| # S.
Assuming that the matrild = [hy, h,, ..., hy]is known, than the conditional pairwise error probability
is given as:
P(S,S[H) = S,S 3.7
(S, S[H) Q< o >> (3.7)

whered?, (S, S) is given by

d3 (S, S) IH(S — S)I[7 (3.8)

N ng,

= 2.

t=1 j=1

n

2 b=

whereE is the energy per symbol at each transmit anteAfads noise power spectral density a@dx)
is the complementary error function defined by:

(3.9)

Q(z) = T ey, (3.10)

vl
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By applying the bound
e T2 >0, (3.11)

the PEP in (3.7) becomes

P(S,S|H) < %exp( —d%(8,8) Es ) (3.12)

3.2.1.1 Error Probability for Slow Fading Channels

If slow fading is assumed, the fading coefficients are assutode constant duringV; symbols and
vary from one symbol block to another, which means that tmeb&y} period is small compared to the
channel coherence time. Since the fading coefficients mahch frame are constant the supersarit
the fading coefficients can be ignored:

hjy=hi==hi=hj; i=1,2 0, j=12,n,. (3.13)

Let us define a&; x N codeword difference matri8:

si—81 sy—8 o sy =Sy
B(S,§)=S-$ = S%fﬁ S%fsg S?Vfé?v (3.14)
si! _371” s5' _§3t Srﬁ_grﬁ
Next, an; x n; code distance matriA is defined as:
A = BB”, (3.15)

where the superscript H denotes the Hermitian (transposgigate) of a matrix.A is a nonnegative
definite Hermitian matrix, sincA = A and the eigenvalues & are nonnegative real numbers [28] .
Therefore, there exits a unitary matiixand a real diagonal matriA such that

UAUY = A. (3.16)

The rows ofU, {u!,u?,--- ,u™} are the eigenvectors &f. The diagonal elements &, denoted as
Ai,i=1,2,---  n; are the eigenvalues &. Letr denote the rank of the matriX. Then there exist
real, nonnegative eigenvalugs, Aa, - , A

With h; = [hj1, hj2, - hjn,]T andB;; = h; - u® Eqn. (3.9)! can be rewritten as

d2(S,S) ZZ)\WHI (3.17)

7=11i=1

Substituting (3.17) in (3.12) we obtain

P(S,S) < exp( Z AZ\@ZP ) (3.18)
7j=11i=

1

Inequality (3.18) is an upper bound on the conditional paiewerror probability expressed as a func-
tion of |3;;]. Assuming knowledge of;; we can determine the distribution ¢f;;|. Note that, for

U = const, and assuming thaj; are complex Gaussian random variables with nw}#rand variance
1/2 per dimension andu', u?,--- ,u™} is an orthonormal basis of an N-dimensional vector space.

L. denotes the inner product of complex-valued vectors
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Therefore|3; ;| are independent complex Gaussian random variables witangarl /2 per dimension
and mear)ﬂﬁ”,
) 1o . ,
g = Elby] - B[] = a7 "] 0’ (3.19)

where E[-] denotes the expectation. L&t = [u)"|?, then|g;;| has a Rician distribution with the
probability density functiorfpdf) [30]

p(18;:]) = 218;.ilexp(—|8;. % — Ki ;) Io(218;.: v/ K j)- (3.20)

To compute an upper bound on the mean probability of errohave simply to average over

HeXF’((ﬁO) Zkilﬁj,ﬁ). (3.21)
J=1 i=1

For the special case of flat Rayleigh fading wifr; ;] = 0 andK; ; = 0 for all i andj, the PEP can

be bounded by [3]
P(s,8) < (H)\Z) (5\%) (3.22)
=1

wherer denptes the rank of the matricx(S,S) and A, Ao, - -+, A, are the nonzero eigenvalues of the
matrix A.(S,S).

From (3.22) two most important parameters of a STC can beatkfin

e The diversity gains equal torn... It determines the slope of the mean PEP over SNR curve. lItis
an approximate measure of a power gain of the system witheggligersity compared to system
without diversity measured at the same error probabilityea

e The coding gairis ([T/_, \:)!/". It determines a horizontal shift of the mean PEP curve for a
coded system relative to an uncoded system with the samesitjvgain.

To minimize the PEP, it is preferable to make both divers&yngnd coding gain as large as possible.
Since the diversity gain is an exponent in the error profighipper bound (3.22), it is obvious that in
the high SNR range achieving a large diversity gain is mogoitant than achieving a high coding gain.

3.2.1.2 Error Probability for Fast Fading Channels

In a fast fading channel, the fading coefficients are constihin each symbol period but vary from one
symbol to another. At each timehe space-time symbol difference vecfds,, s;) is

f(st7ét) = [3% - §%’ S? - §1%7 T 731” - §?t] : (323)
Let us consider an; x n; matrix C(s;,S;) defined as:
C(se,8) = sy, 8)F (s4,8). (3.24)

It is clear that the matriXC(s;,S;) is Hermitian and there exists a unitary matfik and a real-valued
diagonal matrixD;, such that:
U,C(s1,8:) U = D;. (3.25)
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The diagonal elements dD, are the eigenvalue®!,i = 1,2,--- ,n;, and the rows ofU,, {u},
u?,---,u*}, are the eigenvectors dof(s;,s;), which form a complete orthonormal basis of an
n; -dimensional vector space.

In the case; = 8;, C(s;,$;) is an all-zero matrix and all the eigenvalu$ are zero. On the other hand,
if s; # §; the matrixC(s.,s;) has only one nonzero eigenvalue and the other 1 eigenvalues are
zero. LetD} be the single nonzero eigenvalue element which is equaktedbared Euclidian distance
between the two space-time symbejsands;:

nt
D} = lss =& = llsi — 81> (3.26)
=1

The eigenvector o€ (s;, $;) corresponding to the nonzero eigenvaldgis denoted by}, by is defined

ash] = 1t B g, RS, ] andBh; = hi - uj. Sinceh; ; are samples of a complex Gaussian random

variable with mearE/[h; ;] and sinceU, is unitary, it follows thatﬁ;i are independent Gaussian random
variables with variancé /2 per dimension. The mean 6§Z can be easily computed from the mean of

h! and the matrixC(s;,$;) [27].
Assuming fast fading, the modified Euclidian distance i®Y8an be rewritten as:

N n, mng

d(8.8) = > > N |81 Di. (3.27)

t=1j=1 i
Since at each timethere is at most only one nonzero eigenvalig the (3.27) can be represented as:

N Ny
dy(8.8) = > > IBP- D}

tep(s,8) j=1
N Ny

= > DB llse— &P (3.28)
tep(s,8) j=1

wherep(s, §) denotes the set of time instanaes 1,2,--- | N where||s; — §;|| # 0. Substituting (3.28)
into (3.7), we obtain:

A 1 — 2 o2 Es
P(S,SrH><5exp<— D> NGl — &l 4N0>- (3.29)

tep(s,8) j=1

Denotingdy as the number of the space-time symbols in wich two code wSraisdS differ, then at
the right side of inequality (3.29), there afgn, different random variables. The terdy; is called
space-time symbol-wise Hamming distabeéwveen two code words [27].

For a special case Whefﬁ;i\ are Rayleigh distributed, the upper bound of the pairwisergroba-
bility at high SNR’s becomes [3]

B —dgny,
PsS) < ] \—\(m)

tep(s,8)

B —dgn,
= 4 ( 7 ]\j()) : (3.30)
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wheredg is the product of the squared Euclidian distances betweetwit space-time symbol sequences
and itis given by
&= [ Ist—4l (3.31)
tep(s,8)

The termégn,. is called thediversity gainin case of fast fading channels and

d21/5H

Ge=-"L pE (3.32)

u

is called coding gain whered? is the squared Euclidian distance of the uncoded refereysters.
Diversity and coding gains are obtained as the minimumof, anddgl/éH over all pairs of distinct
codewords [3], [27].

The optimal code design in fading channels depends on thelpegsliversity gain (total diversity)
of the STC system. For codes on slow fading channels, thediversity is the product of the receive
diversity, n,., and the transmit diversity provided by the coding scheme (3.22). For codes on fastdadin
channels, the total diversity is the product of the receiverdity n,., and the time diversity;, achieved
by the coding scheme (3.30). For small values of total dixeesd slow fading channels, the diversity
and the coding gain should be maximized by choosing a codeti largest minimum rank and the
largest determinant of the distance matAix For fast fading channels, a code with the largest minimum
symbol-wise Hamming distance and the largest productrdistahould be chosen. Further details about
code design can be found in [3] and in [27].

3.2.2 Space-Time Codes

Essentially, two different space-time coding methods, elgnspace-time trellis codes (STTCs) and
space-time block codes (STBCs) have been proposed. STTGeeasintroduced in [3] as a coding
technique that promises full diversity and substantialimpdain at the price of a quite high decoding
complexity. To avoid this disadvantage, STBCs have beepgsed by the pioneering work of Alamouti
[29]. The Alamouti code promises full diversity and full datate (on data symbol per channel use) in
case of two transmit antennas. The key feature of this schenie orthogonality between the signal
vectors transmitted over the two transmit antennas. Thisrme was generalized to an arbitrary number
of transmit antennas by applying the theorieoothogonal desigrj40]. The generalized schemes are
referred to aspace-time block codg¢82]. However, for more than two transmit antennas no coraple
valued STBCs with full diversity and full data rate exist. uBh many different code design methods
have been proposed providing either full diversity or fudtalrate [31], [32], [33], [34]. In our opinion,
the essential of STBCs is the provision of full diversity hwéxtremely low encoder/decoder complex-
ity, what will be discussed in this thesis afterwards. If wanivto increase the coding gain further, we
should apply an additional high performance outer codeaienated with an appropriate STBC used as
an inner code. Such schemes have been proposed e.g. undantBef Super Orthogonal Space-Time
Trellis Codes [35].

3.3 Space-Time Block Codes

In a general form, an STBC can be seen as a mappimgyafomplex symbolgs;, sz, -+, sy} onto a
matrix S of dimensionn; x N:

{51,820, ,snN} — S (3.33)
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An STBC code matrixS taking on the following form:

ny
S = (5uAn + j5uBn), (3.34)

n=1
where{si, s2, -+, sn, } iS a set of symbols to be transmitted with = Re{s, } ands,, = Im{s,} ,

and with fixed code matrice§A,,, B,,} of dimensionn; x N are called linear STBCs. The following
STBCs can be regarded as special cases of these codes.

3.3.1 Alamouti Code
Historically, the Alamouti code is the first STBC that proesdfull diversity at full data rate for two
transmit antennas [29]. A block diagram of the Alamouti gptime encoder is shown in Fig. 3.1. The

x1
= [s1, —s3]
2

= [s2, 5’{]

T
S1

Information Source Modulator Alamouti Code S TX
| Y -

Figure 3.1: A block diagram of the Alamouti space-time erod

information bits are first modulated using an M-ary modolatscheme. The encoder takes the block
of two modulated symbols; andss in each encoding operation and hands it to the transmit aagen
according to the code matrix

S = [ 52 ] . (3.35)
—S2 51

The first row represents the first transmission period andebend row the second transmission period.

During the first transmission, the symbals and s, are transmitted simultaneously from antenna one

and antenna two respectively. In the second transmissinodpehe symbol—-s3 is transmitted from

antenna one and the symbglfrom transmit antenna two.

It is clear that the encoding is performed in both time (twans#imission intervals) and space domain

(across two transmit antennas). The two rows and columrgsak orthogonal to each other and the

code matrix (3.2) is orthogonal:

ssH  — [ S1 82 }[81* —82}

—s5 8] 55 51
_ [ s+ s2f 0
0 |s1]? + |s2f?
= (Is1’ + [s2*)L, (3.36)

wherel; is a(2 x 2) identity matrix. This property enables the receiver to dete ands, by a simple
linear signal processing operation.

Let us look at the receiver side now. Only one receive antenassumed to be available. The channel at
time ¢ may be modeled by a complex multiplicative distortif(¢) for transmit antenna one ard ()

for transmit antenna two. Assuming that the fading is conistaross two consecutive transmit periods
of duration?’, we can write

hi(t) = hi(t+T)=hy = |hi]e’®”
ha(t) = ho(t+T) = hy = |hale’®, (3.37)
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where|h;| andf;,i = 1,2 are the amplitude gain and phase shift for the path from tné&remtenna to
the receive antenna. The received signals at the tiamelt + T can then be expressed as

r = s1hy + sshe +ny
—S;hl + thg + no, (338)

2

wherer; andry are the received signals at timandt + T, n; andny are complex random variables
representing receiver noise and interference. This carritiemvin matrix form as:

r = Sh + n, (3.39)

whereh = [hy, ho]" is the complex channel vector ands the noise vector at the receiver.

3.3.2 Equivalent Virtual (2 x 2) Channel Matrix (EVCM) of the Alamouti Code

Conjugating the signal, in (3.38) that is received in the second symbol period, theived signal may
be written equivalently as

r = h181 + hosy + 1y
7”5 = —hTSQ + h;sl + no. (3.40)

Thus the equation (3.40) can be written as
ri | | b1 ho S nq
7“; o h; —hf S92 7~”L2

y =H,s +n, (3.41)

or in short notation:

where the modified receive vectpr= [r1,73]7 has been introducedd, will be termed the equivalent
virtual MIMO channel matrix (EVCM) of the Alamouti STBC same. It is given by:

(3.42)

el b

hy —hi

Thus, by considering of the elements yfin (3.41) as originating from two virtual receive antennas
(instead of received samples at one antenna at two timeg sia¢éscould interpret thé€2 x 1) Alamouti
STBC as g2 x 2) spatial multiplexing transmission using one time slot. Keg difference between the
Alamouti scheme and a try@ x 2) multiplexing system lies in the specific structureldf. Unlike to a
general i.i.d. MIMO channel matrix, the rows and columnshef ¥irtual channel matrix are orthogonal:

H,HY = HIH, = (|h|* + |he))Lz = |h[*L2, (3.43)

wherel; is the (2 x 2) identity matrix andh? is the power gain of the equivalent MIMO channel with
h? = |h1|? + |h2|?. Due to this orthogonality the receiver of the Alamouti stlee(discussed in detail
in the following subsection) decouples the MISO channa tato virtually independent channels each
with channel gairk? and diversityd = 2.

It is obvious that the EVCM depends on the structure of theecand the channel coefficients. The
concept of the EVCM simplifies the analysis of the STBC traissian scheme. The existence of an
EVCM is one of the important characteristics of STBCs and lmélfrequently used in this thesis.



CHAPTER 3. SPACE-TIME CODING 23

3.3.3 Linear Signal Combining and Maximum Likelihood Decodng of the Alamouti
Code

If the channel coefficientd; and h, can be perfectly estimated at the receiver, the decoder san u
them as channel state information (CSI). Assuming thathallsignals in the modulation constellation
are equiprobable, a maximum likelihood (ML) detector desitbr that pair of signals;, ;) from the
signal modulation constellation that minimizes the decisnetric

d2(7“1, hisy + h282) + d2(7“2, —h18§ + hgsik) = ’7"1 — hys1 — h282’2 + ‘7“2 + h18§ — hQSTP, (3.44)

whered(z1,22) = |x1 — x2]. On the other hand, using a linear receiver, the signal coenkat the
receiver combines the received signalandr, as follows

S1 = hT?"l + hg’l“ék = (|h1|2 + |h2|2)81 + hTTLl + hgnz
2 = hyri—hary = (b + [haf?)s2 — han + hjns. (3.45)
Hences; and3s, are two decisions statistics constructed by combining ¢leeived signals with coeffi-

cients derived from the channel state information. Thesgyrgignals are sent to ML detectors and thus
the ML decoding rule (3.45) can be separated into two indég@eindecoding rules for; andss, namely

31 = argmind?(5y,s;) (3.46)
51€8
for detectings;, and
$y = argmin d?(32,s0) (3.47)
52€8

for detectingss.

The Alamouti transmission scheme is a simple transmit dityescheme which improves the signal
quality at the receiver using a simple signal processingrialgn (STC) at the transmitter. The diversity
order obtained is equal to that one applying maximal ratimliaing (MRC) with one antenna at the
transmitter and two antennas at the receiver where thetiregsignals at the receiver are:

rn = hisi+m (3.48)
r9 = hosy +no (3.49)
and the combined signal is
S1 = h’{?“l + h§r2
= (Im]* + |haf*)s1 + hini + h3no. (3.50)

The resulting combined signals in (3.45) are equivalenhtsé¢ obtained from a two-branch MRC in

(3.50). The only difference are phase rotations on the nmseponents which do not degrade the ef-
fective SNR. Therefore, the resulting diversity order ai#d by the Alamouti scheme with one receiver
is equal to that of a two-branch MRC at the receiver. We confirisistatement by simulating the BER

performance of the Alamouti scheme.

Example 3.1 BER Performance of the Alamouti Scheme

The performance of the Alamouti scheme using QPSK symbaksy Goding and averaged over 10.000
channel realizations obtained by simulations of slow Rghléading channels is shown in Fig. 3.2. It
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is assumed that the total transmit power from the two antemisad with the Alamouti scheme is the
same as the transmit power sent from a single transmit aatentwo receive antennas and applying
an MRC at the receiver. It is also assumed that the amplitafiexling from each transmit antenna to
each receive antenna are mutually uncorrelated Raylegjhlited and that the average signal powers
at each receive antenna from each transmit antenna areniee Barther, it is assumed that the receiver
has perfect knowledge of the channel. The BER performanteeoAlamouti scheme is compared with
a(1 x 1) system scheme (no diversity) and witlflax 2) MRC scheme.

The simulation results show that the Alamo(&ix 1) scheme achieves the same diversity aq the 2)
scheme using MRC. However, the performance of Alamoutirsehis 3 dB worse due to the fact that the
power radiated from each transmit antenna in the Alamobgse is half of that radiated from the single
antenna and sent to two receive antennas and using MRC slmdlyj, the two schemes have the same
total transmit power [29]. Thé2 x 2) Alamouti scheme shows a better performance than eithereof th
other curves because the order of diversity in this casgriis = 4. In general, the Alamouti scheme with
two transmit anch,. receive antennas has the same diversity gain as an MRC eetdigarsity scheme
with one transmit an@n,. receive antennas.

lo F T T
E = = =no diversity 1x1
e —— Alamout 2x1
10-1{ ~~~~~~ _|=*—MRC 1x2
F —e— Alamouti 2x2
10725*
x
w10k
@ :
10_4§
lO_Sg
10_6 I 1 | I
-5 0 5 10 15 20
SNR [dB]

Figure 3.2: The BER performance of the QPSK Alamouti Scheme; 2, n, = 1,2.

3.3.4 Orthogonal Space-Time Block Codes (OSTBCs)

The pioneering work of Alamouti has been a basis to createBZSTor more than two transmit anten-
nas. First of all, Tarokh studied the error performance @ased with unitary signal matrices [32]. Some
time later, Ganesan at al. streamlined the derivations ofyrofthe results associated with OSTBC and
established an important link to the theory of the orthojana amicable orthogonal designs [40].
Orthogonal STBCs are an important subclass of linear STBatsguarantee that the ML detection of
different symbols{s,, } is decoupledand at the same time the transmission scheme achieves sityiver
order equal tov;n,-. The main disadvantage of OSTBCs is the fact that for mone tiva transmit an-
tennas and complex-valued signals, OSTBCs only exist fde cates smaller than one symbol per time
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slot.

Next, we will give a general survey on orthogonal design aartbus properties of OSTBCs. There exist
real orthogonal and complex orthogonal designs. We focues tre complex orthogonal designs. More
about real orthogonal design can be found in [27], [32].

Definition 3.1 Orthogonal Design

An OSTBC is a linear space-time block cosi¢hat has the following unitary property:
N
SHS = "[s, T (3.51)
n=1

Thei-th row of S corresponds to the symbols transmitted fromtitie transmit antenna itV transmis-
sion periods, while thg-th column ofS represents the symbols transmitted simultaneously tiraug
transmit antennas at time

According to (3.51) the columns of the transmission méefriare orthogonal to each other. That means
that in each block, the signal sequences from any two traremeénnas are orthogonal. The orthogo-
nality enables us to achieve full transmit diversity andhat$ame time, it allows the receiver by means
of simple MRC to decouple the signals transmitted from déifeé antennas and consequently, it allows a
simple ML decoding.

3.3.4.1 Examples of OSTBCs

Next, we will show some OSTBC matrices foy = 3 and4 antennas. Fan; = 2 transmit antennas the
most popular OSTBC is the Alamouti code (3.35).

Example 3.2 OSTBC with a rate of /2 symbol per time slot

For any arbitrary complex signal constellation, there aBIBCs that can achieve a ratelof2 for any
given number of; transmit antennas. For example, the code matSgesndS, are OSTBCs for three
and four transmit antennas, respectively and they haveathé f2 [3].

S1 59 S3
—52 51 —54
—S83 S4 S1
—S84 —S3 52

S; = 3.52
3 ST S; 3§ ) ( )
* * *
=52 51 T84
* * *
—S53 54 51

S, = . (3.53)
* * * * .
—s3 s} —si 83
-85 si s —s3
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With the code matrixS3, four complex symbols are taken at a time and transmittedhvige transmit
antennas in eight time slots. Thus, the symbol rate/#s With the code matrixS,, four symbols are
taken at a time and transmitted via four transmit antennaggint time slots, resulting in a transmission

rate of1/2 as well.

Example 3.3 OSTBC with a rate o8/4

The following code matriceS’;, andS/; are complex generalized designs for OSTBC with até for
three and four transmit antennas, respectively [3]

w
I©o

S1 52 V2
* * S3
P e T NG
83 = 5% 85 (=s1—s]+s2—s5) s (3.54)
V2 V2 2
54 . 55 (s2+s54+s1—57)
V2 V2 2
s: s:
S 8 Vi V3
—55 S5 53 _ 53
/
S4 = 55 54 (—s1—s]+s2—s3) (—sa—s5+s1—57) (355)
ViV 2 2
s3 sy (s2ts5+s1—s7)  (s1+sj+s2—s3)
V2 V2 2 2

Obviously, some transmitted signal samples are scaledrlc@mbinations of the original symbols.

3.3.4.2 Bit Error Rate (BER) of OSTBCs

In this subsection we provide simulation results for theesogdiven above. In Fig. 3.3 and Fig. 3.4 we
plot thebit error rate (BER) versus SNR for the; x 1 MISO channel with i.i.d distributed Rayleigh

channel coefficients using OSTBCs.
Example 3.4 OSTBC with transmission rate of 3 bits/channel use

Fig. 3.3 shows bit error rates for the transmission of 3 dfi@hnel use. The results are reported for
an uncoded 8-PSK and for the STBCs using two, three, and fansiit antennas. Simulation results
in Fig. 3.3 are given for one receive antenna. The transamsssing two transmit antennas employs
the 8-PSK constellation and the Alamouti code code (3.39). tlree and four transmit antennas, the
16-QAM constellation and the cod&; from (3.54) andS/, from (3.55), respectively, are used. The
total transmission rate in each case is 3 bits/channel ugeséen that at the BER af)—3, the rate 3/4
16-QAM codeS/; provides about 8 dB gain over the use of an uncoded 8-PSK iatantission. For
higher SNR values, the cod® for four transmit antennas provides abéuB gain at BER%0~* over

use of the Alamouti code.
Example 3.5 OSTBC with transmission rate of 2 bits/channel use

In Fig. 3.4, we provide bit error rates, for the transmissidr? bits/channel use using two, three,
and four transmit antennas together with an uncoded 4-P&tsrimission. The transmission using two
transmit antennas employs the 4-PSK constellation and tam@uti code from (3.35). For three and
four transmit antennas, the 16-QAM constellation and thaes83 (3.52) andS, (3.53), respectively,
are used. Sinc83 andS, are rate 1/2 codes, the total transmission rate in each saséits/channel
use. It is seen that at the BER i3 the rate 1/2 16-QAM cod8, gives about 8 dB gain over the use
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—+— uncoded
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BER
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Figure 3.3: Bit error performance for OSTBC of 3 bits/chdnuse onn; x 1 channels with i.i.d Rayleigh
fading channel coefficients.
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Figure 3.4: Bit error performance for OSTBC of 2 bits/chdnuse onn; x 1 channels with i.i.d Rayleigh
fading channel coefficients.

of an uncoded 8-PSK data transmission and at BER% about 2 dB over the codes with two and three
transmit antennas.
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From simulation results, we can see that increasing the eumbtransmit antennas can provide
significant performance gain. One of the most important ahges of OSTBCsis the fact that increasing
the number of transmit antennas does not increase the dgcoalnplexity substantially, due to the fact
that only linear processing is required for decoding.

3.3.5 Quasi-Orthogonal Space-Time Block Codes (QSTBC)

The main characteristic of the code design methods exmlaimerevious sections is the orthogonality
of the codes. The codes are designed using suttogonal designsising transmission matrices with
orthogonal columns. It has been shown how simple decodinghadan separately recover transmit
symbols, is possible using an orthogonal design. Howew¢8J] it is proved that a complex orthogonal
design of STBCs which provides full diversity and full tramssion rate is not possible for more than
two transmit antennas.

In [42] - [47] so called Quasi Orthogonal Space-Time Blockd€® (QSTBC) have been introduced
as a new family of STBCs. These codes achieve full data rateaxpense of a slightly reduced diver-
sity. In the proposeduasi-orthogonaktode designs, the columns of the transmission matrix ardetiv
into groups. While the columns within each group are notagtimal to each other, different groups are
orthogonal to each other. Using quasi-orthogonal desigims pf transmitted symbols can be decoded
independently and the loss of diversity in QSTBC is due toesaoupling term between the estimated
symbols.

10 T

—+— uncoded, 4-PSK
—e—4x1 OSTBC, 16-QAM
—&— 4x1 QSTBC, 4-PSK

-1

BER

5 10 15 20 25 30
SNR [dB]

Figure 3.5: Comparison of OSTBCs and QSTBC om;a< 1 channel withn; = 4 and i.i.d Rayleigh
fading channel coefficients transmitting 2 bits/channel. us

In Fig. 3.5 we compare rate one QSTBC (using 4-PSK ) with the ¥a2 full diversity OSTBC
(using 16-QAM) using four transmit antennas and one recaitenna with an uncoded 4-PSK data
transmission over one transmit antenna and one receiverent@ he transmission rate is 2 bits/channel
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use in each case. Simulation results show that full trar@arigate is more important at very low SNR
values and high BERs, whereas full diversity is the rightichdor high SNR values and low BERs.
This is due to the fact that the slope of the performance cairgh SNR is determined by the diversity
order. Therefore, the BER-SNR curve of the full diversithame passes the curve for the QSTBC at
some moderate SNR value. Note, that the receiver of the iftdrsity OSTBC can decode the symbols
one by one while the decoding for the rate one QSTBCs is paddifor pairs of symbols that interfere
and thus loose diversity, as will be shown later in more tketdihis means that the decoding complexity
of the full diversity orthogonal codes is lower, althoughtboodes have a very low decoding complexity
compared to the decoding of Space-Time Trellis Codes. Degaaf QSTBCs will be treated in detail
in Section 4.6. The encoding complexity of the two systenmavisfor both STBC types.

In the next chapter we will analyze the performance of QSTBICidur transmit antennas on MIMO
channels. We will provide a unified theory of QSTBCs for foransmit antennas and one receive

antenna.

3.4 Summary

This chapter provided a summary of space-time codes andgedormance. Performance and design
criteria of the STCs have been discussed. A substantialopainis chapter was dedicated to orthogo-
nal STBCs. We focussed on general principles illustratec bgw simulation examples. The simple

Alamouti code and its performance were discussed in ddtaén we provided a short introduction into

QSTBCs and their performance, that are the main focus oftikss.
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Chapter 4

Quasi-Orthogonal Space-Time Block Code
Design

4.1 Introduction

In the previous chapter we have already pointed out thatdid orthogonal STBC only exist for two
transmit antennas. For four transmit antennas, there eMisate quasi-orthogonal STBCs which pro-
vide no full diversity and the decoder can work on pairs dafisraitted symbols instead of single symbols.
The complete family of OSTBCs is well understood, but for @EE only examples have been reported
in the literature without systematic analysis and precefiiion. The primary goal of this chapter is to
provide a unified theory of QSTBCs for four transmit antenaad one receive antenna. Our aim is to
present the topic as consistent as possible.

The first step in this chapter will be a review on recently ghi#d QSTBCs. We will show that there is
only a small set of QSTBCs with different performance and#iker codes can be generated by linear
transformations of these set members. The performance ®BQS will be studied by means of the
equivalent virtual MIMO channel (EVCM). Decoding methods QSTBCs will be discussed in detail.
This chapter refers solely to a transmission system withichisknowledge only available at the receiver.

4.2 Structure of QSTBCs

A full rate QSTBC can be defined by a mappi@g with
Cis] =S, (4.2)

wheres denotes a symbol vector witN independent data symbols= [s1,s2,...,sx], andS denotes a
code word matrix of siz&V x NN with entries derived from the elemenisof s and NV is the number of
data symbols in a block. We are specifically interested iolblmmdes where all elements ©appear ex-
actly once in each row and in each column. Since we also alleyor the conjugate-complex valug,
the number of possible codewords derived frogrows rapidly with the numbeW of symbolss;. Some
of these mappings have received particular interest initineture [42]-[48] and therefore they will be
described next. We will limit our discussion to codes traitting four symbolssy, - - - , s4, (N = 4) in

a block ovem; = N = 4 transmit antennas but our results can be easily extendadhertvalues ofV,

in particular toN = 2% with k = 3,4, - - - [47].

All previously published QSTBCs are extensions of the Alath(2 x 2) matrix (3.35) defined in
[29] to a(4 x 4) code matrix and are designed following thlamoutisation rules
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Design Rule 4.1 Alamoutisation rules

1. Each row and each column contains all elements. of his rule ensures symmetry of the code
behavior and an equal distribution of all symbols in a codedwo

2. Any element in a code word may occur with a positive or riegatign.

3. The conjugate complex operation of symbols is only albwe entire rows of thé4 x 4) block
matrix. This rule is required for holding quasi-orthogatyabnd low decoding complexity.

4. The code matrix is divided into groups where the columnthefcode matrix are not orthogonal
to each other, but columns of different groups are ortholgmneach other.

These constraints make QSTBCs more attractive for wirel@ssnunication than other non-orthogonal
STBCs especially due to the low complexity of the decodimgathm. Surprisingly, no researcher ever
dared to define exactly what a quasi orthogonal code exatlyhe wordquasiis not well defined in
such context. Therefore we propose the following definition

Definition 4.1 A QSTBC of dimensioN x N is a code word matrix that satisfi&S” = SV | |s,[2Q
with Q being a sparse matrix with ones on its main diagonal and reinleastN?2 /2 zero entries at
off-diagonal positions.

We will continue our overview mostly on the basis of four samt antennas and one receive antenna
although we like to point out that the statements we give quévalently true for more transmit antennas.
However, explicit terms are often not as comprehensible@até four antenna case and four antennas
are more likely to be used in the near future than for examplel® transmit antennas.

4.3 Known QSTBCs

4.3.1 Jafarkhani Quasi-Orthogonal Space-Time Block Code

The first QSTBC was proposed by Jafarkhani [42] where (fva 2) Alamouti codes [29]S12 andSs,
with

o S1 S2 o S3 S4
Slg = |:—S§ ST :| and 834— [ —SZ SE';’ :| (42)

are used in a block structure resulting in the so cadegnded Alamou@STBC,S 4, for four transmit
antennas:

51 52 53 54

Slg 834 —s5 sT —sh sk
_ _ 2 1 4
34 12 53 S4 81 52

S4 —83 —S2 S1

INote that the rules 1-4 are required but not sufficient fordisign of QSTBCs, as will be shown in the rest of this chapter.
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The underlying block structure shown at the left side of th&) strongly simplifies the analysis of the
EA code. The decoder is based on the multiplicatio pf; with its Hermitian matrixSZ , leading to
the non-orthogonal Grammian matr&Qg4:

Qpa = SPsSpa=SpaSE,
[ 1 0 0 YEA
2 0 1 —yga 0
= s 0 —vpa 1 0 (4.4)
YEA 0 0 1
Q2 [ I VEa }
~Vga Iy
wherel, denotes thé¢2 x 2) identity matrix,
s? = [s1]” + |s2]? + |ss|® + [sa]?, (4.5)
andV g4 is defined as
Vs = [ 0 ma ] (4.6)
—vea 0
with
2Re(s18% — sos4

From (4.7) it can be seen that the symbe|ss, and the symbolss, s3 appear in pairs, a fact that
simplifies the analysis of the code. In this thesis QSTBC#& Wit block structure of (4.3) are called
EA-typeQSTBCs. This structure is strongly related to the concepbaiplex Hadamard matrices [50].
We therefore propose the following rule to generate a sEttefypeQSTBCs:

Design Rule 4.2Design of the EA-type QSTBCs

The (4 x 4) EA-type code matrix is split up into fou2 x 2) sub-matrices and any sub-matrix must be
Alamouti-like (Appendix A). The columns of thel x 4) EA-type code matrix are not orthogonal to
each other, but different Alamouti-like x 2) submatrices are orthogonal to each other. Following this
rule we obtain the following 16 variants of the EA-type QSTB{ he first four examples of EA-type
QSTBCs are:

—S1 S2 | [S1 =S ] [ St S2] [S1 S
S5 ST |'[Sy; ST || -S; Sy || S; —-ST|°
Inverting the sign of each code matrix we obtain four moreccodtrices:
St —Sa | [-S1 Sa2 ] [-S1 —-S2| [-S1 -8
-85 —-S7 || -S5 =Sy || S5 -S7 || S5 S}

All eight code matrices given above can be complex conjulyatesulting in eight more variantss,
andS, are Alamouti-type2 x 2) code matrices given in Appendix A. The Grammian matricefeéé

(4 x 4) codes have a similar structure as the quasi-orthogonal @rammatrixQz 4 in (4.4): On the
main diagonal they contain only ones and on the second dédlogre occur non-zero terms, similar to
vea in (4.7). The authors in [46] termed these codes as the sipefdafarkhani’s QSTBC and they
studied their performance in highly correlated channelsiak been shown there that these codes are
very robust against channel correlation when comparedetdBBA code that we explain next.

2A Grammian matrixA is a Hermitian symmetric matrix that fulfillA” = A, whereH indicates conjugate-transpose.
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4.3.2 ABBA Quasi-Orthogonal Space-Time Block Code

Again, two (2 x 2) Alamouti codesS;» andSs,4 from (4.2) are used to build the ABBA code [43] for
four transmit antennas:

S1 82 53 54

SABBA o Slg 834 o —S; ST —SZ 83 (4 8)
S34  Si2 83 S84 81 82

—s3 Sz —S3 s8]

By multiplication of the code matri$ 4z 4 by its Hermitian the followinghon-orthogonal Grammian
matrix Q 4gp4 is obtained:

Quppa = SHppaSansa
1 0 YABBA 0
0 1 0 YABBA
2
= S 49
YABBA 0 1 0 (4.9)
0 YABBA 0 1
_ [ I VABBA]
VaBBa I,

with I, denoting theg2 x 2) identity matrix, andV 4pp4 defined as

Vappa = | 14884 0 (4.10)
0 YABBA

with

2Re(s155 + s25;
YABBA = o1 ;’2 2 4). (4.12)

QSTBCs with the block structure

S: S,
[ S S } (4.12)

are calledABBA-typeQSTBCs, ifS; andS, are Alamouti-typg2 x 2) code matrices.

4.3.3 Quasi-Orthogonal Space-Time Block Code Proposed byapadias and Foschini

A third proposal for a QSTBC is due to Papadias and Fosch#ji [flhey arranged the signal elements
s1 to s4 in a slightly different way such th& p» cannot be composed as a simple combination of two
(2 x 2) Alamouti-like subblocks and their complex-conjugated/andegative variants:

S1 52 S3 S4
* * * *
S —S S —S
Sprp = | 2 7% S TS| (4.13)
S3 —S4 —S1 52

* * *
sy 83 —S83; —S]
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The correspondingion-orthogonal Grammiamatrix Qpr has a very similar structure 834 and
Qappa resulting in:

Qpr = SpPrSpr

1 0 —vpr O

_ 2] 0 1 0  vpr

= s pr 0 1 0 (4.14)
0 —pr O 1

_ { I Vpr ]

~Vpr Iy
with I, denoting thg2 x 2) identity matrix andV pr defined as

—vpr 0

Vpr = ) 4.15

PF [ 0 YPF :| ( )

~vpr can be interpreted as a self-interference parameter given a

25lm(s7s3 + s25;
PR = Jlm( 182 2 4)' (4.16)

10

-1

10 "

BER
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10 "

- » = ABBA-type, correlated channels

EA-type, correlated channels

—6— PF-type, correlated channels

- % - ABBA-type, i.i.d. channel
EA-type, i.i.d. channel

—6— PF-type, i.i.d. channe

—b— ideal 4-path diversity
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Figure 4.1: Comparison of known code designs on spatiakbpurelated and spatially correlated MIMO
channels g4 = 0,95) with ML receiver.

The only difference between the code designs reviewed abdkie self-interference parametgp, .
showing up in the corresponding non-orthogonal Grammiatnioes. In fact, the allocation of,,4. In
the corresponding Grammian matrix does not affect the ced®mpnance. That is confirmed by their
identical performance in spatially uncorrelated channiliewever, in spatially correlated channels one
can observe a substantial performance difference dueféoetit values of the self-interference parameter
Yeode @S Shown in Fig. 4.1.
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Example 4.1 Performance of the known QSTBCs applying an ML receiver

In Fig. 4.1 we compared the above explained QSTBCs on slyatiatorrelated as well as on spatially
correlated MIMO channels with four transmit antennas arglre@ceive antenna, applying QPSK modu-
lation and an ML receiver. We modeled the channel correiadi® explained in Chapter 2, Eqn. (2.13).
For highly correlated channels with= 0,95 the ABBA- type QSTBC shows very poor performance.
There is almos10 dB performance loss at BER 10~2 when compared with i.i.d. channels and about
5 dB loss when compared with a PF-type QSTBC, that shows thepbe®rmance on highly correlated
MIMO channels. The BER curve named ideal four-path divgmsitrresponds to an ideal four-path data
transmission assuming= 0.

4.4 New QSTBCs

4.4.1 New QSTBCs Obtained by Linear Transformations

Although similar in appearance, the codes (4.3), (4.8),(drB) show quite different behavior on par-
ticular channels. Thus the question arose how many QSTBi€svelich are equivalent, and are certain
codes optimal for particular channels. Although the firstsjion of how many codes exist is rather
difficult to answer, we will show in the next section by worinut the concept of the equivalent virtual
channel matrix that there are just a few code types wifferent behavior This is due to the fact that
various QSTBCs can be translated into each other by linaasftormations.

We consider the following linear transformations on a giGETBC:

1. The first transformation of a given code matrix permutegsrand columns in a code matrix. This
is performed by the application of an elementary permutati@trix or by a concatenation of
several elementary permutation matrices. An elementamn@tion matrixP;; is an N x N
matrix with ones at its diagonal and zeros at all off-diad@usitions with the exceptiop;; =
pj; = 0, butp;; andp;; = 1. E.g., the matrix

100 O
0100

Psy = 000 1 (4.17)
0010

is a permutation matrix that changes the third and the fawokthor the third and the fourth column
ofan N x N matrix S, if P34 multiplies S from the left or from the right.

Applying the permutation matrix to a code matrix either tlobuons no. ¢ and; are switched
(corresponding to switching antenhandj), if we multiply P;; from the right hand side, getting

Snew = SPyj, (4.18)

or the rows no.; andj of the code matriXS are switched (which is equivalent to changing the
temporal order of the symbol vector sequence), if we myiipl; from the left hand side, resulting
in:

S/

new

= P;;S. (4.19)

Applying a permutation matri®;; to a symbol vectos the two elements of at position: andj
are switched.
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2. Asecond class of linear transformations changes the$igither a column or a row of the original
matrix S. This can be performed by multiplyin§ with a diagonal matrid; which has only+1
values at its diagonal entries except at the¢h diagonal position it has al. Depending on left
or right multiplication ofI; to the code matri¥s, such a matrix can either change the sign of the
column No.i with

Ssign = SI; (4.20)

or the sign of the-th row of S:
Loom = LS. (4.21)

sign

Applying the matrixI; to a symbol vectos the sign of the—th elements; is flipped.

3. Similarly to the previous sign inverting transformati@m operatol} (non-multiplicativ) can be
applied to change the entries of column ricor the entries of the rows ngi to their conjugate
complex values.

Note that all of these elementary operations are easilypadgd without essential hardware or soft-
ware complexity. Applying one or several of such operati@a®n a given codeword matrix, new codes
are generated. In the following we consider transformatioirthe type:

Snew = [TQC [Tls]] T3. (422)

Heres is the set of symbols (for example,s2,s3,54}) generating the space-time code masix A
permutation matriXI'y may change the ordering of the symbols. The linear code mggdpinctionC
maps the vectom';s into a space-time code matrix by repeating the symbols Ngiimeach row in a
different order. The symbols are placed in such a way thatyatlbols appear once in each row and once
in each column. The linear transformatidy may permute the rows df, or may change the entire
rows to their conjugate complex values, and/or may revérssign of some rows dof. Finally, T5 may
permute the columns and/or may reverse the sign of some aslum

To generate a new quasi-orthogonal space-time code n¥atitve linear transformations described above
must be applied in such a way, that the new code also fulfidsctinstraints given in Definition (4.1).
Note that all of these linear transformations (4.22) améary, i.e., energy preserving. Therefore some
essential properties like the trace value of all these gadesain unchanged.

With these linear transformations discussed above thadrknown code types (4.3), (4.8), and (4.13)
can be transformed into each other, and new code varianteecabtained. This will be illustrated by
the following examples.

Example 4.2 ABBA-type QSTBC obtained by Linear Transformations of thaype QSTBC

Let us start with the EA code given in (4.3) Applying a linearitsformation (4.19) we can permute the
3rd row with the 4th row 08 g 4 to:

Snew = P34SEA
[ 1 0 0 O S1 59 S3  S4
* * * *
_ 0100 —85 8] —S; 83
* * * *
0 0 01 —8s3 —Sy 5] S5
_0 010 S4 —S83 —8S2 81
[ s1 s2 s3 sy
* * * *
_ S S1 TS 83 (4.23)
S4 —S83 —S2 81
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wherePj3, is the permutation matrix that permutes the 3rd row and the@w of S 4. Multiplying
Srew With P34 from the right hand sinde, the 3rd column ®few IS permuted with the 4th column
resulting in

S1 52 84 53
—s5  s] sy —s)
S4 —83 S1 —S82
—s3 —sy s 8]

S/ = Snew P34 =

new

(4.24)

Changing the sign of the 2nd column and the 4th row leads toBBWAtype QSTBC defined in (4.8):

S1 —S82 S4 S3
S12 S }: —s3 —s]  S3 —s)
B34 Si2 S4 83 81 —S2
S3 —sp —s; —S]

SEAnew = Lo[ShewI2]=SapBa(S12,S51)= { . (4.25)

Thel, are diagonal matrices defined in (4.20) and (4.21), respgtiandS,, andS;, are the Alamouti-
type (2 x 2) STBCs (see Appendix A) with differently arranged symbolsheTcorresponding non-
orthogonal Grammian matri® has the same structure@s g 4 given in (4.9) with the self-interference
parametery 4 already given in (4.11):

0 vea O
0 1 0
SEAnew SgAnew = 32 /VEA O O fY(E)‘A
0 vga O 1

Example 4.3 EA-type QSTBC obtained by Linear Transformations of theABRe QSTBC

In a similar way as shown in the previous example, we can apglyinear transformation (4.22) on the
ABBA code (4.8) to obtain a new QSTBC. The new code matrix isegated by applying the following
linear transformations t8 4 g4

[L4[P34Sapa] Pi2]li = SaBBAcw (4.26)

where P34 denotes the permutation matrix that permutes the 3rd andttheow of the ABBA code
matrix, P12 changes the 1st and the 2nd column of the code matrix in biackbe diagonal matrix
I, changes the sign in the 4th row, and the diagonal majrighanges the sign of the 1st column the
corresponding matrix. Finally, the new code matrix has thecture of the EA-type QSTBC with

S22 —S1 S3 Sq4
& Slg 834 s sy —s s%

_ _ _ 1 2 1
SABBAnew = SEA(S12,834) = [ ~ = = 3

* * * * *
—O34 12 —53 T34 o —851
S4 —S83 S1 59

This linear transformation leads to a new QSTBC with a nahagonal Grammian matri& similar to
the EA code (4.4)

1 0 0 —Vnew
0 1 0
SABBAnew SIQIBBAnew = 82 0 ’Ynew /ynlew 0

—Ynew 0 0 1
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with the self-interference parameter

2R 818* + 828*
Ynew = e< 332 4) . (427)

As has been demonstrated by these two examples, the limeefdrmations can lead to different
positions of the interference parametgin the corresponding Grammian matrix. However, we will
show that the positions of the interference parameter gabgmo not influence the performance of the
QSTBC, but rather the value of the interference paramgtdfects the code performance.

In [48] some other examples of QSTBCs obtained by permutsitad rows and/or columns of a given
code matrix can be found.

4.5 Equivalent Virtual Channel Matrix (EVCM)

As will be shown in this section, an important characterisfiQSTBCs is their unique equivalent, highly
structured, virtual MIMO channel matriid,, with the following property:

Definition 4.2 The equivalent virtual channel matri, is a matrix that satisfieBl”/ H, = ZJIV |hi|*G,
whereG is a sparse matrix with ones on its main diagonal, having astév2/2 zero entries at off-
diagonal positions and its remaining (self-interfereneajries being bounded in magnitude hy

The EVCM has a very similar structure as the code m&rof the underlying QSTBC.
Example 4.4 Construction of the EVCM

Let us consider a QSTBC denoted®ye.gS g 4 from (4.3), and ari4 x 1) frequency flat MISO channel.
Then we obtain
r=Sh+n, (4.28)

as already shown in (3.39) wharelenotes the vector of four temporally successive signaptesmat the
receive antenna. The channel coefficients are denotldbyh,, ha, hs, hs]”, andn = [ny, no, n3, ng)”
is the noise vector. Assuming a single receive antenna anddtie matrixSz 4 given in (4.3) the re-
ceived signals within four successive time slots are given a

r1 = Sth1 + soha 4 s3ha + s4ha + 19
re = Syh1 — sTha + sihs — s3ha + g
rs = S3h1 + syha — sihs — syhy +ng
ra = Sahy — s3ho — s9hs + s1ha + na. (4.29)

If the second and the third row of the code masix4 is complex conjugated, then the modified received
signal vectory can be written as

71
*
T2 —
y = | =Hys+n, (4.30)
T3
T4
with
Yyr = 11, nip=n
* — %k
Y2 = T9, Ny = Ny
* — %
Yys = T3, ng =ng

Yg = T4, ng = _n47
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and the virtual equivalenti(x 4) channel matrix, given as

hi  ha hs hy

_ | hs —hT Ry —h3
Ho= |2 T b T (4.31)

hs —hs —ho h1

In this caseH,, can be interpreted as an equivalent, highly structuredijati(4 x 4) MIMO channel
matrix (EVCM), replacing thé4 x 1) channel vectoh.

In this way, the QSTBC pretends a virtual, specificafljuctured (4 x 4) MIMO channel with four
transmit and four virtual receive antennas. This EVCM sifigd the analysis of the QSTBCs as will be
shown in the next chapter.

4.6 Receiver Algorithms for QSTBCs

4.6.1 Maximum Ratio Combining

The simplest way to decode a QSTBCs is to apply a simple maximatio combining technique. A
maximum ratio combining (MRC) of the modified received sigrectory can be done in a very simple
way by multiplyingy with H 3. Then we obtain a new decision vecioas

— Gs+ Hyn, (4.32)

with the non-orthogonal Grammiamatrix G = H7H,. G is asparsematrix with the real-valued gain

factor h? at its main diagonal and a self-interference factoat some off-diagonal positions. This self-
interference factor can be real or purely imaginary, as weexplain later. This fact is very important

for the efficient decoding algorithm of the QSTBCs.

For the EA-type QSTBCs, theon-orthogonal Grammiamatrix G has following form

1 0 0 X
G =H,H! =HI'H, = n? 8 _; _)i 8 (4.33)
X 0 0 1
with
2 = |hi|? 4 |ho|* + |hs]? + |ha)?, (4.34)
and

v 2Re(h1h};:t2—h2h§)'

Note, that in case of orthogonal STBCs the correspondingn@iian matrixG is strictly diagonal
(as it has been shown for the Alamouti scheme). Thereford,B0S have an important advantage in
decoding, that comes from the fact that the inverse of then@ran matrixG is proportional to the
identity matrix. This means that the MRC receiver degewsr&b a low-complexity ZF receiver with
§ = 1/h*Hy = s + nzr and behaves exactly as an otherwise high-complex ML receive

3In literature, the operatioH is often denoted as matched filtering (MF). Through thisithe® will denote it as a MRC.
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Returning to ounon-orthogonal Grammiamatrix (4.33) corresponding to the MRC receiver oper-
ating according to (4.32), we find that decoding can be peréol not one by one symbol but by splitting
up the decision vectar into the subsets, andz4, andz; andzs;. Due to the symmetry in (4.33), af-
ter MRC, the 4-input / 4-output system can be perfectly dplmliinto sets of two 2-input / 2-output
systems. This can be seen by writing (4.32) explicitly as

s1 + Xsy
S92 — XSg
S3 — X82
S4 + X31

z = h? +Hn (4.35)

and by grouping the entries efin two pairs
z1 o 2 1 X S1 7~”L1
HEEIF M
Z9 o 2 1 —X 59 7~”L2
MR R b =

where then; ¢ = 1,--- ,4 are the receive noise terms after MRC. It is important to easjte that the
two pairs of symbols in equation (4.35) are completely dptsli As will be shown later, this leads to
complexity and computation reduction at the receiver.

After MRC an additional decoding step is required in orderetoieve the input signal. Different strate-
gies can be applied at this final step, from optimal Maximurkelihood detection to ZF or MMSE
equalization (as will be described in the next section).cBedecoding solution for QSTBCs have been
derived in [44] and [49].

4.6.2 Maximum Likelihood (ML) Receiver

The ML detector is optimal in the sense of minimum error phlitgk when all transmitted data vectors
are equally probable. However, this optimality is obtaiaethe cost of an exponentially increasing com-
putational complexity depending on the symbol consteltaize and the number of transmit antennas.
In general, the ML detector selects that signal vesttinat minimizes the distancB,, 1, (s) between
the receive vectoy and all possible undisturbed output vectbfss;, wheres; stands for all possible
transmit vectors. For a specific transmit veciave obtain

D, (s) = |ly — Hys||? = s” Gs — 2Re(yH,s) + ||y]|*. (4.37)

Considering a QPSK modulation we have to take into accatint 256 symbol vectorss; to find the
best metrid)MLl (S)

Using QSTBCs it is possible to reduce the decoding compleitthe ML- detector applying MRC
(4.32) toy before applying ML detection. In fact, the ML detection isanapplied toz instead toy.
The benefit of this approach is that the MRC partly decougiessymbols. E.g for the EA-code (4.3)
the symbol paif s, s4} is decoupled fron{ sz, s3}. Consequently, the ML algorithm has to be applied
twice to search over both signal pairs but only over a redsetdf4? = 16 symbol pairs. The new
distance metric equivalent to (4.37) can be writtefi as

Darr,(s) = (z — Gs)TG71(z — Gs). (4.38)

A proof can be found in the Appendix C.
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Exploiting the sparse structure of the non-orthogonal Gnéan matrix and following (4.36), for the
EA-type QSTBC, equation (4.38) results in

- - 44 H

21 51 + Xsy 1 0 0 —-X
- Z92 _ S22 — X83 1 0 1 X 0
Duy(s) = 23 s3 — Xso 1— X2 0 X 1 0
L] 24 | | s4 + Xs1 || -X 0 0 1
——zl- _31 + X34-_
Z9 . SS9  — X83
z3 S3 — XSQ
LL 24 | | s + Xs1 ||
o 1 21 — h2(81 + X.S’4) " 1 -X 21 — h2(81 + X.S’4)
1 - X2 Z4—h2(84—|—X81) -X 1 Z4—h2(84—|—X81)
Lo 2o —h2(so— Xs3) 17T 1 X 7T 20— h2(s2 — Xs3)
1— X2 23—h2(83—X52) X 1 23—h2(83—X32)
= Dunr(s1,81) + Dur(se, s3), (4.39)
with
1
Dur(si,s4) = T x2 (‘21 —h2(81 +XS4)‘2+‘Z4—h2(S4+X31)‘2
— 2XRe{[z1 — h3(s1 + Xsa)][F — B3 (s + Xs])]} ) (4.40)
and
1
DML(SQ,Sg) = 1—X2 (‘22—h2(32—XSS)‘2+‘23_h2(33—X32)‘2
+ 2XRe{[zy — h%(so — X s3)][25 — h? (s} — ng)]}). (4.41)

The pair {s1,s4} is detected by minimizingdDyr(s1,s4) over all symbol combinations; and s,
transmitted over transmit antenmg, andn;, and symbol pair{ss, s3} is detected by minimizing
D1 (s2,s3) over all symbol combinations, and sz transmitted over transmit antenmg, and n,.
Finally, both search algorithms (4.37) and (4.38) give th®l& estimated transmit vect&f47], [52],
[53]. Applying (4.38) or (4.40) and (4.41) respectivelye thlL algorithm only searches over a reduced
set of4? = 16 symbol pairs. In Fig. 4.2 the performance of QSTBC applyildlareceiver is shown.

4.6.3 Linear Receivers

Linear receivers (Zero Forcing (ZF) and Mean Squared BVIBIEE) receiver) can reduce the decoding
complexity but they typically suffer from noise enhanceinémear detection can be described by

$=HIH, + ul) "z (4.42)

wherey = 0 for the ZF receiver angi = o2 for the MMSE receiver. The MMSE receiver behaves
similar to the ZF receiver, however with an additional temthe matrix inverse proportional to the noise
variance. In practice it can be difficult to obtain corredures ofo2. But only for correct values a small
improvement compared to the ZF receiver can be obtainedefdre, the MMSE technique is not used
in practice and will be not discussed in this thesis furthmen
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A ZF receiver is highly appreciated for its low complexityorHarge signal alphabets this can be
of great advantage, whereas for small signal alphabets thesbkiver can compete in complexity. ZF
decoding of QSTBCs separates the received signal intolitgoaents by

s=HHN 2=+ (HH) 'H n=s+n (4.43)

The ZF receiver decouples the channel matrix intgarallel scalar channels with additive noise. The
noise is enhanced by the factdd,H')~! and furthermore, the noise is correlated across the channel
and contains signal components sofself-interference) due to the self-interference paremit The
correlation of the resulting noise samples is given by

Ena?] = o2 (HHY) " =02G~!

-X

n

1
o2 0
h2(1 — X2) 0

0
0 (4.44)
1

T3
0
1
X

-X 0

0
X
1

0

In the final detection, the ZF receiver decodes each stredepéndently ignoring noise correlation and
self-interference. The decision about which symbols haenliransmitted are then taken using a detec-
tor that associates to each termsdhe nearest symbol belonging to the constellation of thestratted
symbols.

The resulting estimated signal vector is denoted. ahe ZF receiver reduces the decoding complexity,
but the receiver is sub-optimal and leads to a significarfopeance degradation. However, if the CSI
information is available at the transmitter, the self-ifdeence can be compensated and the ZF receiver
can perform as well as the ML receiver, as we will show in névepter.

Since we know the covariance matrix of the filtered noise BE& of QSTBC for ZF receiver is easy
to calculate as has been shown in [47]. Thé diagonal element of the covariance matrix denotes the
variance of the modified noise

2

2 Uni -

Considering (4.45), the BER for QSTBC is obtairted

BERyp = Eh27X{Q< M) } (4.46)

2
On

where the expectation value is computed with respect to hlaerel gaink? and the self-interference
parameterX contained inG. The statistical properties @ andX will be discussed in detail in Section
4.7.5.

From the above analytical result it is obvious, that the poef¢he filtered noise increases with increas-
ing X. Additionally, the correlation between the noise samplggalso increases witlX leading to a
performance gap compared with the results obtained by theddeiver [52]. The performance of the
QSTBC applying a low complexity ZF receiver is also shownig. B.2.

Example 4.5 Performance of the EA-type QSTBC for different receiveedyp

In Fig. 4.2 we illustrate the BER performance of the EA-tyf@@T8C given in (4.3) for different receiver
types in case of i.i.d. Rayleigh fading averaged over 10.€lt¥nnel realizations. We apply an ML
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Figure 4.2: The performance of the QSTBC compared with itteak and four-path diversity.

receiver as well as a ZF receiver and compare our simulaésults with an ideal two, three and four
- path diversity transmission (assumig = 0). The BER-performance is presented as a function of
the £,/Ny with E, /Ny = 1/202. QPSK signal constellation with Gray coding has been useaiin
simulations.

From the results in Fig. 4.2, we can conclude that the QSTRlymy the ZF receiver performs rather
weakly, e.g. at BER= 10~3 the QSTBC with four transmit antennas outperforms the itlealantenna
scheme only by about,5 dB. Note that the Alamout{2 x 1) scheme is equal to the ideal two-path
diversity (no self-interference). Obviously, the BER peniance of the QSTBC with the ZF receiver
suffers from the noise enhancement compared to the ML degarfi QSTBCs. The QSTBC with the
ML receiver outperforms the two-antenna scheme by abdi@ at BER= 10~3. Comparing to the ideal
four-path transmission (with vanishing self-interferepthere is loss of abo@tdB at10~3 and the loss
increases further with increasirig, /N, values.

The results shown in Fig. 4.2 indicate that the QSTBC withr foansmit antennas heavily suffers from
the self-interference parameter X) such that at high SNRilig achieves diversity two instead of an
ideal diversity four. In the next chapter we will show sevevays to improve the performance of the ZF
receiver by minimizing the channel interference paramgter

4.7 EVCMs for known QSTBCs

Computing the EVCM for the three well known QSTBCs (4.8)3]4(4.13) and those QSTBC that are
obtained by linear transformations provides interestirggght into the specific properties of these codes.

SFor the detailed derivation see [47].
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In the following, 2> denotes the overahannel gain(also called fading factor) with
W=+ [hal* + |hs|? + |haf?
indicating a potential system diversity order of four in@dkes.

4.7.1 EVCM for the Jafarkhani Code

As already shown in Example 4.4, by changing the second ardldlement of the receive vector that
stems from the EA-code matr&g 4 into their conjugate complex-values, the EVCM for the EAdeo
can be derived. This virtual channel matki,,, , shows the same sub-block structure as the code matrix
Spain (4.3) and results in

hi  ha hy Ry

H H hi —hi  hi —h}
e I T o I B B s 447
A |:Hv34 _HU12 h3 h4 _hl _h2 ( )
h4 —h3 —h2 hl
The corresponding non-orthogonal Grammian magix4 results in:
Gpa = HI H,,,
1 0 0 Xga
_ 2 0 1 —XEA 0
= h 0 —Xpu 1 0 (4.48)
| XEa 0 0 1
_ hQ— I, Wg
| —Wg I, |’

whereh? is the channel gain factor given in (4.33),is the(2 x 2) identity matrix, W 3  is defined as
N 0 Xga
Wga = [ Xga O ] , (4.49)
and Xz 4 is a channel dependent self-interference parameter irepirit
2Re(h1h) — hoh3)

Xpa = )2 . (4.50)

4.7.2 EVCM for the ABBA Code

Similarly to Example 4.4, the second and the fourth elemEthisoreceive vector are complex conjugated.
Then we obtain the equivalent virtual MIMO channel matrik tee ABBA Code (4.8):

hi  he hy hy

Hy, Hyy | _ | hy —h1 by —hy
Hy, 54 [Hm Ho, | | hs  ha b1 ho (4.51)
hy —hy hy —Iy
Multiplying (4.51) with its Hermitian conjugate leads tcetGrammian matridxG appa:
GABBA = HziBBAHUABBA
1 0 X4y 0
.9 0 1 0 Xa
= h X, 0 1 0 (4.52)
0 X4 0 1
_ o2 I Wy
W4 L |7
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whereh? is the channel gain given in (4.34), is the(2 x 2) identity matrix, W 4 defined as

X4 0
WABBA:[ oA XA] (4.53)

and X 4 is a channel dependent self-interference parameterireguit

oRe(hih% + hahl
X4 = o 1};”2 2hi) (4.54)

4.7.3 EVCM for the Papadias-Foschini Code

A third version of an EVCM is obtained from the Papadias-Rosccode (4.13). This EVCM does not
have a sub-block structure as the EVCMs discussed above:

hi  ha hy hy
—hy hi —hy hj

Hy,.=| _ hs  hy  hy —hy (4.55)
—hy —hz hy b
The Grammian matriXa pr is obtained as
Gpr = HI H,.,

I 1 0 Xprp 0

9 0 1 0 —Xpr

= —Xpr 0 1 0 (4.56)
. 0 Xpr O 1

2 I Wpp }
| —Wpr Db

whereh? is the channel gain given in (4.34) is the(2 x 2) identity matrix, W px is defined as

| Xpr 0
Wpp = [ 0 Xpp } (4.57)
with the channel dependent self-interference paraméter:
2jlm(hihs + hoh}
Xpp = HIMihs +hohi) (4.58)

h2

4.7.4 Other EVCMs with Channel Independent Diagonalization of G

The main focus in the design of useful QSTBCs is the GrammiainixiG that is of essential importance
in decoding the QSTBCs. Following Definition 4.1 and Defomti4.2, the Grammian matrix of each
QSTBC for four transmit antennas can be written in the folfmpgeneral way:

Gosrsc = HIH,=HH]
I2 Xcoder

= h?
Xcoder I2

1=12 (4.59)
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with W; beeing either

+£1 0 0 :tl] (4.60)

Wl:{o il]’ o Wz:[il 0

The Grammian matrixG should approximate a scaled identity-matrix as far as ptes$d achieve
full diversity and optimum BER performance. @& is a scaled identity matrix, we have an orthogonal
STBC and we could use a simple linear matrix multiplicatiéthe modified received vectgrby H to
decouple the vector componentsoperfectly and to obtain full diversity order= 4. Otherwise, X o4
leads to a partial interference between symbol pairs. Thkian®s,X should beas small as possibleAs
(4.46) indicates, we can achieve full diversity= 4, if X can be made zero. In the next chapter we will
show several ways to minimize the self-interference patanié.

A nice property of the Grammian matr& shown in (4.59) is the fact that it can be diagonalized by
A = DT GD with a channelndependenteigenmatrixD [45], [52] given as

1 [ I, J;
D=— , 4.61
slen @on
consisting of thg2 x 2) identity matrixIy, andJ; resulting either as
0 =1 +1 0
J1 = |: 41 0 :| or J2 = |: 0 41 :| (462)

depending on which code design is considetdiesults in case of the EA-type QSTBCs ahdn case
of the ABBA-type or the PF-type QSTBCs.
The diagonal matrixA consists of two pairs of eigenvalues with :

A= do =R 1+ X)
Az = M = R%(1 - X). (4.63)

Obviously, these eigenvalues depend on the channel pagemén case o = 0 all eigenvalues are
equal.

4.7.5 Statistical Properties of the Channel Dependent Selfiterference Parameter

Since the self-interference parameéiis the most important parameter of a QSTBC with respect to di-
versity order and BER performance, in the following we wialss its statistical properties at Rayleigh
fading channels in detail. If the channel coefficiehisare complex i.i.d. Gaussian distributed random
variables, then the probability density function (pdf))6fcan be easily derived. Starting e.g. with; 4
in (4.50) given as:

2Re(hy b} — hoh})

Xpa = 5 (4.64)

we can calculat&(r 4 + 1 as [47]

’hl + h4’2 + ‘hg — h3‘2
h1]? + [ho|? + [ha]* + |ha|?”
Sinceh; are i.i.d. complex-valued Gaussian distributed varightes variables:; + h4 andhy, — hg are

also complex Gaussian distributed and independent of éaeh ®efining a linear orthogonal coordinate
transformation

Xga+1=

(4.65)

w = (h+ha)/V2, wv=(ha—h3)/V2,
u' = (h1—hg)/V2, v = (hy+h3)/V2, (4.66)
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we obtain
4

S Rl = [l + o] + )+ P =02
=1

By substituting (4.66) into (4.65) we obtain

Xpa+1 ul? + |v]? X
2 [ul2 + o2+ W2+ 2 x3+x3

(4.67)

X2 andx3 are statistically independent random variables [47] thatchi-square distributed withy =
vy = 4 degrees of freedom and (4.67) is Betay) distributed withp = 14 /2 = 2 andq = 15/2 = 2
degrees of freedom. Then the pdf®f; 4 + 1 results in

f(é) = @51’—1(1 O with p=1v1/2=2,g=1,/2 =2. (4.68)

Forivy = vy = 4 the pdf (4.68) results irf(§) = 6£(1 — &). Transforming (4.67) back t&, the
probability density function of the self-interference qaeterX z 4 results in [47]

3 2 .
Preae) = {007 ST (4.69)

This function is depicted in Fig. 4.3 fok > 0. Obviously, |Xg4| is highly distributed around zero.
Consequently, the four eigenvalues @f given in (4.63) are mostly nedr®>. Since X4 is always

0.8

0.7r ]

0.6 ‘ 1

0.4

T
I

pdf of |XE A|

0.2r ]

0.11 1

Figure 4.3: The pdf of X 4|.

the sum or the difference of two terms which are the produdinvaf i.i.d. complex-valued channel
coefficients that are i.i.d. complex-valued Gaussian ibisted, the pdf of all interference parameters,
that are composed in this way is the same for all QSTBCs arahdiy (4.69).
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4.7.6 Common Properties of the Equivalent Virtual Channel Matrices Corresponding to
QSTBCs

Let us now summarize the main properties of the EVCMs and Beammian matrice<s for four
transmit antennas:

1. Any virtual MIMO channel matrixH, has a structure very similar to the corresponding quasi-
orthogonal code matri$.

2. Working out linear transformations @in such a way that the sparse structureGofwith only
one off-diagonal self-interference parameléiis maintained, these transformations may change
thevalue of X.

3. The self-interference parametgrindicates the non-orthogonality of the code. The closeas to
zero, the closer is the quasi orthogonal code to an orthdgooe withG = A1

4. |X|is bounded by, and thus the eigenvalues @fare in the range af2[0,2].

5. Inall (4 x 4) EVCMs, the Grammian matri& has two pairs of eigenvalues with value1+ X).
Due to the channel gain given in (4.34), QSTBCs provide gy full diversity, if X £ 1.

6. SinceX is the only term that changes its value with the constraimeshl transformationsynly
the values ofX (but not the eigenvectors #,) depend on the particular channel realization, and
thus determine the BER performance of the code.

7. By an appropriate code desigl, can be designed to be either purely real-valued or purely
imaginary-valued (as will be shown in Section (4.7.7.1)).

The number of distinct QSTBCs is not easy to find. Howevernimaber ofusefulcodes that show
a distinct behavior on a given wireless MIMO channel can k&leaerived. Although many linear
transformations exist which lead to different QSTBCs, sa@omstraints are necessary to achiageful
QSTBC codes in the case of four transmit antennas. Thereferpropose a definition aisefulQSTBCs
considering a QSTBC design with respect to their corresimgndVCMs:

Definition 4.3 Auseful QSTBC of dimensiolY x N has an EVCM that satisfidd, H,” = >V |h;|2G
with G being a sparse matrix with ones on its main diagonal, havinigast N2 /2 zero entries at off-
diagonal positions and its remaining entries being bounihathiagnitude byl.

With the Definition (4.3) and the design rules proposed indiexious sections, we can reduce the
large number of different QSTBCs to 1@efulcode types. In the next section we will present these 12
useful code types and we will discuss their BER performance.

4.7.7 Useful QSTBC Types

In previous sections, we have required, that by linear foamsations of the QSTBCs the sparse struc-
ture of the GrammiarG matrix is preserved and only the value of the interferencarpaterX may

be changed. By these constraints, the number of useful QST perform differently can be easily
calculated. Sinc« is always the real or the imaginary part of the sum or the ifiee of two complex
terms which are the product of two channel coefficients ire @d<our transmit antennas, only 12 dif-
ferent code types exist (we do not count the negative valfiés seperately, since these codes have the
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same BER performance). The 12 distid€tvalues that can occur with useful QSTBCs are listed below.
First, six code types with real-valued self-interferenaegmetersX; are given as:

2Re(hy 1% + hohl)

h2
2Re(hihi — hoh
X, = el }:;,2 2 4)
X3 = zRe(hlh]f; hahi) (4.70)
2Re(h1hi — hsh}
x, = 2Rl 2 3hi)
oRe(h i + hahi)
X5 = .
2Re(hih}; — hohl
Xg = e( 1 ;;2 2 3).

Additionally, we can get six code types with purely imagiraalued X; given as:

251m (hy b + hoh)

X; =

h2
275lm(hy ks — hoh’
Xy = J ( 1h?; 2 4)
Xy — 2j|m(h1222+h3h4) (4.71)
27lm(h1hs — hah’
Xy = J ( lhz2 3 4)
2j|m(h1hj+h2h§)
Xn = 02
27lm(h1hk — hohi
X2 = J (1}; 23).

The corresponding QSTBCs can be found by starting with aitranp QSTBC and applying appro-
priate linear transformations as described in Sectiorl4.@iven a wireless channel, these 12 possible
variants of X indicate whether the obtained code is close to an orthogoodé or not. A detailed
analysis of these codes is given in Section 4.7.8.

4.7.7.1 QSTBCs with real and purely imaginary-valued selfaterference parameters

In Appendix B we have listed examples of useful QSTBCs medi&: The subscripts of the QSTBCs
presented there correspond to the subscripts of the chdepehdent parametess; given in (4.70)
and (4.71). By linear transformations many different vatsaof the QSTBCs with the same channel
dependent self-interference parametecan be obtained. In fact, we distinguish between two claskes
QSTBCs according to their interference parameéferCodes with real-valued self-interference parame-
ters X; and codes with imaginary-valued self-interference patarse;.

Studying these different codes we have found one additioterdesting property of QSTBCs:

Conjecture 4.1 If the QSTBC signal matrix has a block-structure obtainediby different(2 x 2)
Alamouti-like matrices and their conjugate complex andlmir negative variants, the values &f are
always real-valued. Otherwisg is purely imaginary.
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We corroborate this conjecture by an example.

Example 4.6 QSTBCs with real-valued channel dependent self-interfergparameterX .

We start with the ABBA-type QSTBC (4.8)

Sl SQ . Hvl Hv2 :|
STBC = with the EVCM H,, = , 4.72
Q |: 82 Sl :| ! |: Hv2 Hvl ( )
whereH,, andH,, are(2 x 2) EVCMs with Alamouti-like structure. e.g.
. hy  he o hs  hy
Ho = [ SR ] o e = { —h by | (4.73)
The Grammian matrix ofl,, can be calculated as
G = HH!=-HI!H,
- H
_ H,, H, ] ' [ H,, H, }
| H,, Hy, H, H,
_ [ Hy, va]'[H{){ Hfg}
[ Hy, HUHl + HU2HUH2 H,, Hg +H,, HUHl
= H H H H |- (4.74)
L Hv1 va + HU2HU1 HUl Hv1 + Hvz va

H, H! andH,,HY are real-valued and the correspondigx 2) Grammian matrices are diagonal:

H, H] (Iha]? + |h2|*)Ia (4.75)
H,HL = (|hs* + |ha|*)L. (4.76)

The off-diagonal submatrices of the matfikshow the following structure:

H, H! +H,H! = H,HY + (H, H!)?
= A+ A" (4.77)

From matrix algebra, we know that if a matiis a complex-valued matrix, than it follows that+ A
is a matrix with real diagonal values;{ + a}; = 2Re{a;;}). Thus the ternH, HY + H,,H! is a
(2 x 2) matrix with real diagonal values:

r H H
hi h hs h hs h hi h
H H _ 1 2 . 3 4 3 4 . 1 2
mo e = [ e[ ] [ k] ]
[ hlhg;) + hghz —hihyg + hohsg hghf + h4h§ hahy — hshsg
| —h3RE+ hTRG  hShy + hihs hEh — Wikt hih + B3
[ 9Re(h ks + hahl) 0 }

0 2Re(hih} + hol) (4.78)

This real diagonal value has been called self-interfergrazameter in the previous section. Therefore
any QSTBC signal matrix with a block structure as the ABBA¢YQSTBC, (4.8) has a real-valued self-
interference parametéef. In a similar way it can be shown that all QSTBCs with bloclusture from
the EA-type QSTBC (4.3) have a real-valued self-interfeeeparameter.
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4.7.8 Impact of Spatially Correlated Channels on the Self#iterference Parameter X

In this section we show simulation results for the 12 usef8IT@®C types with distinct values oX;.
We simulated the BER in case of QPSK as a functiogfNy. Note that the subscriptof the code
S, corresponds to the subscript of the self-interferencerpater X;, (i = 1,2,--- ,12) given in (4.70)
and (4.71). The 12 corresponding QSTBCs can be found in Afipdh The QSTBCSS; to S¢ have
real-valued channel dependent interference param&teis X and the codeS~ to S, have imaginary-
valued channel dependent interference paraméfet® X;,. In our simulations, we have used a QPSK
signal constellation and the transmitted bit sequence deftexl as a stationary, statistically independent
random sequence with equal symbol probability. The biytatbol mapping uses Gray coding to guar-
antee that a nearest neighbor symbol error only resultsiimgéesbit error. The Rayleigh fading channel
has been kept constant during the transmission of each dode d&f length four but has been changed
independently from block to block.

At the receiver side, we have implemented ML receivers a$ aglF receivers. Each code was
simulated on i.i.d. Rayleigh fading channels and on spgt@drrelated channels (correlation factor
p = 0,75 and0,95) using the the correlation matrix already defined in Chaptérgn. (2.13) :

L p p P
I p p
R,, = Elhh1= | ” 4.79
w=ERbT = | £ (4.79)
P>t op 1

Consider the 12 different values 4f; in detail. In case of spatially correlated Rayleigh fadihgrnels
the average value of the&;| variables can be evaluated as

(4.80)

while the modulus of the imaginary-valuey; are all zero in the mean. These functions are shown in
Fig. 4.4. In the case of i.i.d. channels the mean valuéXgfare all zero. As Figures 4.5 - 4.8 show, the
performance of all 12 codes on i.i.d. channels is indeedtickrfor the ZF receiver as well for the ML
receiver.

For the spatially correlated channel, however, the sitnas different. In this case, we have
E[|X2|] = E[[X4]] = 0

and
E[|X6[] < E[[X1]] < E[|Xs]] < E[|X5]].

The performance of the corresponding codes is accordirfgty4.4 reveals that on correlated channels
codes with smaller values ¢ | perform better than codes with larger valueg &f. Obviously, the
codes withX, and X, show the best performance. In conclusion, assuming a lm&anna array with
correlation properties given in (4.79), codes, S, andS; to S1, perform best on spatially correlated
channels.
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Figure 4.4: Expectation dfX;| as a function op.

4.8 BER Performance of 12 useful QSTBCs

4.8.1 BER Performance of QSTBCs using Linear ZF Receiver

Fig. 4.5 shows simulation results for the codes with reéla@ channel dependent self-interference pa-
rametersX; if a ZF receiver is applied. For not to high channel correlatwith p = 0,75, (Fig. 4.5 (a))
the codesS, andS, outperform all other codes with real valuesXfby 0,1 to 3 dB at BER= 1072.
The performance loss compared to i.i.d. channels is onlytabdB. The worst performance shows code
Ss with about4 dB overall performance loss compared to i.i.d channels.

For high channel correlatiorp (= 0,95) the codesS,, S, andSgz are more robust against channel
correlation than the other three codes (Fig. 4.5 (b)). Théopaance of the cod83 deteriorates dra-
matically. The performance gap between caflesndS; is about? dB at BER= 1072,

In Fig. 4.6 the simulation results for codes with imaginagjues of X (S; — S12) are shown. In
low correlated channels (= 0,75) the performance of all code members is quite similar (Fi§.(4)).
For higherE,, /Ny values (above 15 dB) there is only a small performance diffee between all codes,
about1 dB. Comparing to the i.i.d channels, there is only a smallguerance loss of abodit,3 dB at
BER = 102 (Fig. 4.6 (b)).

Fig. 4.6 (b) shows the simulation results for codes with imaxy-valued channel dependent self-
interference parameters in highly correlated channelg (= 0,95). Obviously, all six codes perform
very well even in highly correlated channels. A performaluss up tot dB at BER= 10~2 compared
to the performance on spatially uncorrelated channels eabberved. Note that all these code members
with imaginary-valuedX are at least as good as all code members with real-vafuiechighly correlated
channels!
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Figure 4.5: BER performance of QSTBS8s — Sg on spatially uncorrelated and spatially correlated
channels using a ZF receiver @} 0,75, b) p = 0,95.
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Figure 4.6: BER performance of QSTBSs — S5 on spatially uncorrelated and spatially correlated
channels and ZF receiver a)= 0,75, b) p = 0,95.

4.8.2 BER Performance of QSTBCs using a ML Receiver

In this subsection we present simulation results for all d@ectypes when an ML receiver is used. Fig.
4.7 shows the BER performance for the six codes with realedhchannel parameteps; in spatially
correlated channels with= 0,75 andp = 0,95 respectively. As in the case of an ZF receiver, the codes
So andS, outperform all other codes with real-valuédin correlated channels and the cdsieshows

the worst performance. For a correlationpof 0,75 these codes show a performance los$ tf 3 dB
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at BER= 10~2 compared to the results on uncorrelated i.i.d. MIMO cham(igig. 4.7 (a)).

—— S3, corr
—&— S5, corr
—3| | —9—S1, corr
—6— S6, corr
—+— S4, corr
—e— S2, corr
—i.i.d. channel

— S3, corr
—&— S5, corr
10" F| ——S1, corr
—e— S6, corr
—+— S4, corr
—e— S2, corr
——i.i.d. channel

I I I I ! I
-10 -5 0 5 10 15 -10 -5 10 15

0 5
E,/N, (48] E,N, [dB]
a) b)

Figure 4.7: BER performance of QSTBSs — Sg on spatially uncorrelated and spatially correlated
channels and ML receiver @)= 0,75, b) p = 0,95.

In highly correlated channels (Fig. 4.7 (b)) the perfornenf codeS; degrades enormously as
in the case when a ZF receiver is used. Obviously, this cotlapses in highly correlated channels
regardless what receiver algorithm is applied. The BERqgpetance for the six codes with imaginary-
valued channel parametek§ in spatially correlated channels is presented in Fig. 4&fe 0,75 (a)
and forp = 0,95 (b) respectively. For channels correlated by a fapter 0,75 all code members show
the same BER performance and there is an overall logs506B compared to spatially uncorrelated
channels. For highly correlated channeis= 0,95) we can see a loss of aboutiB at BER=0~? for
all codes. In a high correlation scenario, all codes withgmary-valuedX; perform equally; they are
quite robust against channel correlation.

4.8.3 BER Performance of QSTBCs on Measured MIMO Channels

In the analysis of STBCs, mostly channel models with i.i.dyRigh fading channel transfer coefficients
have been used. Since this is rather far from practical seitp better to use realistic MIMO channels to
evaluate different transmission schemes. In [16], [574] [&nd references therein) it was shown that the
realistic MIMO channels provide a significantly lower chahocapacity than the idealized i.i.d. channels.
This is mainly due to spatially correlated MIMO channel dénts. In [60] and [61] the performance of
some codes on measured MIMO channels has been studieds lsetttion we investigate the behavior
of all distinct 12 useful QSTBCs defined above on measured indoor MIMO channels. addity

we use realistic channel parameter measurements to estih@torrelation matrices necessary for the
generation of a Kronecker channel model as defined in Chapter

4.8.3.1 Measurement Setup

In order to get realistic channel parameters, model paemare extracted form MIMO channel mea-
surements, which have been performed at our Institute. dridliowing, some important measurement
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Figure 4.8: BER performance of QSTBSs — S5 on spatially uncorrelated and spatially correlated
channels and ML receiver @)= 0,75, b) p = 0,95.

parameters are listed:

carrier frequency 5,2 GHz

bandwidth 120 MHz
transmit antenna array virtual 20 x 10 antenna array with,5\ inter element spacing
receive antenna array 8 element Uniform Linear Array (ULA) witld, 4\ inter element spacing

Details about the measurements can be found in [16], [57].

The channel measurements have been performed at the tmsifttCommunications and Radio-
Frequency Engineering at the Vienna University of Techgpld@ he measurements have been performed
with the RUSK ATM wideband vector channel sounder [59] withh@asurement bandwidth 820 MHz
at a centre frequency 6f2 GHz. At the transmit (TX) side, a virtu@ld x 10 matrix formed by a hor-
izontally omnidirectional TX antennas and at the receivX)(Ride an 8-element uniform linear array
(ULA) of printed dipoles with0,4\ inter-element spacing and 128 dB beamwidth have been used.
The transmit antennas have been fixed for all measuremenésems several positions of the receive an-
tenna array have been considered, where the 8 elementeddeir has been looking in three different
directions. These directions are labeled with D1, D2 andA&8example for the notation of a measure-
ment scenario i814D3”, where 14 stands for the RX position 14 and D3 denotes thakteve arrays
broadside is looking in direction 3.

In the following it is explained how the model parameterseacted from the measurement data.
The channel transfer coefficients have been measured betheeirtual20 x 10 transmit array and the 8
element ULA at the receiver at 193 frequency values. WitHahge virtual transmit array, it is possible
to find 130 distinct realizations of an 8 element linear tramsrray. For example, one realization is
produced by taking the 1st to the 8th element of the first raw ¢ 10 rows) from the virtual transmit
antenna array. The second realization refers to the posioto 9 of the first row and so on. Taking
into account all rows, 130 so-called spatially distinctliions can be found. Note that the inter
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element spacing i8,5)\ for each realization. Taking into account the 8 element ULtha receiver, 130
realizations of ari8 x 8) indoor MIMO channel matrix can be obtained for every freguyelin. 193 so-
called frequency realizations for each spatial realizaite available and thus in tote80 - 193 = 25.090
realizations of ar{8 x 8) MIMO channel matrix are obtained, which is considered to Isefficiently
large ensemble.

Extracting the channel parameters for ¢gde< 1) MIMO channel, only the first four rows of th@& x 8)
channel matrix discussed above are considered. Each @f thes consists of 8 elements, where again
only the first four are used. Thus, a distifdtx 1) matrix out of each{8 x 8)matrix is extracted.

4.8.3.2 Simulation Results

For our simulation, the position (Rx17D1) has been choseaulse it contains a Line-of-Sight (LOS)
component with a strong correlation between the MIMO chhtmaasfer coefficients. In this scenario
there is a significant difference in ergodic capacity betwthe measured channel and the corresponding
Kronecker channel model derived from these measuremedjis\e used al5.090 realization of mea-
sured MIMO channel to analyze the performance of the QSTBESIQsignal constellation was used.
Fig. 4.9 shows the performance of the UsefulQSTBCs applying the ZF receiver. Fig. 4.10 shows the
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Figure 4.9: BER performance of QSTBSsto S15 on real MIMO channels and ZF receiver a) QSTBCs
with real-valued ofX; , b) QSTBCs with imaginary-valued of;.

performance of the codes if the ML receiver is used. For beteiver types, from 6 codes with real-
valued.X, the codess, andS, perform best (see Fig. 4.9 (a) for the ZF receiver and for therdteiver
(see Fig. 4.10 (a)). A gain of about 3 dB at a BER0~2 is obtained foiS, compared t@S;.

In Fig. 4.9 (b) the performance of codes with imaginary-edlX; applying the ZF receiver is depicted.
At the BER= 1072 the codes differ up t@,5 dB (S12 andS;;). For the ML receiver, the BER perfor-
mance of all code members with imaginary-valued X are alraqsal Fig. 4.10(b). Between the best
code,Sg and the worst cod8; there is a difference of aboQt5 dB at a BER= 1073.

Furthermore, we can see that all six codes with imaginanyesabfX; perform better than those with
real values ofX;, no matter which receiver type is used. The difference irirgpdain is about 2 dB at
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BER= 1073, betweerS; (the worst code with real-value) andS;; (the worst code with imaginary-
valuedX') and about 0,1 dB betweesy, (the best code with real-valuexl) andS;, (the best code with
imaginary-valuedX). It is interesting to observe, that the codes with imaginaiued X; outperform
all other codes for correlated channels and for measuremimchannels.
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Figure 4.10: BER performance of QSTBGSs to S1» on real MIMO channels and ML receiver a)
QSTBCs with real-valued oX; , b) QSTBCs with imaginary-valued of;.

4.9 Summary

This chapter discussed the performance of quasi-orthdgmaae-time codes (QSTBC) for four trans-
mit antennas and one receive antenna on spatially comledaie uncorrelated MIMO channels. First, a
consistent definition of a QSTBC for four transmit antennas lbeen given and it has been shown that
distinct QSTBCs are obtained by constrained linear transdtions and that already existing codes like
the ABBA code or the Jafarkhani code can be transformed sutb ether by such linear transformations.
The main point of the second part of the chapter was the inttimh of the equivalent virtual channel
matrix (EVCM) of a QSTBC, that can be used to efficiently amalgifferent QSTBCs. The EVCM
can also be used to apply a low complexity ZF receiver rathan an ML receiver type. It has been
shown that the EVCM has the same structure as the corresgp@BTBC. The interference parameter
X ode 1S the only relevant code parameter that is responsiblehfonbn-orthogonality of the code and
has essential impact on the BER performance. The cl&sgr. is to zero, the closer is the code to an
orthogonal code minimizing the BER. Based on this paramEigj. we showed that only 12 essentially
different QSTBCs exist that differ in performance. In lasttion of this chapter, we analyzed the BER
performance of all these 12 codes on i.i.d. channels as wealhacorrelated channels, and on indoor
MIMO channels measured at our Institute.



Chapter 5

Quasi-Orthogonal Space-Time Block
Codes with Partial Channel Knowledge

5.1 Introduction

In previous chapters various space-time coding schemes lieen presented. In the analysis of these
STBCs it is usually assumed that the channel state infoomd€SI) is known perfectly at the receiver
but not at the transmitter. On the other hand, CSI can be maailalale at the transmitter. In some cases
CSl is limited to the channel statistics whereas the act&li€unknown. In fact, the transmitter should
exploit any channel information available. This knowledg®ether partial or complete, can be advan-
tageously exploited to adapt the transmission strategydardo optimize the system performance. Full
channel knowledge at the transmitter implies that the mateeous channel transfer matkkis known

at the transmitter.

If the channel is known at the transmitter the channel c&paecin be increased by resorting to the
so-calledwater-filling principle [1]. In order to use water-filling we have to perform a singutalue
decomposition (SVD) of the MIMO channelH is available at the transmitter [82]. Define the SVD of
the channel matriHl as

H = UAVH (5.1)

whereU is ann,. x n,, matrix, V is n; x n, complex unitary matrix and is ann,. x n; matrix containing
real, non-negative singular valuegz,i =1,2,--- ,r and); are at the same time the eigenvalues of
the matrixHH’ ( denotes the rank of the matH). Applying a preprocessing of the transmit vector
s and of the modified receive vectgrdue to

y = Uy
n = Ufn
§ = Vig
(5.2)
then the channel model in (2.3),= Hs + n, can be reformulated as
y =AS+n. (5.3)

SinceA is ann, x n; matrix with» nonzero diagonal elements, we have effectiveparallel and inde-
pendent transmission channels. When we transmit a vedtopugh a MIMO channel in this way, we

59
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excite the so-called eigenmodes of the channel. Each eg@mim directly related to one of the channel
eigen vectors and each mode is received with a gain propattto the corresponding singular value, or
in a quadratic sense, with a power gain equaltoThus the eigenvalues 8IH" play a fundamental
role in characterizing the performance of a MIMO channel.

With full CSI at the transmitter, the water-filling transmsiisn scheme pours power on the eigenmodes
of the MIMO channel in such a way that more power is deliveresttonger eigenmodes and less or no
power to the weaker eigenmodes. This algorithm is an optpoaler allocation algorithm. Since this
algorithm only concentrates on good-quality channels ajetts the bad ones during each channel real-
ization, it is easy to understand that this method yieldgpacidy that is equal or better than the situation
when the channel is unknown to the transmitter.

Another strategy with full channel knowledge at the trarigmiis beamforming62], [63] where only
the strongest eigenmode is used. However, beamformingisaific example of signal processing at the
transmitter, as it works only in the spatial domain. Note &eer, that this technique requires transmit
amplifiers which are highly linear [62]. At low SNR beamfonmiis a spectrally efficient transmission
scheme and at high SNR, where more channel eigenmodes cardhenater-filling is better for achiev-
ing high channel capacity.

In general and assuming an ideal channel knowledge at thentitter, a transmission using a STBC
performs worse than a system using a beamforming techn@]e[[0]. This stems from the fact, that
STBC systems spreads the available power uniformly in edlatiions in space, while beamforming uses
information about the channel to steer energy in the dwadaii the receiver. The gap in the performance
between the two methods can be quite significant, espedatighly correlated channels.

One general drawback of methods relying on complete CSleatréimsmitter is feasibility and the need
for a feedback path delivering CSI from the receiver to thedmitter. In practical situations, the feed-
back channel may allow only partial CSl to be returned to thesmitter in order to save bandwidth in
the feedback path. Partial channel knowledge might refeotoe parameters of the instantaneous chan-
nel or some statistics on the channel. To close the gap bettheebeamforming system and the STBC
based system, improved space time coding using feedbackrtidilpor full channel state information to
the transmitter may be used.

5.1.1 QSTBCs Exploiting Partial CSI using Limited Feedback

Designing STBCs and evaluating the performance of STBQwmirsinission schemes with feedback has
been an intensive area of research resulting in severalrelift transmit strategies [64] - [81]. Partial
CSil feedback can correspond to a quantized channel estj6&teor can be used to find an optimum
index in a finite set of precoder matrices [69],[71], or carubed for antenna selection [77]-[81] or for
code selection [64]-[67]. Each of these partial feedbadkoap returns a limited number of channel
information bits from the receiver to the transmitter. Do@tactical limitations, the number of feedback
bits per code block returned from the receiver to the tratismshould be kept as small as possible.

Diversity order is an important indicator of the performawt any multi-antenna transmission scheme.
Since QSTBCs without feedback do not achieve full diversiggearch on QSTBCs with partial feed-
back is beginning to gain more and more attention. For icgtaa very simple and clever scheme was
presented in [64] where block codes with feedback have bsed.uOn the transmitter side code se-
lection according to the feedback bit is performed. Seatgctine of two possible code matrices already
leads to full diversity and some coding gain. However, tblsesne requires also perfect synchronization
of transmitter and receiver. If this synchronization isoagous or the feedback information is decoded
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incorrectly this concept easily looses most of its benef@dse more disadvantage of the scheme pro-
posed in [64] is that by increasing the number of transmitiamas, the required number of feedback bits
increases proportional.

In [65], [67] we presented recently an even simpler versiceahannel adaptive code selecti@ACS)

in combination with QSTBCs. The receiver returns one or teadback bits per fading block and (de-
pending on the number of returned bits) the transmitterchei between two or four predefined QSTBCs
to minimize the channel dependent interference paramiétdn this way full diversity and nearly full-
orthogonality can be achieved with an ML receiver as well &b & simple ZF receiver. This method
can be applied to any number of transmit antennas withoueasing the required number of feedback
bits. In [61, 66], our simulations have been applied on ¢atee MIMO channels and measured MIMO
indoor channels, and there we have shown that QSTBCs witlsimple feedback scheme are robust
against channel variations, and that they perform very esdin on highly correlated channels. This
method will be explained in detail in the next section.

In order to reduce the implementation complexity of MIMOtsyss (e.g. the high number of radio-
frequency (RF) chains on both link endd)annel adaptive antenna selecti@AAS) at the transmitter
and/or at the receiver side has been proposed in [77]-[&1grevonly a subset of "best” antennas is used
for transmitting the data. CAAS was first combined using OSEBn [77, 78]. In [77], the transmit
selection criterion was based on maximization of the Fratsenorm of the channel transfer matrix. It
has been shown that this scheme achieves full diversityadighe transmit antennas were used.

In [80, 81] transmit and receive CAAS with QSTBC for four tsamit antennas and a ZF receiver has
been proposed. The selection criterion is based on thetanakpression for the BER given in Chapter
4, Eqn. (4.46) and maximizes the tefh(1 — X2) [81]. This CAAS will be described in detail in the
next section.

5.2 Channel Adaptive Code Selection (CACS)

In this section a simple and effective way to adapt a full Q®TBCs over2” transmit antennas to
the actual channel is proposed achieving full diversitgrtyefull orthogonality and at the same time a
low bit error rate. A feedback system returning one or twe pir code block from the receiver to the
transmitter is applied. Depending on the feed-back inféionahe transmitter switches between two or
four predefined QSTBCs which only differ in the resulting whel dependent interference parameter.
The transmitter chooses that code that minimizes the chdepended interference paramelémvhich

is responsible for the diversity loss of the QSTBC. With thisiple scheme, a ZF as well as an ML
receiver achieves nearly optimum system performance.

5.2.1 CACS with One Feedback Bit per Code Block

The feedback scheme using one bit feedback per code blotKreamthe receiver to the transmitter
characterizing the channel will be explained first. Thegmaission scheme is depicted in Fig. 5.1. Four
transmit antennas and one receive antenna and an actuakthemsfer vectoh = [hq, ha, hs, h4]T
are considered. The channel transfer eleméptmay fade in any arbitrary way but it is assumed that
they are constant during the code block of length four. Toeaitransmission is described (as explained
in the Chapter 4, Eqn. (4.28)) by

r = Sh + n, (5.4)

wherer is the (4 x 1) vector of received signals of one the code-block within fsuccessive time
slots. S is the predefined QSTBC, eith&, as defined in (5.5), 08, defined in (5.6) depending on
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Figure 5.1: Closed-loop scheme with code selectigrs 4, n, = 1.

the feedback bib defined below, ana is the (4 x 1) noise vector with circularly symmetric complex

Gaussian components with zero mean and variarfceThe two QSTBCs that can be chosen by the
transmitter are:

S1 59 S3 S4

sy —s sy —sh

2 1 4 3

s3 sy —S8] —S

S4 —S83 —S2 S1

and

—S1 52 53 S4

* * * *

—S —S S —S

_ 2 1 4 3
S2 - _o* * _oX _oX* (56)

3 84 TS 59

—S4 —83 —S2 S1

Obviously, the predefined EA-type QSTBSgsandS,, differ only in the sign of the transmitted symbols
in the first column. Note that an entire family of QSTBCs candeeived by linear transformations
as explained in the previous chapter. All of the so obtainedks behave equivalent in terms of their
quasi-orthogonality, their complexity and their mean BERfprmance averaged over random channels.
For a fixed channel however, they behave different due terdifitly channel dependent interference
parameters, as will be shown in the following. As shown in @Bra4, Section 4.5, Egn. (5.4) can be
rewritten in the form

y:HUS+ﬁ7

with s = [s1, so, s3, s4]7 and the EVCMH,,, that is now equal to

hy
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hy

H,,
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In both cases we obtain non-orthogonal Grammian matrictkstivé same structure

1 0 X
G, =H/H, =H,H =17 | | _}i e (5.9)
X; 0 0 1
fori = 1,2, with
h? = |hal? + |hof® + |hs|* + |hal?,
but different values ofX;, namely
Y 2Re(h1h52— hghg)’ (5.10)
if S; is sent, an