
Static Code Analysis of Functional Descriptions in SystemC

M. Holzer and M. Rupp
Vienna University of Technology

Institute for Communications and RF Engineering
Gusshausstr. 25/389, 1040 Vienna, Austria

Abstract

The co-design of hardware and software systems with
object oriented design languages like SystemC has become
very popular. Static analysis of those descriptions allows to
conduct the design process with metrics regarding quality
of the code as well as with estimations of the properties of
the final design. This paper shows the utilization of soft-
ware metrics and the computation of high level metrics for
SystemC, whose generation is embedded into a complete de-
sign methodology. The performance of this analysis process
is demonstrated on a UMTS cell searching unit.

1. Introduction

For the design of a signal processing system consist-
ing of hardware (hw) and software (sw) many different
programming languages have been introduced like VHDL,
Verilog, and C/C++. One of the latest major contribu-
tions to the field of hw/sw co-design languages is SystemC
(www.systemc.org) introduced by the Open SystemC
Initiative (OSCI) in 1999. This language allows the de-
signer to describe a system on different levels of abstrac-
tion. Those start with an un-timed description of the algo-
rithm, which is ideally refined until the final implementa-
tion has been reached, while still staying in the same devel-
opment environment. During this refinement process, it is
of paramount importance to base design decisions on reli-
able characteristics and to assure quality of the written code.
Those characteristics of the code, usually called metrics, are
early estimates of the properties of the final implementa-
tion. Those estimates must satisfy three criteria: accuracy,
fidelity, simplicity [9]. Early design decisions have a huge
impact on the final system performances [18], about 90%
of the overall costs are determined in the first stages of a
design. Figure 1 depicts the evolution of the cost during the

This work has been funded by the Christian Doppler Laboratory for
Design Methodology of Signal Processing Algorithms.

development time [2], where it can be seen that early de-
sign decisions have a much higher resulting cost span than
design decisions taken at the end of the development time.

Figure 1. Evolution of the effort and cost dur-
ing the development time.

Because of the lack of supporting tools many high level
design decisions are taken on the basis of the experience of
designers and not based on well defined metrics. The defini-
tion of those metrics can help to produce more reliable and
traceable decisions. With the growing complexity of signal
processing algorithms, especially in the wireless domain,
also the need for automatic analysis of the algorithm arises.
Especially tasks like partitioning of a system into hw and
sw, analysis of bit widths, and mapping of descriptions to
architectures deploy algorithms based on metrics. For solv-
ing those usually NP-hard problems, heuristics like genetic
algorithms or tabu search are used, which heavily depend
on cost functions, built up with metrics like execution time,
area, and power consumption.
High level metrics can be generated by synthesis of the
design, which gives accurate estimation, but is usually a
time consuming task. Often only critical parts are mod-
elled within a rapid prototyping environment in order to
measure worst case scenarios, with the disadvantage that
the target architecture has different properties than the pro-
totyping target (e.g. timing). Another possibility is a sim-
ulation based approach of a design, which allows for esti-

1

mholzer
Text Box
Copyright IEEE 2006, DELTA 2006 Third IEEE International Workshop on Electronic Design, Test & Applications 
17.-19. January 2006, Kuala Lumpur, Malaysia



mations. As the time spent on verification of a system in-
creased already up to 80% of the design time [13] reduction
of the simulation effort is one of the most eminent design
targets. This paper focuses on static code analysis (SCA)
techniques, which gives the possibility for fast generation
of metrics.
The rest of the paper is organized as follows. Section 2
points out some existing contributions in the field of high-
level metrics. Section 3 gives an overview of metrics that
can be used for the investigation of SystemC and can be
obtained by means of SCA. This is followed by Section 4
describing the integration of the analysis into a consistent
design methodology. The Section following this covers an
application example of a UMTS cell searching algorithm
and reports on the achieved results. In the last section con-
clusions are made and perspectives for the future work are
given.

2. Related Work

Within the refinement process of an algorithm, which
passes through several intermediate steps, starting at a high
level description and ends in a hw/sw implementation dif-
ferent kinds of metrics can be identified (Figure 2). The
accuracy of those metrics increases the more hw details are
known.

Figure 2. Generation of hard and soft metrics.

A first analysis can be performed rapidly without know-
ing any architectural details. The usage of these metrics
already has quite a long history in the development of sw.
Different metrics have been defined for functional program-
ming languages like Pascal or C. One of the most popular
metrics, known as cyclomatic complexity, has been defined
by McCabe [16], expressing readability and testability of an
implemented function. Another contribution to static anal-
ysis of code has been defined by Halstead [11], which fo-
cuses on predicting the design effort for a sw module. With
the development of object oriented languages like C++ and
Java, metrics for the investigation of object oriented features

have been introduced, which can be reused for SystemC [5].
Nevertheless those metrics need to be reinterpreted in the
context of hw/sw co-design.
Whereas sw metrics focus on design quality, testability,
and design effort, the usage of hw related metrics tries to
identify estimates of the final implementation like hw size
(area) [4], power consumption [7], or execution time [20].
First attempts for investigating hw description languages
have been achieved for VHDL. Approaches for identifying
slices, which are functional dependent code parts and its
application to hw description languages, especially VHDL,
is given by Clarke et al. [6]. The derivation of function
points for VHDL is presented by Fornaciari et al. [8]. Bran-
dolese et al. [3] demonstrates extraction of metrics from
SystemC descriptions for FPGAs. Another contribution
based on SystemC is given by Agosta et al. [1], where a for-
mal method for the analysis of transaction level models is
derived, with focus on communication effort, memory size,
and synchronization metrics. Gerlach and Rosenstiel [10]
present high level design transformations based on control
data flow graphs (CDFG) for the optimizations of C code
for hw/sw co-design.

3. Metrics

The description of an algorithm in an object oriented lan-
guage like SystemC allows the definition of two different
kinds of metrics structure related metrics, which describe
the hierarchical properties of the description and function
related metrics, which characterize the implementation of
the algorithm.

3.1. Structure Related Metrics

Structure related metrics describe the hierarchical prop-
erties of the SystemC description. Many of those metrics
are defined for object oriented languages and can be reused
for SystemC. Most prominent candidates are the number of
classes, the number of instances, the maximum depth of hi-
erarchy, and the number of methods.

The depth of hierarchy is a well known concept for hw
description languages like VHDL. For maintenance reasons
and understandability, the maximum depth is usually re-
stricted to three hierarchy layers.

3.2. Function Related Metrics

Function related metrics refer to the characteristics of
the implementation of the algorithm in a specific language.
Most of these characteristics can be investigated on graph
structures that represent the code. In general, the algorithm
inside a SystemC module, written in form of sequential
code, can be decomposed into its control flow graph (CFG),

2



built up of interconnected basic blocks (BB). Each BB con-
tains a sequence of data operations ended by a control flow
statement as last instruction. This sequence of data opera-
tions itself forms a data flow graph (DFG) or equivalently
one or more expression trees. A control flow graph is a di-
rected graph with only one root and one exit. A root defines
a vertex with no incoming edge and the exit a vertex with no
outgoing edge. Due to programming constructs like loops
those graphs are not cycle-free. Figure 3 shows an example
of a function and its graphical descriptions. The concen-
tric circle vertex denotes the start of the function, while the
pentagonal one depicts its end.

Figure 3. Control flow graph (CFG) and ex-
pression tree of one basic block.

3.3. Cyclomatic Complexity

McCabe [16] defined the metric cyclomatic complexity
V . It can be used for determining the effort for structural
testing of a function, and therefore as a metric for complex-
ity. The cyclomatic complexity value expresses the number
of linearly independent paths. A new path is independent
from other paths if it is a path through the program that
introduces at least one new processing statement or a new
condition. Hence, if a path coverage of 100% should be
achieved at least V test cases have to be performed. Cyclo-
matic complexity of a graph G can be computed as shown
in Equation 1.

V (G) = e− n + 2 (1)

In this equation e represents the number of edges and n
the number of nodes of the graph G. Values of V less than
10 are considered as functions of minor complexity, with
low verification effort, whereas higher cyclomatic complex-
ity is considered as error prone and, in particular in the case
of hw implementation where a testing coverage of 100% is
aimed, testing effort increases dramatically.

3.4. Degree of Parallelism

The degree of parallelism γ describes the relation be-
tween the number of operations Nop (arithmetic, logic and
relational as defined in Table 1) versus the number opera-
tions Nopl found in the longest path of the algorithm’s CFG.

Operation type Operation
arithmetic operation ADD, SUB, MUL, DIV
logic operation OR, XOR, AND
relational operation =, 6=, <, >, ≤, ≥

Table 1. Different operation types.

γ =
Nop

Nopl
(2)

Functions with a low γ value are rather sequential,
whereas function with a large γ value offer in the case of
non pipelined implementations possibilities for resources
reuse. Nevertheless, in order to explore the reuse capa-
bilities for each kind of operation, a longest path for each
type of operation has to be identified. All basic blocks can
be annotated with a set of different weights W (BB i) =
{w1, w2, .., wm} , i = 1 .. N that describe all its internal
operations (e.g. w1 = number of ADD operations). The
longest path dependent on the jth distinct weight, LPj

is that sequence (BBk BB l ..BBm)T of BBs through the
CFG, which yields a maximum path weight PWj by sum-
ming up all the weights wj of the basic blocks that belong
to this path. This is shown in Equation (3).

PW j =
N∑

i=1
BBi∈LPj

wj(BBi) (3)

With this PW j a γj reflecting the reuse capabilities of
each kind of operation j can be defined.

γj =
Nopj

PW j
(4)

3.5. Memory and Control Metrics

Analysis of the memory behaviour has been specified
in [17, 18] with the Memory Orientation Metric (MOM).

MOM =
Nmac

Nop + Ncop + Nmac
(5)

Here Nop defines the overall number of operations as de-
fined in Table 1, Ncop the number of control statements (if,
for, while), and Nmac the number of memory accesses. A
MOM value near one identifies a function with high mem-
ory usage. In order to use this metric for power consump-
tion, where different energy models are used for read and

3



write operations [12], a further differentiation results from
distinguishing between read and write accesses.

MROM =
Nmrac

Nop + Ncop + Nmac
(6)

MWOM =
Nmwac

Nop + Ncop + Nmac
(7)

In Equation 6 Nmrac represents the number of memory
read operations and in Equation 7 Nmwac the number of
memory write operations.
In contrast to the memory metrics, a control orientation met-
rics (COM) identifies whether a function is dominated by
control operations.

COM =
Ncop

Nop + Ncop + Nmac
(8)

When the COM value tends to be 1 the function is domi-
nated by control operations. This is usually an indicator that
an implementation of a control-oriented algorithm is more
suited for running on a controller than to be implemented as
dedicated hw.

4. Analysis Environment

In order to provide the results of the SCA in an open en-
vironment to other tools, the analysis process is embedded
into a unified design environment, which allows the use of
various EDA tools as they are being favoured by the various
design teams. A so-called single system description (SSD)
has been established in form of a design database [14]. Fig-
ure 4 depicts the SSD encircled by a selection of EDA
tools and self-developed optimization libraries. Dedicated
system description interfaces (SDI) facilitate the seamless
communication between the heterogeneous system compo-
nents and the SSD.

The SCA is performed after reading in the algorithmic
description written in SystemC over an SDI into the SSD.
After that, in the first step, static code analysis by the
Open Compiler Environment (OCE) from ATAIR (www.
atair-software.com) is performed. This sw decom-
poses each SystemC function of the design into its basic
blocks and allows for the construction of the CFG and DFG
representation. Beside its tables for storing the structure of
the design, the SSD also provides tables for storing basic
blocks and operations for every process. In the second step,
the generation of the metrics is achieved by means of a C++
graph class. The results of the SCA are persistently saved
in property tables. Further refinement steps can take place
within this environment based on the stored metrics infor-
mation. Those steps include tools for automatic partitioning
of the system into hw/sw parts [15], automatic generation of
virtual prototypes [14], and an environment called fixify for

Figure 4. Importing of SystemC into the Sin-
gle System Description and metrics genera-
tion.

performing the task of fixed-point to floating-point conver-
sion [19].

The stored metrics allow for the construction of a cost
function. In general a cost function C for a hw realization
of a function can be constructed by the sum of metrics xi

with the weight wi.

C =
∑

xi∈X

wixi (9)

Usually the metrics xi represent normalized values for
timing, area, and power. Additionally those metrics have
constraints given by functional and economical require-
ments. Within this cost function also cyclomatic complexity
V can be taken into account, in order to consider the cost for
verification effort.

A further application of the presented metrics is its us-
age for the hw/sw partitioning process. Here a huge search
space demands for heuristics that allow for partitioning with
a reasonable time effort. Nevertheless, a reduction of the
search space can be achieved by assigning certain functions
to hardware or software beforehand. This can be accom-
plished by an affinity value A as shown in Equation 10.

A = COM−1 +
∑

γj (10)

A high value A and thus a high affinity to a hardware im-
plementation is caused by less control operations and high
parallelism of the the used kind of operations.

5. Example

An algorithmic description written in SystemC of a
UMTS cell searcher algorithm has been processed by the
SCA framework in order to gather the presented metrics.
This cell searcher performs the slot synchronization part of

4



the cell searching procedure, by detecting the start of a slot
transmitted by the base station in a UMTS network.

Figure 5. Block diagram of the cell searcher.

The cell searcher implementation consists of four Sys-
temC modules as depicted in Figure 5. The I and Q val-
ues are correlated within the Matched Filter with the chip
sequence of the primary synchronization code (PSC). Two
different types of matched filter functions Matched Filter
1 and Matched Filter 2 have been implemented in order
to show design tradeoffs by means of SCA. The functions
Square and Sum together with Slot Accu perform addition
and accumulation over several slots of the energy values.
As last step, the Peak Detection sorts the energy values and
searches for the highest peak, whose index determines the
start of a slot.
After importing of the cell searcher project into the SSD,
SCA has been performed. This example consists of four
classes, each instantiated once. It has a flat hierarchy, so
that the maximum depth of hierarchy is only one. Each
class contains one method. The results of the SCA of the
code are shown in Table 2.

Function MOM MROM MWOM COM V γ

Sqr and Sum 0.62 0.5 0.12 0 1 1
Slot Accu 0.67 0.45 0.22 0 1 1
Peak Detection 0.39 0.26 0.13 0.11 5 1
Matched Filter 1 0.49 0.35 0.14 0.16 7 1.25
Matched Filter 2 0.55 0.35 0.2 0.16 9 1.29

Table 2. Metrics for control, memory usage,
cyclomatic complexity, and parallelism.

The functions Sqr and Sum and Slot Accu show similar
memory usage and contain no control parts. Peak Detec-
tion exhibits less memory accesses than the functions Sqr
and Sum and Slot Accu, but has a minor fraction of control
statements. Both matched filter implementations show the
same effort for control and read operations, but the Matched
Filter 2 has more write accesses compared to the first imple-
mentation.

The functions Sqr and Sum and Slot Accu are rather sim-
ple functions with less operations and operands, as well as
no control and no parallelism. Peak Detection performs a
shell sort algorithm, which shows the need for control op-
erations, but also gives no possibilities for resource sharing.
A comparison of the two matched filter implementations re-
garding their vocabulary indicates, like the memory orien-
tation metrics a higher memory usage by a higher number

of distinct operands in the Matched Filter 2 design. The
reuse capabilities of the two matched filter implementations
regarding the utilized types of operations (ADD, SUB) tend
to be one (γADD = 1.24, γSUB = 1), because both types
of operations appear in the longest paths much more fre-
quently than in the other possible paths.

Figure 6 depicts the CFG of the matched filter imple-
mentations Matched Filter 1 and Matched Filter 2.

Figure 6. Control flow graphs of two different
matched filter implementations.

5



Both implementation share the CFG regions A and C.
Matched Filter 1 consists of two nested loops in region B,
both with a loop count (LC) of 16, which forces the inner-
most basic blocks (BB4, BB5) to be executed 256 times.
Those loops are decoupled in the second implementation
within the region B’ and B”. This is achieved by storing in-
termediate results, which causes an additional memory ef-
fort of storing 512 values, but necessitates much less com-
putation in its longest computation path. Also, additional
control effort is introduced as denoted within region D. This
causes a higher cyclomatic complexity value and therefore
slightly increases the testing effort for this implementation.
While both implementations are regarded as low complexity
functions, it can be seen that a tradeoff between testing ef-
fort and implementation cost exists. The metrics have been
used to derive hw and sw execution times, as well as area
consumption in order to construct a cost function, which
can be used for hw/sw partitioning based on heuristics. The
results of this partitioning are shown in [15].

6. Conclusions

The need for metrics for high level design decisions in
the design of embedded systems has emerged, in particu-
lar in the field of system on chip for wireless communica-
tion systems. Static code analysis of SystemC provides a
possibility for fast generation of structural information for
the design, in order to make appropriate design decisions.
This paper shows the application of sw metrics for the us-
age in hw/sw co-design. The derivation of these metrics is
integrated in an environment as part of a whole design flow
and allows the usage of those metrics by other optimizations
tools. An example is presented with its metrics generation.
Furthermore, design trade-offs are shown on different im-
plementations of a matched filter design.

References

[1] G. Agosta, F. Bruschi, and D. Sciuto. Static Analysis of
Transaction-Level Models. In Design Automation Confer-
ence, pages 448–453, June 2003.

[2] J. Axelsson. Cost Model for Electronic Architectures Trade
Studies. In Sixth International Conference on Engineering
of Complex Computer Systems, 2000.

[3] C. Brandolese, W. Fornaciari, and F. Salice. An Area Esti-
mation Methodology for FPGA Based Designs at SystemC-
Level. In Design Automation Conference, pages 129–132,
June 2004.

[4] K. Büyüksahin and F. Najm. High-Level Area Estimation. In
International Symposium on Power Design and Electronics
(ISLPED’02), pages 271–274, August 2002.

[5] S. R. Chidamber and C. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineer-
ing, 20:476–493, 1994.

[6] E. M. Clarke, M. Fujita, S. P. Rajan, T. Reps, S. Shankar, and
T. Teitelbaum. Program Slicing of Hardware Description
Languages. In Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, pages
298–313, September 1999.

[7] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano. Power
Estimation of Embedded Systems: A Hardware/Software
Codesign Approach. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 6:266–275, 1998.

[8] W. Fornaciari, F. Salice, U. Bondi, and E. Magnini. Devel-
opment Cost and Size Estimation Starting from High-Level
Specifications. In 9th International Workshop on Hard-
ware/Software Co-Design (CODES 01), pages 86–91, 2001.

[9] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis:
introduction to chip and system design. Kluwer Academic
Publishers, 1992.

[10] J. Gerlach and W. Rosenstiel. Development of a High-Level
Design Space Exploration Methodology. Technical report,
Tübingen, Wilhelm-Schickard-Institut für Informatik, 1999.

[11] M. H. Halstead. Elements of Software Science, volume 7.
Elsevier, 1977.

[12] M. B. Kamble and K. Ghose. Analytical Energy Dissipation
Models For Low Power Caches. In International Sympo-
sium on Low Power Electronics and Design, pages 143–148,
1997.

[13] M. Keating and P. Bricaud. Reuse Methodology Manual
for System-on-Chip Designs. Kluwer Academic Publishers,
1998.

[14] B. Knerr, M. Holzer, P. Belanović, G. Sauzon, and M. Rupp.
Advanced UMTS Receiver Chip Design Using Virtual Pro-
totyping. In International Symposium on Signals, Systems,
and Electronics (ISSSE), August 2004.

[15] B. Knerr, M. Holzer, and M. Rupp. HW/SW Partition-
ing Using High Level Metrics. In International Conference
on Computing, Communications and Control Technologies
(CCCT), pages 33–38, August 2004.

[16] McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2:308–320, 1976.

[17] Y. L. Moullec, N. B. Amor, J.-P. Diguet, M. Abid, and J.-L.
Philippe. Multi-Granularity Metrics for the Era of Strongly
Personalized SOCs. In Design, Automation and Test in Eu-
rope, pages 674–679, March 2003.

[18] Y. L. Moullec, P. Koch, J.-P. Diguet, and J. L. Philippe. De-
sign Trotter: Building and Selecting Architectures for Em-
bedded Multimedia Applications. In IEEE International
Symposium on Consumer Electronics, December 2003.

[19] P. Belanović and M. Rupp. Automated Floating-point to
Fixed-point Conversion with the fixify Environment. In In-
ternational Workshop on Rapid System Prototyping RSP’05,
June 2005.

[20] Per Bjuréus, M. Millberg, and A. Jantsch. FPGA Resource
and Timing Estimation from Matlab Execution Traces. In
International Workshop on Hardware/Software Co-Design,
pages 31–36, May 2002.

6




