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Abstract

This thesis deals with multiuser multicarrier communications over unknown time and fre-

quency selective fading channels. Since there is a growing demand for capacity, especially in

mobile communications, wireless multiuser communications experiences increasing interest in

recent year. The wireless channel in general is a time and frequency selective fading channel.

In that case, orthogonal frequency division multiplexing (OFDM) promises robust high-rate

transmissions. In general, no channel state information (CSI) is available at transmitter and

receiver. This corresponds to noncoherent transmissions.

This thesis investigates noncoherent OFDM based multiuser systems, such as Multi-Carrier-

CDMA (MC-CDMA) and orthogonal frequency division multiple access (OFDMA), transmit-

ting over a time and frequency selective fading channel. The focus is on the uplink case where

multiple users transmit to one receiver. An information theoretic analysis is performed with

emphasis on sum system capacity and sum information rate calculation. Since in most cases

no exact analytic results can be obtained, bounding techniques are applied.

First OFDM, OFDMA, and MC-CDMA are described. Then the wireless channel is discussed

in terms of descriptions, statistics, and parameters, and an appropriate input-output rela-

tion will be introduced. Furthermore, an overview of known results is given. Then, upper

and lower bounds on sum system capacity for MC-CDMA and OFDMA are derived. These

theoretical results are supported by numerical evaluations and extensive simulation results

involving different propagation scenarios.
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Zusammenfassung

Diese Diplomarbeit befasst sich mit Mehrbenutzer-Mehrträger-Übertragung über unbekannte

zeit- und frequenzselektive Schwundkanäle. In den letzten Jahren stieg die Nachfrage nach

höherer Kanalkapazität. Speziell in der Mobilkommunikation erfährt drahtlose Mehrbenutzer-

Übertragung ein steigendes Interesse. Die Freiraumübertragung erfolgt im Allgemeinen über

einen zeit- und frequenzselektiven Kanal. In diesem Fall verspricht Orthogonal Frequency Di-

vision Multiplexing (OFDM) eine zuverlässige Übertragung mit hoher Datenrate. Im Allge-

meinen ist Kanalinformation (Channel State Information, CSI) weder am Sender noch am

Empfänger verfügbar. Man bezeichnet das als nicht-kohärente Übertragung.

Diese Arbeit untersucht nicht-kohärente OFDM-basierte Mehrbenutzersysteme wie Multi-

Carrier-CDMA (MC-CDMA) und Orthogonal Frequency Division Multiple Access (OFDMA)

bei Übertragung über zeit- und frequenzselektive Schwundkanäle. Der Fokus liegt auf dem

Uplink-Fall, wo mehrere Benutzer zu einem Empfänger senden. Eine informationstheoreti-

sche Analyse mit Augenmerk auf Summensystemkapazität und Summeninformationsrate wird

durchgeführt. Da in den meisten Fällen keine exakten analytischen Ergebnisse erreichbar sind,

werden obere und untere Schranken berechnet.

Zuerst werden die Übertragungsverfahren OFDM, OFDMA und MC-CDMA beschrieben.

Es folgt eine Erklärung des Mobilfunkkanals in Form von Beschreibungen, statistischen Zu-

sammenhängen und Parametern. Dann wird eine geeignete Eingangs-Ausgangsbeziehung ein-

geführt. Weiters wird eine Übersicht über bekannte Ergebnisse gegeben. Danach werden obere

und untere Schranken für die Summenkapazität von MC-CDMA und OFDMA abgeleitet. Die-

se theoretischen Ergebnisse werden erläutert durch numerische Auswertungen und ausführliche

Simulationen für verschiedene Ausbreitungsszenarien.
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Chapter 1

Introduction

This thesis will treat orthogonal frequency division multiplexing (OFDM) systems in the mul-

tiuser case. OFDM is known since the late ’60s, but wasn‘t applied in the first years. That

changed in the early ´90s and OFDM became interesting for several communication standards.

For multiuser systems Multi-Carrier-CDMA (MC-CDMA) and orthogonal frequency division

multiple access (OFDMA) amongst others were found. Wireless communication is one of the

fields OFDM is desired to. Therefore MC-CDMA and OFDMA will be used for transmission

over time and frequency selective fading channels. No channel state information (CSI) will

be available either to the reicever nor to the transmitter. In order to characterize the whole

system an information-theoretic analysis (including system capacity and information rate) will

be performed. The main focus will be on the calculation of sum system capacity over all users

which will allow a detailed research on the entire system capability. Since analytic calculation

doesn‘t lead to results in some cases bounding techniques will be applied. First an approxi-

mation for a multiuser MC-CDMA system based on a single user MC-CDMA system will be

presented. For this system model bounding techniques on mutual information will be applied.

A second way to design a multiuser system is to introduce a fully multiuser system model.

This means each user is assigned a specific input (e.g. codebook) and different a channel.

In this chapter the basic concepts of OFDM, OFDMA, and MC-CDMA will be described.

Further the channel will be explained in a continuous and a discrete time point of view and a

simplified input-output relation will be presented. Finally a short introduction in information

theory will be given.

1.1 OFDM

OFDM first was introduced in 1966 by Chang [1]. Initially there was nearly no practical use

for OFDM (for reasons of complexity) and hence only little research was done. OFDM was

applied only in military communications. DFT was recognized as useful for modulation and

demodulation [2]. Further the application of OFDM is proposed in [3, 4]. In the early ‘90s

the interest increased. This went hand in hand with the increased capabilities of digital signal

1



1.1. OFDM 2

processing. Today OFDM is contained in several communication standards, such as wireless

local area networks (WLAN), like 802.11 [5] and HIPERLAN/2 [6], terrestrial digital video

broadcasting (DVB-T) [7], terrestrial digital audio broadcasting (DAB-T) [8], and asymmetric

digital subscriber lines (ADSL). Other names of OFDM are multicarrier modulation and dis-

crete multitone (DMT). OFDM also is a candidate for the fourth generation of cellular mobile

radio systems. Furthermore there is interest in the research of the combination of OFDM and

multiple-input multiple-output (MIMO) systems [9] (termed MIMO-OFDM [10]) and use in

ultra-wideband (UWB) systems [11].

The main principle of OFDM is to split the entire transmit band into smaller narrowband

sub-channels in order to obtain frequency-flat channels. OFDM may be defined as frequency

division multiplexing. By use of transmit/receive filters with overlap in time and frequency

also an interpretation as code division multiplexing is possible. Since there are frequency-

flat channels no channel equalization is necessary, which means less computational complexity

and an easy implementation. Further OFDM is resistant to narrowband interferers and time

dispersive channels. A disadvantageous aspect of OFDM is an extensive synchronization in

time and frequency. Further a high peak-to-average power ratio makes high demands on the

transmitter.

1.1.1 OFDM Modulator

The modulator for a pulse-shaping OFDM system [1, 2] is shown in Figure 1.1. It includes

K subcarriers. The data symbols which may belong to a single high data-rate source or to

multiple sources/users are denoted by Xn,k. The subscript n denotes the OFDM symbol time

and k is the OFDM subcarrier index. The OFDM symbol duration is N signal samples. After

upsampling by the factor of N , the transmit data is passed through the transmit filter using

the transmit pulse g[m] and then is modulated with the respective subcarrier center frequency.

The modulated discrete-time baseband transmit signal is

x[m] =
∞
∑

n=−∞

K−1
∑

k=0

Xn,k gn,k[m], (1.1)

where gn,k[m] are the time-frequency shifted transmit pulses g[m]:

gn,k[m] , g[m− nN ] ej2π k
K

(m−nN).

According to (1.1), the datastream is split into K substreams, each of which is assigned to

a different frequency. Assuming N OFDM symbols to be transmitted, a rectangular time-

frequency lattice could be used for interpretation. This is shown in Figure 1.2. Here the data

symbols are transmitted via the time-frequency-shifted pulses gn,k[m]. In Figure 1.2 only one

pulse is depicted. Note that in general there is one pulse (with particular shape) at each

time-frequency lattice point and there is an overlap between neighboring pulses.

The efficient implementation of an OFDM modulator is done by a length K inverse discrete

Fourier transformation (IDFT). In practical systems the DFT is implemented by a FFT.
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Figure 1.1: Modulator of an OFDM system with K subcarriers, OFDM symbol duration N ,

and transmit-filter g[m].

frequency
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1/K

0

0

N 2N 3N time

Figure 1.2: Interpretation of OFDM modulator in terms of a time-frequency lattice. Note

that in general there is one time-frequency shifted pulse at every lattice point and

overlap of consecutive pulses is possible.
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Yn,K−1

... ...
...

Figure 1.3: Demodulator of an OFDM system with f∗[m] denoting the receive filter.

1.1.2 OFDM Demodulator

Equivalent to the modulator an efficient OFDM demodulator uses a DFT. Figure 1.3 shows

the demodulator of a pulse-shaping OFDM system. At each OFDM symbol interval n, the

demodulator derives the K sequences Yn,k, k = 0, . . . ,K − 1. This is done by calculation of

the inner products

Yn,k = 〈y, fn,k〉 =
∞
∑

m=−∞

y[m]f∗n,k[m],

where y[m] and f [m] denote the received signal and the receive pulse, respectively. The time-

frequency shifted receive pulses are

fn,k[m] , f [m− nN ] ej2π k
K

(m−nN).

Note that in the absence of noise and distortions, perfect demodulation (i.e., Yn,k = Xn,k) is

obtained if and only if the transmit pulse g[m] and the receive pulse f [m] satisfy the biorthog-

onality condition [12]

〈gn′,k′ , fn,k〉 = δ[n− n′] δ[k − k′]. (1.2)

For identical transmit and receive pulses (i.e., g[m] = f [m]), (1.2) becomes an orthogonality

condition. Note that condition (1.2) can only be fullfilled in the case N/K ≥ 1. Typically

N/K is assumed between 1.03 and 1.25.

1.1.3 Cyclic-Prefix

A cyclic-prefix OFDM (CP-OFDM) system is the most commonly applied variant of OFDM

[13]. The CP can be seen as a guard interval avoiding intersymbol interference (ISI). More
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Xn,0

Xn,K−1

H0

HK−1

Yn,0

Yn,K−1

...

...
...

Figure 1.4: Input-output relation for one OFDM symbol of a CP-OFDM system. The channel

is time-invariant and noiseless.

precisely, the OFDM symbol is enlarged by repeating a part of the symbol, the so called cyclic

prefix. It protects consecutive OFDM symbols from ISI in the case of transmission over a

multipath channel.

For time-invariant channels with an impulse response shorter than the CP, the channel input-

output relation (after discarding CP) turns from linear convolution to a cyclic convolution.

The output then can be expressed by a scalar multiplication,

Yn,k = Xn,kHk,

where n and k indicate the position in the time-frequency lattice, Yn,k is the output, Xn,k

is the input, and Hk the channel coefficient of the time-invariant channel (hence there is no

dependence on n). This input-output relation for one OFDM symbol and a time-invariant

channel is shown in Figure 1.4.

The CP also prevents intercarrier interference (ICI). Further the signal structure imposed by

CP-OFDM can be exploited for time synchronization.

1.1.4 OFDMA

Orthogonal frequency division multiple access (OFDMA) [14] is a combination of OFDM and

multiple access schemes as frequency division multiple access (FDMA) and time division mul-

tiple access (TDMA). In difference to OFDM where only one user can use the entire time-

frequency lattice, OFDMA supports a multiuser communication. Therefore OFDMA assigns

the K subcarriers to at most K single users, i.e.,

X
(u)
n,k = Xn,k, for k ∈ KU , and X

(u)
n,k = 0, for k /∈ KU ,

with user index u and KU denoting the subset of subcarriers allocated to user u. Each user has

its own distinct subcarriers. In other words there is no collision in frequency. Figure 1.5(a)

shows this. By assigning the orthogonal frequency bands to the different users, multiuser

interference should be avoided. For OFDMA the same drawbacks as for OFDM can be found,

which includes the high peak-to-average power ratio. A multiple access interference (MAI)
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frequencyfrequency

K − 1K − 1

2

2

2

2

1

1

1

1

0

0

0

0

timetime

...
...

(a) (b)

Figure 1.5: Representation of (a) OFDMA and (b) FH-OFDMA in the time-frequency

area. Note that different users are marked by different colors. The subcarri-

ers 0, 1, . . . ,K − 1 and the OFDM symbols 0, 1, . . . ,M − 1 are shown.

caused by symbol timing misalignments is disadvantageous since it destroys the orthogonal

structure between the users. The performance of OFDMA gets poor if a single channel is

adepted by deep fades.

If the assigned subcarriers are changed for every OFDM symbol, this procedure is called

frequency hopping, i.e., one gets a frequency-hopped (FH)-OFDMA system. This is shown in

Figure 1.5(b). By frequency hopping a frequency diversity is obtained.

1.2 Multi-Carrier CDMA

By combining direct sequence CDMA (DS-CDMA) and OFDM, a Multi-Carrier-CDMA (MC-

CDMA) system is obtained. These technique has been proposed by [15–19]. Other techniques

that combine DS-CDMA and OFDM are MC-DS-CDMA [18] and Multi-Tone CDMA (MT-

CDMA) [19]. This overview is mainly based on [20].

In MC-CDMA, spreading sequences are used to map the datastream to the OFDM subcarriers.

Simply said by MC-CDMA a serial datastream is split onto different subcarriers, each with

lower data rate. By matching different spreading sequences to different users a multiuser

system is implemented. Then, an overlap in frequency is realized. Hence, with MC-CDMA

full collision in frequency can be obtained. The spread subcarrier sequence for a multiuser

system can be written as (cf. Figure 1.6)

Xn,k =

U−1
∑

u=0

X(u)
n c

(u)
k ,
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frequency

K − 1

2

2

1

1

0

0

time

...

X
(u)
n

c
(u)
k

OFDM-

modulator

x(u)[m]

(a) (b)

X
(u)
n,k

Figure 1.6: (a) The principle of MC-CDMA modulation by concatenation of DS-CDMA

(X
(u)
n,k = X

(u)
n c

(u)
k ) and OFDM for a single user (U = 1); (b) The user‘s sig-

nal is spread over the entire time-frequency area.

where U denotes the number of users, X
(u)
n the input data stream of user u, and c

(u)
k the

spreading sequence of user u.

Figure 1.6 also shows the concatenation of spreader and OFDM-Modulator or DS-CDMA and

OFDM, respectively. The OFDM modulation is equivalent to that in Section 1.1.1. Further

Figure 1.6 shows the spread signal in the time-frequency area.

1.3 Wireless Fading Channels

In this section the main topic is the mathematical characterization of the wireless fading

channel. No physical details but rather a statistical representation is used. Some of the

keywords concerning wave propagation in wireless communications are free-space propagation,

scattering, reflection, and diffraction. A survey of these effects is given in [21–23]. The

attention will be restricted to small-scale fading effects. Large-scale fading like time variation

of path loss and other statistical channel characteristics will be neglected.

1.3.1 Continuous-Time Channel Model

Channel Input-Output Relation

The continuous-time time-varying wireless channel is denoted by Hc. The input-output relation

then is 1

y(t) = (Hcx)(t) + u(t) =

∫

τ
h(t, τ)x(t− τ)dτ + u(t), (1.3)

1Integrals are from −∞ to ∞ unless specified otherwise.
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with x(t) the input, y(t) the output and h(t, τ) the time-varying impulse response of the

channel. Furthermore u(t) denotes the additive zero-mean white Gaussian noise with power

spectral density N0. The impulse response h(t, τ) is defined in the interval [0, τmax] since Hc

is causal with maximum delay τmax (due to physical reasons). The variation of h(t, τ) in time

is limited by the maximum Doppler frequency νmax.

System Descriptions

By applying Fourier transformation to the impulse response h(t, τ), the time-dependent transfer

function

HHc(t, f) ,
∫

τ
h(t, τ)e−j2πfτ , dτ. (1.4)

and the spreading function

SHc(τ, ν) ,
∫

t
h(t, τ)e−j2πνtdt, (1.5)

are obtained. The time-dependent transfer function HHc(t, f) describes the variation of the

channel‘s transfer function in time, the spreading function SHc(τ, ν) describes the allocation in

terms of τ and ν. A support region for SHc(τ, ν) is given through the limitations on h(t, τ) and is

given by (τ, ν) ∈ [0, τmax]× [−νmax/2, νmax/2]. The time-dependent transfer function HHc(t, f)

then is a lowpass function. The channel spread τmaxνmax can be used to classify channels as

underspread and overspread. An underspread channel is defined by τmaxνmax ≤ 1 and an

overspread channel by τmaxνmax > 1 [24]. Practical mobile radio channels are underspread.

Channel Statistics

The channel is assumed as wide-sense stationary with uncorrelated scatterers (WSSUS) and

Rayleigh fading [21–23]. There is no dependence of the channel statistics on time even though

the channel realizations are time-varying. Then, the correlation function of the impulse re-

sponse is

E{h(t, τ)h∗(t′, τ ′)} = DHc(t− t′, τ)δ(τ − τ ′),

with the time-delay correlation function DHc(∆t, τ). The spreading function is white which

gives

E{SHc(τ, ν)S
∗
Hc

(τ ′, ν ′)} = CHc(τ, ν)δ(τ − τ ′)δ(ν − ν ′). (1.6)

Here, CHc(τ, ν) > 0 is the real-valued and non-negative scattering function [25]. The support

region is the same as for SHc(τ, ν), (τ, ν) ∈ [0, τmax] × [−νmax/2, νmax/2]. The scattering

function describes the channels statistic distribution over τ and ν. By

E{HHc(t, f)H∗
Hc

(t+ ∆t, f + ∆f)} = RHc(∆t,∆f)

the time-frequency correlation function RHc(∆t,∆f) is defined. It describes the correlation

of channel in terms of time- and frequency-shifts. There are relations between CHc(τ, ν),
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DHc(∆t, τ) and RHc(∆t,∆f) through Fourier transformation:

RHc(∆t,∆f) =

∫

τ
DHc(∆t, τ)e

−j2π∆fτdτ =

∫

τ

∫

ν
CHc(τ, ν)e

−j2π(ν∆t−τ∆f)dτdν,

CHc(τ, ν) =

∫

ν
DHc(∆t, τ)e

−j2πν∆td∆t.

For the effective support region of the time-frequency correlation function RHc(∆t,∆f) then

(∆t,∆f) ∈ [−1/νmax, 1/νmax] × [−1/τmax, 1/τmax] is obtained.

Channel Parameters

The path loss of a WSSUS channel is given by [25]

σ2
Hc

= RHc(0, 0) ,
∫

τ

∫

ν
CHc(τ, ν)dτdν. (1.7)

It describes the mean attenuation of the channel. The delay spread αHc and the Doppler

spread βHc are normalized second moments of the scattering function. i.e.,

αHc ,
1

σ2
Hc

∫

τ

∫

ν
(τ − τ0)

2CHc(τ, ν)dτdν,

βHc ,
1

σ2
Hc

∫

τ

∫

ν
(ν − ν0)

2CHc(τ, ν)dτdν.

There, (τ0, ν0) defines the center of gravity of CHc(τ, ν). αHc and βHc can be approximated by

τmax and νmax as they are in the same range. The delay spread describes the range of delays

through multipath propagation, the Doppler spread the range of frequency-shift caused by the

time-variant channel. The reciprocals of αHc and βHc are known as coherence time THc and

coherence bandwidth BHc , respectively.

THc ,
1

βHc

and BHc ,
1

αHc

Accordingly THc and BHc have the same range as 1/νmax and 1/τmax, respectively. The co-

herence time THc is a measure of the time-variance of the channel. A small THc characterizes

a fast fading channel and a large THc a slowly fading channel. The coherence bandwidth is a

measure of the bandwidth (or frequencies) which are affected by the channel response.

1.3.2 Discrete-Time Channel Model

Based on the continuous-time channel model the transition to the discrete-time channel model

is done by discretization. The discrete-time channel will be denoted by Hd. Figure 1.7 shows

a discretized continuous-time channel.

By use of a digital-to-analog (D/A) conversion, the discrete-time input signal x[m] is converted

to a continuous-time signal x(t). To that end, a transmit filter γ(t) is applied, i.e.,
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x[m]
γ(t)

x(t)
Hc

u(t)

y(t)
γ′(−t)

mT ′
s

y[m]

Figure 1.7: Discretization of Hc. Therefore the D/A conversion at the transmitter and the

A/D conversion at the receiver are assumed ideal.

x(t) =
∞
∑

m=−∞

x[m]γ(t−mTs).

Here Ts = 1/B is the sample duration with B the transmission bandwidth . For γ(t) an ideal

filter is assumed (i.e., γ(t) =
√
Bsinc(πBt) with sinc(x) , sin(x)

x , ||γ||2 =
∫

t |γ(t)|2dt = 1 ).

The time-varying channel is represented by Hc and there is additive noise u(t). The received

continuous-time signal y(t) is passed to a receive filter γ′(t) in order to apply noise suppression

and anti-aliasing (T ′
s = 1/B′ with the receive bandwidth B′ = B + νmax). Like the transmit

filter it is assumed as ideal. Then

y[m] =

∫

t
y(t)γ′(t−mT ′

s)dt (1.8)

is the discretized output signal.

Channel Input-Output Relation

By applying the continuous-time output signal (1.3) to (1.8) y[m] is obtained as

y[m] =
1√
B′

∫

τ
h(mT ′

s, τ)x(mT
′
s − τ)dτ + u[m], (1.9)

with

u[m] =
√
B′

∫

t
u(t)sinc(πB′(t−mT ′

s))dt

the the zero-mean white Gaussian discrete-time noise with variance σ2
u = E{|u[m]|2} = N0.

Substitution of x(t) in (1.9) gives

y[m] =

√

B

B′

∞
∑

l=−∞

x[m− l]

∫

τ
h(mT ′

s, τ)sinc(πB[τ −m(T ′
s − Ts) − lTs])dτ + u[m].

For relative high bandwidths B′ (as in wideband communication systems) an assumption on

bandwidth and sampling duration, respectively can be done since the Doppler frequency νmax

is small compared to B. Then, B′ = B and T ′
s = Ts and the input-output relation simplifies

to

y[m] = (Hdx)[m] + u[m] =
∞
∑

l=−∞

h[m, l]x[m− l] + u[m], (1.10)
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with

h[m, l] ,
∫

τ
h(mTs, τ)sinc (πB(τ − lTs)) dτ ≈ 1

B
h(mTs, lTs) (1.11)

the time-varying discrete-time impulse response (approximation for large bandwidths). In gen-

eral, h[m, l] is nonzero for l ∈ Z. Again for large bandwidths and analogous to the continuous-

time channel (h(t, τ) = 0 for τ > τmax) we obtain for the impulse response of discrete-time

channel Hd

h[m, l] ≈ 0 for l /∈ [0, L],

where

L =

⌈

τmax

Ts

⌉

. (1.12)

Then, L+ 1 channel delay taps are resolved and the input-output relation in (1.10) becomes

y[m] = (Hdx)[m] + u[m] =
L
∑

l=0

h[m, l]x[m− l] + u[m]. (1.13)

System Description

Analogous to the continuous-time channel the spreading function can be calculated from the

channel impulse response by

SHd
(l, ξ) ,

∞
∑

m=−∞

h[m, l]e−j2πξm. (1.14)

This has been described in [21,26]. Insertion of (1.11) in (1.14) and using (1.5) and Poisson’s

sum formula gives

SHd
(l, ξ) =

∫

τ

∫

ν
SHc(τ, ν)sinc (πB(τ − lTs))

∞
∑

m=−∞

e
−j2πTs

“

ν− ξ

Ts

”

m
dτdν

= B
∞
∑

m=−∞

∫

τ
SHc (τ, (ξ +m)B) sinc (πB(τ − lTs)) dτ.

Now again some simplification can be done by taking into account the support of SHc(τ, ν).

Since the Doppler frequencies are limited to |ν| ≤ νmax/2 and νmax � B/2 there is no aliasing

for SHd
(l, ξ) which gives

SHd
(l, ξ) = B

∫

τ
SHc(τ, ξB)sinc (πB(τ − lTs)) dτ, ξ ∈ [−1/2, 1/2). (1.15)

A further approximation can be done since the bandwidth is large. Then, (1.15) becomes

SHd
(l, ξ) = SHc(lTs, ξB), (l, ξ) ∈ [0, L] × [−ξmax/2, ξmax/2],

where L is given by (1.12) and the maximum normalized Doppler frequency is

ξmax = Tsνmax =
νmax

B
.
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If the continuous-time channel Hc is underspread, it follows that

ξmaxL =
νmax

B

⌈

τmax

Ts

⌉

≈ νmaxτmax < 1,

i.e., the support of SHd
(l, ξ) is less than one.

Channel Statistics

The correlation function of h[m, l] is

E{h[m, l], h∗[m′, l′]} =

∫

τ
DHc

(

(m−m′)Ts, τ
)

sinc (πB(τ − lTs)) sinc
(

πB(τ − l′Ts)
)

dτ.

(1.16)

In general different taps are correlated. But for large bandwidths this effect is negligible and

the discrete WSSUS (DWSSUS) assumption can be applied. Uncorrelated taps in (1.16) are

equivalent to E{h[m, l], h∗[m′, l′]} = 0 for l 6= l′. This gives for the correlation function

E{h[m, l], h∗[m′, l′]} = DHd
[m−m′, l]δ[l− l′].

Then,

DHd
[m, l] =

∫

τ
DHc(mTs, τ) sinc2 (πB(τ − lTs)) dτ (1.17)

is the time-delay correlation function of Hd for l = l′. The statistics of the spreading function

are given by

E{SHd
(l, ξ), SHd

(l′, ξ′)} = CHd
(l, ξ)δ[l− l′]δ[ξ − ξ′], ξ, ξ′ ∈ [−1/2, 1/2).

Hence the scattering function of Hd is calculated from DHd
[m, l] by Fourier transformation:

CHd
(l, ξ) =

∞
∑

m=−∞

DHd
[m, l]e−j2πξm. (1.18)

The relation to the continuous-time case is obtained by combining (1.18) and (1.17) and can

be written as

CHd
(l, ξ) = B2

∫

τ
CHc(τ, ξB) sinc2 (πB(τ − lTs)) dτ. (1.19)

For large bandwidths (1.17) and (1.19) can be approximated by

DHd
[m, l] ≈ 1

B2
DHc(mTs, lTs), (1.20)

CHd
(l, ξ) ≈ CHc(lTs, ξB), ξ ∈ [−1/2, 1/2), (1.21)

which corresponds to a sampling of DHc(∆t, τ) and CHc(τ, ν), respectively. The support region

of CHd
(l, ξ) is (l, ξ) ∈ [0, L] × [−ξmax, ξmax].
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Channel Statistics

For the path loss of Hd we get

σHd
,

L
∑

l=0

∫ 1/2

−1/2
CHd

(l, ξ)dξ ≈
L
∑

l=0

∫ 1/2

−1/2
CHc(lTs, ξB)dξ ≈ 1

Ts

∫

τ

∫ 1/2

−1/2
CHc(τ, ξB)dτdξ

=

∫

τ

∫ B/2

−B/2
CHc(τ, νB)dτdν = σHc ,

where the approximation for large bandwidth (includes small Ts)in (1.21) in order to get

integration instead of summation are used. Then, the path loss σHd
is equal to the continuous-

time channel path loss σHc in (1.7).

The delay spread α2
Hd

is defined by

α2
Hd

,
1

σ2
Hd

L
∑

l=0

∫ ξmax

−ξmax

(l − l0)
2CHd

(l, ξ)dξ,

and approximately equal to

α2
Hd

≈ 1

σ2
Hc

L
∑

l=0

∫ ξmax

−ξmax

(l − l0)
2CHc(lTs, ξB)dξ ≈ 1

T 2
s σ

2
Hc

∫

τ

∫

ν
(τ − τ0)

2CHc(τ, ν) =
α2

Hc

T 2
s

,

i.e.,

αHd
≈ αHc

Ts
= BαHc .

Similarly, the Doppler spread β2
Hd

is defined by

β2
Hd

,
1

σ2
Hd

L
∑

l=0

∫ ξmax

−ξmax

(ξ − ξ0)
2CHd

(l, ξ)dξ

and approximately equal to

βHd
≈ TsβHc =

βHc

B
.

Hence definition and approximation of coherence time and coherence bandwidth are

THd
,

1

βHd

and BHd
,

1

αHd

,

with the relations

THd
≈ THc

Ts
= BTHc and BHd

≈ TsBHc =
BHc

B
.
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Xn−1,k+1

Xn−1,k

Xn−1,k−1

Xn,k+1
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Xn+1,k

Xn+1,k−1

Yn,k

1
K

N
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n+
1,k+

1 , f
n,k 〉

Figure 1.8: Multiplicative input-output relation.

1.3.3 Input-Output Relation

In this section we describe an approximate input-output relation for a single user OFDM

system. This concludes OFDM modulation (1.1.1), a time-varying channel given by (1.13),

and OFDM demodulation (1.1.2). Referring to [27] the system input-output relation is given

by

Yn,k =
∞
∑

n′=−∞

K−1
∑

k′=0

〈Hdgn′,k′ , fn,k〉Xn′,k′ + Zn,k, (1.22)

with

Zn,k , 〈u, fn,k〉,

where Hd denotes the discrete-time channel and u is zero-mean white Gaussian discrete-time

noise.

In (1.22) every Xn′,k′ for (n′, k′) ∈ Z× [0,K− 1] contributes to each Yn,k. Splitting (1.22) into

a desired and an interference term gives

〈Hdgn,k, fn,k〉Xn,k (1.23)

for the desired term and
∞
∑

n′=−∞
n′ 6=n

∞
∑

k′=0
k′ 6=k

〈Hdgn′,k′ , fn,k〉Xn′,k′ (1.24)

for the interference term. This is shown in Figure 1.8.

The interference term (1.24) can be decomposed into intersymbol interference (ISI) and inter-

carrier interference (ICI), depending on whether n 6 n′ or k 6 k′, respectively.
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ICI is the interference from different subcarriers within one OFDM symbol. In most cases

other than neighboring subcarriers can be neglected, e.g., by choosing appropriate transmit

and receive pulses. But there is no possibility to complete avoid ICI.

Neighboring symbols much more likely contribute to ISI. Typically ISI is avoided by using a

CP or a guard interval.

Approximation

By neglecting the interference terms, only the desired term in (1.23) remains (cf. [12]). Errors

caused by this approximation have been investigated in [12]. For underspread channels and

properly chosen pulses g[m] and f [m] the interference term (1.24) is approximately zero which

means

〈Hd gn′,k′ , fn,k〉 ≈ 0 for (n′, k′) 6= (n, k).

Then, (1.22) simplifies to

Yn,k = Hn,kXn,k + Zn,k, (1.25)

with channel coefficients

Hn,k , 〈Hd gn,k, fn,k〉.

This representation indeed allows to characterize a practical wireless channel using OFDM

because in practice wireless channels are underspread.

1.4 Entropy, Mutual Information, and System Capacity

This short overview of basic information theoretic concepts is based on [28]. Most elemen-

tary notions and properties in information theory will be shown. The most basic concept

is the calculation of the differential entropy of a (continuous) random variable trough its

probability density function (pdf). The next step is to define mutual information using en-

tropies and some of its properties. To conclude the overview, the terms of information rate

and system capacity are introduced.

1.4.1 Entropy

Entropy marks the most elementary part in information theory. It’s a quantity that indicates

the uncertainty of a random variable. First a differentiation between discrete and random

values has to be done. While the discrete random variable is described through a probability

mass function (pmf) the continuous random variable is characterized by its pdf. Since this

work is based on continuous random vectors we will use the differential entropy. For a given

continuous random vector X with pdf pX(x) the support region S is the set of outcomes x

for which pX(x) is nonzero, i.e., pX(x) > 0 for x ∈ S and pX(x) = 0 for x /∈ S. Then, the
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differential entropy of X is calculated as

h(X) = h(pX) = E

{

log
1

pX(x)

}

=

∫

S
pX(x)log

1

pX(x)
dx (1.26)

= −
∫

S
pX(x)log (pX(x)) dx. (1.27)

Throughout the thesis the natural logarithm will be used. Furthermore there are the joint

entropy pX,Y(x,y) and conditional entropy pX|Y(x|y). The joint differential entropy for the

vectors X and Y with pdfs pX(x) and pY(y), respectively is given by

h(X,Y) = h(pX,Y) = E

{

log
1

pX,Y(x,y)

}

= −
∫ ∫

Sx,y

pX,Y(x,y)log (pX,Y(x,y)) dxdy,

with Sx,y the support region of pX,Y(x,y). Conditional differential entropy for X given Y can

be calculated as

h(X|Y) = h(pX|Y) = E

{

log
1

pX|Y(x|y)

}

= −
∫ ∫

Sx,y

pX,Y(x,y)log
(

pX|Y(x|y)
)

dx dy

=

∫

Sy

pY(y)h(X|Y = y) dy,

with

h(X|Y = y) =

∫

Sx

pX|Y(x|y)log
(

pX|Y(x|y)
)

dx,

and Sx and Sy the support regions of X and Y, respectively. The effect of conditioning is

a decreasing entropy since there remains less uncertainty. In system capacity calculations

conditioning on e.g. input symbols or channel coefficients are common.

Gaussian random vector

One of the most common variable is the Gaussian random vector. For fixed variance, the

Gaussian distribution is the one that maximizes entropy. So it always is an upper bound on

the entropy of any random variable.

The differential entropy for a M × 1 real-valued Gaussian random vector X ∼ N (µX,CX)

with mean µX and covariance matrix CX = E
{

(X − µX)(X− µX)H
}

is

h(X) =
1

2
log
(

(πe)MdetCX

)

. (1.28)

For the scalar case X ∼ N (µX , σX) this gives

h(X) =
1

2
log
(

πeσ2
X

)

.

For circularly complex Gaussian random vectors the entropy can be calculated by applying

(1.28) to the real and imaginary part and summation of these results. For a M × 1 complex-

valued Gaussian random vector X ∼ CN (µX,CX) this gives

h(X) = log
(

(πe)MdetCX

)

. (1.29)
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Figure 1.9: Equivalent channel representation for system capacity calculation.

1.4.2 Mutual Information

Mutual information is a measure of the difference of the joint distribution pX,Y(x,y) and the

product distribution pX(x)pY(y), i.e.,

I(Y;X) , E

{

log
pX,Y(x,y)

pX(x)pY(y)

}

=

∫ ∫

Sx,y

pX,Y(x,y)log
pX,Y(x,y)

pX(x)pY(y)
dxdy. (1.30)

In other words mutual information is the amount of information that Y carries about X

and conversely. Combining mutual information (1.30) and entropy (1.26) gives some further

interesting properties and chain rules of mutual information. First the mutual information

is lower bounded by zero, i.e., I(Y;X) ≥ 0, which is intuitive since Y could not bear less

information on X than no information. Further it is possible to describe mutual information

in terms of differential entropy in several ways. This is done by expressing (1.30) in terms of

entropies and gives

I(Y;X) = I(X;Y) = h(Y) − h(Y|X) = h(X) − h(X|Y), (1.31)

I(Y;X) = h(X) + h(Y) − h(X,Y). (1.32)

The term in (1.32) includes an upper limit on mutual information (i.e., I(Y;X) ≤ h(X)+h(Y)

which is obtained for statistically independent random variables.

1.4.3 System Capacity

System capacity denotes the capacity of a given system from input to output. Figure 1.9 shows

the equivalent channel which will be used for system capacity calculation. The system input

is X, the system output Y, and the additive noise is denoted by Z. The continuous-time

channel Hc isn‘t known whether to the receiver nor to the transmitter. It follows, that the

equivalent channel can be represented by the conditional entropy pY|X(y|x). That is the pdf

of the system output with given (known) system input. Then, the system capacity is defined
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as

Csys , max
pX(x)

I(Y;X) = max
pX(x)











∫ ∫

Sx,y

pX,Y(x,y)log
pX,Y(x,y)

pX(x)pY(y)
dxdy











= max
pX(x)











∫ ∫

Sx,y

pY|X(y|x)pX(x)log
pY|X(y|x)

∫

Sx
pY|X′(y|x′)pX′(x′)dx′

dxdy











which is the maximum of I(Y;X) over all possible input pdf’s pX(x). An operational definition

of system capacity is the highest rate at which information can be transmitted reliable within

this system. For this the notion of ergodic information rate will be used. For a relative

long transmission time the calculated mutual information will be achieved. This can be done

through a sufficiently long code (compared to the fading speed of the channel [29]). Then

R , lim
T→∞

1

T
I(Y;X), (1.33)

with total transmission time T . Hence in our case the system capacity will be the maximum of

ergodic information rate over all possible inputs (all possible codebooks of X) which is denoted

by

S , max R.

In contrast to the operational channel capacity we will focus on the ’information’ channel

capacity. Hence, other information theoretic quantities like error probability and outage are

not treated.



Chapter 2

Overview of Known Results

In this chapter we want to give an overview of previous results. The main topics will be

multiuser OFDM systems, noncoherent channels (channels, where no channel state information

(CSI) is available), and time and frequency selective fading channels. First an overview of

needed properties should be pointed out. We want to deal with information theoretic quantities

(such as multiuser sum system capacity) of a multiuser multicarrier system (i.e. OFDM).

Although this sum system capacity isn‘t the only information quantity, we will focus our

attention on it.

• Channel/Signal Models. In order to describe the multicarrier system, an appropriate

channel and signal model has to be found. Several aspects have to be treated:

– Single user signal model/multiuser signal model: The question of how many users

there are and their mutual interference has to be declared.

– Frequency selectivity: In general a channel is assumed frequency selective, which

means different attenuation for different frequencies. Under certain circumstances

a frequency-nonselective channel will be used. Frequency-nonselective channels are

also known as flat fading channels.

– Time selectivity: The channel changes in time which can be expressed by the co-

herence time. Depending on the duration of the transmitted symbols the channel

is named a slowly fading or rapidly fading channel. Also the term block-fading is

used for slowly fading channels or equivalent large coherence times.

– Number of antennas: The more antennas there are, the more performance is within

reach. In this connection multiple-input multiple-output (MIMO) [9,30,31] systems

are of interest.

– Signaling constraints: In addition to statistics of the input signal some constraints,

such as average power constraint, peak-power constraint, bandwidth constraint or

delay constraints should be taken into account (e.g. [32]).

19
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• Channel State Information (CSI). Here a differentiation can be done as follows:

– CSI/no CSI: If CSI is available, no further channel statistics have to be obtained

for calculating the channel output. However in many cases there is no CSI available

and in this context the term noncoherent channel is known. In that case procedures

such as channel estimation can be implemented. The goal is to achieve the most

accurate CSI, which will result in a performance gain.

– CSI at transmitter and/or receiver: For the acquisition of CSI at the receiver various

approaches are possible. An overview of them is given in [12]. Making CSI available

to the transmitter allows the use of adapted modulation.

Further topics to be discussed are channel estimation, synchronization or the amount of colli-

sion in frequency. Channel estimation is used to obtain CSI and thereby it allows the use of ad-

vanced signal detection techniques. So it increases performance (e.g. for MIMO systems [33]).

Classical OFDM systems require perfect synchronization. CP-OFDM systems provide better

synchronization but also require additional system capacity. Although neglected in many sys-

tem capacity calculations it has to be mentioned. Finally different time-frequency signaling

schemes (such as frequency shift keying(FSK) or CDMA) have to be distincted.

2.1 Single User Results

First an overview of results for single user systems will be given. An extensive survey of fading

channels and their information theoretic and communication aspects is given in [32]. For the

single user case, flat fading and no CSI are assumed. With CSI unavailable to transmitter

and receiver it was shown that the capacity-achieving distribution of the i.i.d. input vector

X is given by X = µΦ. Here µ is a nonnegative scalar random variable with variance equal

to the average power and Φ is an isotropically distributed unit vector. This is the result of [34].

Schafhuber in his PhD Thesis [12] has studied the information rate and system capacity of

OFDM. An information-theoretic analysis with the aim of calculating the system capacity

of OFDM transmission over a time and frequency selective Rayleigh fading channel is given.

All these considerations are done for the wideband regime. The input is drawn from specific

codebooks, such as an orthogonal codebook (i.e. concentration of transmit energy in time and

in frequency; maximum peak-to-average power rate) and a constant modulus symbol alphabet

(e.g. BPSK). For an orthogonal codebook the information rate is upper bounded by

R ≤ Pσ2
H

N0
,

with P the transmit power, σ2
H
≈ σ2

Hc
the path loss, and N0 the power spectral density of the

noise. The infinite-bandwidth system capacity was calculated as

S =
Pσ2

H

N0
. (2.1)
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This result shows the achievability of capacity for a peaky codebook in the infinite bandwidth

case and arbitrarily low error probability. Note that there is no CSI available at the receiver.

The system capacity in (2.1) (with equality) is equal to the channel capacity of the time and

frequency selective WSSUS channel at infinite bandwidth [24, 35, 36].

For the calculation of the information rate for constant modulus signaling the system model

Y = diag{H}X + Z

was used. This is related to (1.25) (i.e. Yn,k = Hn,kXn,k + Zn,k, with time index n =

0, . . . ,M − 1, and subcarrier index k = 0, . . . ,K− 1) and will be explained in detail in Section

3.1. The diag{·} operator positions the elements of H on the diagonal of a matrix. The channel

is assumed as underspread. Since practical wireless channels are underspread, the channel can

be described by a multiplicative model.

For BPSK the entropy h(Y) was found by calculation of the distribution of Y first and then

calculating the entropy. A constant-modulus alphabet with |Xn,k| = σ2
X , a complex Gaussian

channel H ∼ CN (0, σ2
H
I), and complex Gaussian noise Z ∼ CN (0, N0I) were used to find the

distribution of output Y ∼ CN (0,
(

σ2
Xσ

2
H

+N0

)

I) which maximizes the entropy h(Y). Then,

the differential entropy is

h(Y) ≤MKlog

(

1 +
σ2

Xσ
2
H

N0

)

+MKlog(πeN0).

Note that equality is obtained if and only if there are totally uncorrelated output symbols.

The mutual information of Y and H, given X is

I(Y;H|X) =

MK−1
∑

i=0

log

(

1 +
σ2

X

N0
λi{RH}

)

,

with RH a MK × MK Toeplitz correlation matrix. The first row of RH is denoted by

[RH[0] RH[1] . . . RH[M − 1]], with K × K correlation matrix RH[m]. The calculation of

upper bound on information rate results in

RCM ≤ K

T
log

(

1 +
σ2

H
σ2

X

N0

)

− 1

T

L
∑

l=0

∫ 1/2

−1/2
log

(

1 +K
σ2

X

N0
CH(l, ξ)

)

dξ,

where RCM stands for the constant-modulus ergodic information rate. This result does not

contain any CSI but the statistics of the channel. The first term in it denotes the result for

the additive white Gaussian noise (AWGN) channel. The second term is a penalty term and

in [12] it was shown to be a measure for the channel prediction error. For large bandwidths

an approximation can be given by

RCM /
B

TF
log

(

1 +
TF

B

Pσ2
H

N0

)

−B

∫

τ

∫

ν
log

(

1 +
P

BN0
CH(τ, ν)

)

dτdν. (2.2)

Here the first term is the rate for the additive white Gaussian noise (AWGN) case. The second

term is a penalty due to noncoherence, which results from the need of channel estimation. The
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asymptotic limit for infinite bandwidth results in RCM → 0. Further upper and lower bounds

on system capacity for an OFDM system are calculated. Then, the upper bound on Csys is

given through the AWGN channel capacity:

Csys ≤
B

TF
log

(

1 +
TF

B

Pσ2
H

N0

)

,

and in the limit of infinite bandwidth

lim
B→∞

B

TF
log

(

1 +
TF

B

Pσ2
H

N0

)

=
Pσ2

H

N0
.

A reference to capacity bounding in [37] is given. Bounds on information rate for Gaussian

signaling are stated but no closed-form expression.

Bölcskei and Shamai in [38] apply mutual information bounding techniques such as in [32]

on different time-frequency signaling schemes such as FSK, OFDM and CDMA. The channel

is a time-frequency selective fading channel. They investigate the mutual information in the

wideband limit in the absence of CSI for a signal model Y = HX+Z (equivalent to that above)

with Y the output vector, H the unknown channel diagonal matrix, X the input vector, and

Z the circularly symmetric additive white Gaussian noise. With 1

I(Y;X,H) ≤ log det

(

I +
1

N0
RH � CX

)

,

I(Y;H|X) = EX

{

log det

(

I +
1

N0
XRHXH

)}

,

with RH and CX the correlations matrices of H and X, respectively, the following bounds on

mutual information are obtained:

I(Y;X) ≥ EH

{

log det

(

I +
1

N0
HCXHH

)}

− EX

{

log det

(

I +
1

N0
XRHXH

)}

,

I(Y;X) ≤ log det

(

I +
1

N0
RH � CX

)

− EX

{

log det

(

I +
1

N0
XRHXH

)}

. (2.3)

Investigations on conditions for peakiness in order to achieve the perfect CSI capacity in the

wideband regime for 2-PSK system lead to

lim
M→∞

I(Y;H|X) =

∫

τ

∫

ν
log

(

1 +
1

N0
CHc

(τ, ν)

)

dτdν,

which is similar to the penalty term in RCM in [12]. Hence for non-peaky time-frequency

signaling schemes the system capacity will tend to zero. Further a fourthegy upper bound2of

(2.3) for transmission over an underspread fading channel is presented as

I(Y;X) ≤ 1

N2
0

EX

{

MK−1
∑

i=0

λ2
i (XRHXH)

}

.

Results with fourthegy upper bound were also presented in [39, 40].

1� denotes the Hadamard (pointwise) product.
2Fourthegy bounding uses the approximations log(1 + x) ≤ x and log(1 + x) ≥ x − x2/2.



2.2. Multiuser Results 23

2.2 Multiuser Results

In this section an overview of results for multiuser communication will be given. In the single

user case the user has access to the entire time-frequency area. Multiuser communication has

to define this allocation of time slots and subcarriers with respect to the demands of the system

(e.g. high sum information rate, high amount of users). Investigations on different signaling

schemes and channel statistics have to be performed.

Thomas and Cover in [28] give bounds on the capacity for the individual users. They present

some results for the capacity region of Gaussian multiple user channels and the multiple access

channel. The most trivial result for two users can be pointed out as

R1 < I(X1;Y|X2),

R2 < I(X2;Y|X1),

R1 +R2 < I(X2,X1;Y),

with R1, R2 the rates of the two users, X1,X2 their inputs and Y the output of the system.

The model is shown in Figure 2.1(a), where the system is described by a conditional entropy

pY|X1,X2
(y|x1,x2). For the two user case and given input distribution this gives a region of

achievable rate pairs depicted in Figure 2.1(b). The sum rate in Figure 2.1(b) defines the bevel,

avoiding both users to transmit with highest rate. For a Gaussian multiple access system the

sum of all users’ information rate can be bounded as

U−1
∑

i=0

R(u) ≤ 1

2
log

(

1 +

∑U−1
i=0 P (u)

N0

)

,

with U the number of users, R(u) the information rate of user u, P (u) the power of user u, and

N0 the power spectral density of the noise.

Gallager in [41] analyzes a system with multiple users transmitting to a single receiver. A

time varying multipath channel is assumed. The problem of multiuser detection is outlined,

e.g. stripping. A differentiation between narrow band and wideband is done in the sense of

exclusive and shared use of bandwidth by the user, respectively. There is CSI available, which

is obtained by a so called coherent rake receiver (equalization at the receiver). The coherent

result is

RNB(U) < E

{

KF ln

[

1 +

∑

k∈U Pk|H(k)(0, t)|2
BN0

]}

= RWB(U),

where RNB(U) is the information rate for the narrowband case and RWB(U) that in the wide-

band regime (equivalent to CDMA). Note that U denotes the subset of active users, K the

number of subcarriers, F the bandwidth of one subcarrier, B the total bandwidth, Pk/W the

power spectral density with Pk the power of source k, H(k)(0, t) the Fourier-transformation of
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R2

I(X2;Y|X1)

I(X2;Y)

0 I(X1;Y) I(X1;Y|X2)

R1

X1

X2
pY|X1,X2

(y|x1,x2)
Y

(a) (b)

Figure 2.1: (a) System model for two users (multiple access channel). (b) Capacity region

for a multiple user system.

the k-th user‘s channel impulse response at time t(it‘s assumed as ergodic and constant within

F ) and N0/2 the white Gaussian noise spectral density. The narrowband case is similar to

OFDMA and in other words there is no collision in frequency. The wideband case is the MC-

CDMA case and there is full collision in frequency. For better comprehension the Figures 1.5

and 1.6(b) for the narrowband case and the wideband case, respectively may be useful. This

result points out, that a CDMA accessing scheme is an outer bound to any other concerning

the allocation of bandwidth to users. Explicit this was shown for CDMA, which is capable of

higher rates than systems with slow frequency hopping. This is, because frequency hopping

doesn‘t enhance the average mutual information. A further conclusion is, thatK users (one per

subcarrier), distributed in space, can obtain a higher rate than one user with equal sum power.

Multiuser aspects have also been considered in [42]. Shamai and Marzetta there used a model

with U independent users transmitting over a Rayleigh block-fading channel with a coherence

interval of Tcoh symbols. There is no CSI neither at the transmitter nor at the receiver. The

receiver is equipped with N receive antennas. First an upper bound for coherence interval

Tcoh = 1 is presented. Then, the capacity for U > Tcoh is equal to the capacity for U = Tcoh

and the mutual information is maximized by choosing the input X = ΦV which is the result

in [32] presented above. Asymptotic results for a large number of users and a long coherence

interval give a bound on mutual information. The used signal model is Y =
√

1/UXH + Z.

Note that Y is the output, X the input, XG the input with Gaussian signaling, and H is the

channel. Then

E

{

log det

(

I +
σ2

X

UN0
HHH

)}

−UN
Tcoh

log

(

1 +
σ2

Xσ
2
HTcoh

UN0

)

≤ I(Y;XG)

Tcoh
≤ UN log

(

1 +
σ2

Xσ
2
H

N0

)

is the result for the bounding of information rate. This bounding was done by use of the

chain rules of mutual information, Jensen’s inequality and the upper bound through Gaussian
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assumption. With both T coh and U getting big with constant ratio β = Tcoh/U this gives the

asymptotic result

N log

(

1 +
σ2

Xσ
2
H

N0

)

− N

β
log

(

1 +
σ2

Xσ
2
H

N0
β

)

≤ I(Y;XG)

Tcoh
≤ UN log

(

1 +
σ2

Xσ
2
H

N0

)

.

Analysis for large SNR
σ2
X

σ2
H

N0
which is appropriate for multiple users operating in an extremely

high data regime leads to

lim
SNR→∞

IG(X;S)

log
(

σ2
X

σ2
H

N0

) ≥ TcohN

(

1 − N

Tcoh

)

.

Results for MIMO-systems were presented in [43,44]. In [43] a MIMO multiple access scheme

is presented, which allows to vary the amount of user collision in frequency. The channel is

modeled as a frequency-selective multiple access fading channel. Perfect channel knowledge

is available to the receiver but not to the transmitter. They provided results for the ergodic

capacity region for joint and single user decoding. It is shown that the ergodic capacity

region of a fully collision-based scheme (such as CDMA) is an outer bound on that of any

other multiple access strategy. Hence for spatially well separated users, CDMA is suggested.

Otherwise minimizing the amount of collision reduces the receiver complexity. For poor spatial

separation orthogonal accessing schemes are beneficial as sum capacity is concerned.

In [44] also each user employs OFDM and the multiple antenna receiver has CSI of all channels.

The channel is again a frequency-selective multiple access fading channel. The main target

of this article is the investigation of the impact of collision in frequency on the sum capacity.

The analysis is done in terms of multi-user multiplexing gain for CDMA and general tone

assignments. In order to reach a high multi-user multiplexing gain, assuming good spatial

separation and a large number of receive antennas, collision in frequency is stated decisive.

For poor spatial separation or a small number of receive antennas no collision is needed to

obtain the multiplexing gain of CMDA. An increasing number of receive antennas will require

collision to maximize the multi-user multiplexing gain.



Chapter 3

System Capacity of MC-CDMA

Several works calculating the information rate and system capacity of OFDM systems were

presented in Chapter 2. In this chapter, an extension of these results for MC-CDMA will

be presented. Hence we will have to calculate the information rate and system capacity of

a combination of DS-CDMA and OFDM (cf. Section 1.2). This will be done by using a

MC-CDMA approach for multiple users. For transmission we assume a time and frequency

selective Rayleigh fading channel as introduced in Section 1.3. An analysis for the wideband

regime will be given.

The outline of this chapter is as follows. First a single user OFDM model equivalent to that

in [12] will be introduced. Next, the MC-CDMA approach is described and applied to the

single user OFDM model. The goal is to obtain the mutual information of input and output

and the system capacity of MC-CDMA. Since this will be seen to be too difficult, bounds for

these quantities will be derived. At last, numerical calculations and simulations are presented

to interpret and confirm the theoretical results. The procedure as a whole is similar to that

in [12].

3.1 Definitions and Notation

In this section we will introduce a single user OFDM model based on the approximations in

Section 1.3.3. Further information theoretic notions for this case will be introduced. It will

be important to separate random sequences/vectors and their realizations. Random variables

will be denoted by capital letters and their realizations by lower-case letters. As vectors are

denoted by boldface letters a random vector will be denoted by a boldface capital letter and

its realization by a boldface lower-case letter.

We now introduce the single user OFDM model for M OFDM symbols and K subcarriers.

The total transmission time then is MT (with symbol duration T ) and the total bandwidth

is KF (with frequency separation F ). Hence we get a MK × 1 channel input vector X and a

26
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MK × 1 channel output vector Y defined by

X , [XT
0 XT

1 . . . XT
M−1]

T
, with Xn , [Xn,0 Xn,1 . . . Xn,K−1]

T ,

Y , [YT
0 YT

1 . . . YT
M−1]

T
, with Yn , [Yn,0 Yn,1 . . . Yn,K−1]

T .

Here Xn,k and Yn,k are the channel input and output, respectively for the n-th symbol and

k-th subcarrier. Neglecting intersymbol and intercarrier interference the input-output relation

is given by the approximation in (1.25). With the MK × 1 channel vector

H , [HT
0 HT

1 . . . HT
M−1]

T
, with Hn , [Hn,0 Hn,1 . . . Hn,K−1]

T ,

the input-output relation for the total OFDM system can be expressed by

Y = diag{H}X + Z = diag{X}H + Z. (3.1)

By the diag{·} operation a diagonal matrix with the elements of the argument is built. Z is

assumed as circularly symmetric complex Gaussian noise with covariance matrix RZ = N0I,

i.e., Z ∼ CN (0, N0I). So the variance of noise σ2
Z will be denoted by N0 all through the thesis.

For convenience, we use the shortened notation

S = diag{H}X = diag{X}H. (3.2)

3.2 MC-CDMA System Capacity for Infinite Bandwidth

Using the OFDM input-output relation in (3.1) we now derive the system capacity (see Section

1.4.3) for a MC-CDMA system. The channel is a time and frequency selective WSSUS Rayleigh

fading channel and neither transmitter nor receiver have CSI.

3.2.1 MC-CDMA Approximation

In order to get a multiuser system the so far described system model has to be enlarged by the

MC-CDMA assumption. While in [12] the input symbols where assumed as constant-modulus

we now need to adapt this to the multiuser case. The imitation of a multiuser system by a

single user system is shown in Figures 3.1(a) and 3.1(b) (see also Figure 1.9 for equivalent

channel). The users signals are spread over the entire bandwidth. Then, for multiple users a

summation over users at the transmitter in the sense of superposition is necessary, i.e.,

Xn,k =
U−1
∑

u=0

X(u)
n c

(u)
k ,

with Xn,k the superpositioned OFDM input symbol, X
(u)
n the input data of user u, and c

(u)
k the

spreading sequence of user u. This superposition of all spreaded input symbols in frequency

leads to a distribution of the overall input symbols Xn,k. By use of the central limit theorem
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X(U−1)

X YY

(a) (b)
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c
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c
(U−1)
k

x
(0)
n ×

x
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x
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xn,k ∼ CN (0, σ2
X)

(c)

Figure 3.1: (a) Multiuser system model with U single users applying varying codebooks trans-

mitting over the equivalent channel. (b) Multiuser system with MC-CDMA ap-

proximation where a single user applies a circularly symmetric complex Gaussian

codebook. (c) Spreading of input symbols over frequency and superposition of U

users gives elements of X.

[45, 46] this superposition of single users applying any codebook can be described through

circularly symmetric complex Gaussian input symbols Xn,k. Figure 3.1 (c) shows this. This

approximation requires uncorrelated users since the individual random variables in the central

limit theorem have to be independent. Further, the central limit theorem assumes a relatively

large number of random variables or in our case users, respectively.

3.2.2 Information Rate Calculation for Gaussian Signaling

As pointed out in Subsection 3.2.1 the interference free OFDM system used by [12] can be

used with Gaussian input symbols Xn,k instead of a BPSK codebook. For the derivation of

the mutual information

I(Y;X) = I(Y;X,H) − I(Y;H|X) (3.3)
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is used. With I(Y;X,H) = h(Y) − h(Y|X,H) and I(Y;X|H) = h(Y|X) − h(Y|X,H) the

mutual information in terms of entropy is

I(Y;X) = h(Y) − h(Y|X). (3.4)

Hence the task is to find closed form expressions of h(Y) and h(Y|X). This split of mutual

information is already known from [12].

Calculation of h(Y|X,H)

Although not needed explicitly for the calculation of I(Y;X) a result for h(Y|X,H) is pre-

sented now. It will be used later for mutual information bounding. This calculation is equiv-

alent to that in [12],

h(Y|X,H) = EX{EH{h(Y|x,h)}} = EX{EH{h(diag{h}x + Z|x,h)}}
= EX{EH{h(Z|,x,h)}} = EX{EH{h(Z)}} = MK log(πeN0). (3.5)

An interpretation therefore can be given as follows. The pdf of Y conditioned on X and H

will only leave the uncertainty of noise, which easily can be calculated.

Calculation of h(Y|X)

Again we fellow the development in [12]. Then, h(Y|X) can be developed as

h(Y|X) = EX{EH{h(Y|x)}} = EX

{

log
(

(πe)MKdet [diag{x} RH diag{x∗} +N0I ]
)}

(3.6)

= EX

{

log

(

(πeN0)
MKdet

[

I +
1

N0
diag{x} RH diag{x∗}

])}

(3.7)

= MK log(πeN0) + EX

{

log

(

det

[

I +
1

N0
diag{x} RH diag{x∗}

])}

(3.8)

with the MK ×MK block-Toeplitz correlation matrix RH = E
{

HHH
}

.

Then, with the results in (3.5) and (3.6) The mutual information I(Y;H|X) can be composed

as

I(Y;H|X) = EX

{

log

(

det

[

I +
1

N0
diag{x} RH diag{x∗}

])}

. (3.9)

It remains to calculate the expectation with respect to the vector x. In this context a bound

will be presented in Subsection 3.2.3 since an equality can only be obtained for a constant-

modulus codebook.

Calculation of h(Y)

The first term in (3.4) is the entropy of the output vector Y. The input-output relation in

(3.1) can be written as

Y = S + Z, with S = diag{H} X and Z ∼ CN (0, N0I). (3.10)
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For the calculation of an entropy, the distribution of Y has to be calculated first. Since a

calculation based on the vector-product seems too complicated, we bound the entropy of the

whole vector. In particular, we use the upper bound for the entropy of Y,

h(Y) ≤MKh(Yn,k). (3.11)

This bound corresponds to independent Yn,k, i.e., the Yn,k are identically independent dis-

tributed (i.i.d). It remains to compute h(Yn,k). We start by calculating the distribution of

Yn,k. So the first part of the basic input-output relation is

Sn,k = Hn,kXn,k = |Hn,k||Xn,k|ej(arg{Hn,k}+arg{Xn,k}).

|Hn,k| is Rayleigh-distributed and arg(|Hn,k|) is uniformly distributed. The same way |Xn,k|
and arg(|Xn,k|) are Rayleigh-distributed and uniformly distributed, respectively. The variances

are σ2
H

for the channel and σ2
X for the input symbols.

The pdf of the phase of Sn,k, arg{Sn,k} = arg{Hn,k} + arg{Xn,k}, results from a convolution

of the pdf of arg(Hn,k) and arg(Xn,k) and is again uniform.

For the calculation of pdf of |Sn,k| a more specialized method is needed since the product of

two Rayleigh-distributed pdf’s has to be obtained. By using the results in [47] the distribution

p|Sn,k|(|s|) of |Sn,k| is obtained as

p|Sn,k|(|s|) =
4|s|
σ2

Xσ
2
H

K0

(

2|s|
σXσH

)

. (3.12)

Here Theorem 4 on page 48 in [47] was used for two real random Gaussian vectors Xn and

Ym with mean vectors An and Bn and correlation coefficients ψ0 and ψ′
0, respectively. The

probability density function of the product of r = |Xn| and s = |Ym|, z = rs is given by

p(z) =
4

z

(

z2

4ψ0ψ′
0

)
1
4
(n+m)

e
− 1

2

„

a2

ψ0
+ b2

ψ′
0

«

∞
∑

k=0

∞
∑

j=0

1

k!j!Γ
(

1
2n+ k

)

Γ
(

1
2m+ j

)

·
(

a
√
z

2ψ0

)2k(
b
√
z

2ψ′
0

)2j(
ψ0

ψ′
0

) 1
2
(k−j)

K 1
2
(n−m)+k−j

(

z
√

ψ0ψ′
0

)

,

where a = |An| and b = |Bn|, K the Bessel function of the second kind and order zero.

For the overall pdf of Sn,k this gives

pSn,k(s) =
2

πσ2
Xσ

2
H

K0

(

2|s|
σXσH

)

, (3.13)

where the combination of the pdfs of the magnitude and the phase of Sn,k is done by (see [46])

pSn,k(s) =
1

|s| p|Sn,k|(|s|) parg{Sn,k}(arg{s}).
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Figure 3.2: (a) The pdf of |Sn,k| for σ2
X = 1 and σ2

H
= 1. (b) The pdf of |Zn,k| is depicted

for N0 = 1W/Hz.

According to (3.10) at next the noise has to be added which means a convolution of pdfs (in

a complex manner), e.g.

pYn,k(yR, yI) = (pSn,k ∗ pZn,k)(yR, yI)

=

∫ ∞

−∞

∫ ∞

−∞
pSn,k(y

′
R, y

′
I) pZn,k(yR − y′R, yI − y′I) dy

′
Rdy

′
I , (3.14)

with pZn,k the distribution of the circularly symmetric Gaussian noise Zn,k, given through

pZn,k(zr, zI) =
1

2πN0
e
−
z2
R

+z2
I

2N0 , (3.15)

or equivalently

pZn,k(z) =
1

2πN0
e
−

|z|2

2N0 . (3.16)

These pdfs for the magnitude of Sn,k and Zn,k are shown in Figure 3.2. In (3.14) also pSn,k(s)

is used as

pSn,k(sR, sI) =
2

πσ2
Xσ

2
H

K0





2
√

s2R + s2I

σXσH



 . (3.17)

Here the mathematical complexity gets too high to reach a nice (considerable) result. Therefore

a numerical calculation and a simulation will be presented in Section 3.3. On a theoretical

level, bounding techniques will be applied in Subsection 3.2.3.
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3.2.3 Bounds on Mutual Information for Gaussian Signaling

As pointed out above for a more complex codebook the effort in calculating mutual information

and information rate accurately increases. In this section bounding techniques will be applied.

For the sake of clarity the equations used are shown first,

I(Y;X) = I(Y;X,H) − I(Y;H|X), (3.18)

I(Y;X,H) = h(Y) − h(Y|X,H). (3.19)

Next, the goals of bounding will be described. For the upper bound on mutual information the

more detailed split will be used. Then, an upper bound on the entropy of the output symbols

h(Y) and lower bounds on h(Y|X,H) and I(Y;H|X) are required. On the other side for

the lower bound on mutual information an upper bound on I(Y;H|X) and a lower bound on

I(Y;H,X) are necessary since the split in (3.18) will be used.

Upper Bound

For the upper bound on I(Y;X) we use the more detailed term I(Y;X) = h(Y)−h(Y|X,H)−
I(Y;H|X). We first note that h(Y|X,H) is given by (3.5). For the upper bound on the entropy

of the output vector Y we refer to the calculation in Section 3.2.2 where the entropy is upper

bounded by (3.11). With the general fact, that Gaussian random variables maximize entropy

we derive an upper bound with a Gaussian distributed Y ′
n,k. This is

h(Yn,k) ≤ h(Y ′
n,k), with Y ′

n,k ∼ CN (0, σ2
Y ′), (3.20)

and hence for Yn,k i.i.d. this can be widened to Y and h(Y). Note that Gaussian output

symbols Yn,k are the result of a BPSK symbol alphabet onXn,k and not of a Gaussian codebook

we supposed. Hence the result for h(Y) is the upper bound [12]

h(Y) ≤ MK log

(

1 +
σ2

Xσ
2
H

N0

)

+ MK log(πeN0). (3.21)

The remaining term is a lower bound on I(Y;H|X). We apply log (1 + x) ≥ x− x2

2 to (3.9).

This concept of fourthegy bounding was used amongst others by [39]. First a modification on

(3.9) gives

I(Y;H|X) = EX

{

log

(

det

[

I +
1

N0
diag{x} RH diag{x∗}

])}

= EX

{

MK−1
∑

i=0

log

(

1 +
1

N0
λi {diag{x} RH diag{x∗}}

)

}

,

where the eigenvalues are denoted by λi{·}. We introduce the abbreviation R′
H

= diag{x} RH diag{x∗}
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and apply log (1 + x) ≥ x− x2

2 , which gives

I(Y;H|X) ≥ EX

{

MK−1
∑

i=0

(

1

N0
λi{R′

H
} − 1

2N2
0

λ2
i {R′

H
}
)

}

=
1

N0
EX

{

MK−1
∑

i=0

λi{R′
H
}
}

− 1

2N2
0

EX

{

MK−1
∑

i=0

λ2
i {R′

H
}
}

. (3.22)

Noting that
∑

i λi{R′
H
} equals the trace Tr(R′

H
) and

∑

i λ
2
i {R′

H
} the Frobenius norm (Schur-

norm) ||R′
H
||2F = Tr(R′

H
R′H

H
) we can write

I(Y;H|X) ≥ 1

N0
Tr
{

EX{R′
H
}
}

− 1

2N2
0

Tr
{

EX

{

R′
H
R′H

H

}}

.

Resubstitution of R′
H

gives

I(Y;H|X) ≥ 1

N0
Tr {EX{diag{x∗} diag{x}} RH}

− 1

2N2
0

Tr
{

EX

{

diag{x∗} diag{x} RH RH
H

diag{x∗} diag{x}
}}

=
σ2

X

N0
Tr {RH} −

3σ4
X

N2
0

Tr
{

RH RH
H
}
}

.

where we used the shift-property of Tr(·)1 and

EX {diag{x∗} diag{x}} = σ2
XI,

EX{diag{x∗} diag{x} diag{x∗} diag{x}} = EX{|x|4} I = 6 σ4
XI,

where we assumed an i.i.d. codebook. Finally, Tr(RH) equals the path loss σ2
H

and hence the

lower bound on I(Y;H|X) can be written as

I(Y;H|X) ≥ σ2
X

N0
σ2

H
− 3σ4

X

N2
0

‖RH‖2
F . (3.23)

Lower Bound

Using the first term in (3.18) we first search for a lower bound on I(Y;X,H). In order to get

a tighter bound a result of [38] is used,

I(Y;X,H) = EH

{

log det
[

I + HCXHH
]}

. (3.24)

The second term for the lower bound is the upper bound on I(Y;H|X). This derivation is

based on that in [12].

1Tr(ABC) =Tr(CAB) =Tr(BCA)
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Starting with the equation in (3.9) by applying Jensen‘s inequality2, gives

I(Y;H|X) = EX

{

log

(

det

[

I +
1

N0
diag{x∗} diag{x} RH

])}

≤ log

(

det

[

I +
1

N0
EX {diag{x∗} diag{x}} RH

])

= log

(

det

[

I +
σ2

X

N0
RH

])

,

where we used EX {diag{x∗} diag{x}} = σ2
X I. With λ(RH) the eigenvalues of RH we get

I(Y;H|X) ≤
MK−1
∑

i=0

log

(

1 +
σ2

X

N0
λi{RH}

)

. (3.25)

Combination of Bounds

With the composition in (3.19) and the corresponding results (3.21), (3.5) and (3.23) the upper

bound is

I(Y;X) ≤ MK log

(

1 +
σ2

Xσ
2
H

N0

)

− σ2
X

N0
σ2

H
+

3σ4
X

N2
0

‖RH‖2
F . (3.26)

The the upper bound on information rate can be calculated. This calculation follows (1.33)

with total transmission time MT and gives

R = lim
M→∞

1

MT
I(Y;X) ≤ B

TF
log

(

1 +
TF

B

Pσ2
H

N0

)

− Pσ2
H

N0
+

3P 2

BN2
0

∫

τ

∫

ν
C2

H
(τ, ν) dτdν.

(3.27)

By Combination of the Results in (3.24) and (3.25) and with (3.18) the lower bound on mutual

information is obtained as

I(Y;X) ≥ EH{log det(I + HCxH
H)} −

MK−1
∑

i=0

log

(

1 +
σ2

X

N0
λi{RH}

)

.

Here the first term is equivalent to the additive white Gaussian noise case and the second term

can be regarded as a noncoherence penalty term. This penalty is caused by the necessity of

estimating the channel.

3.3 Simulation Results and Numerical Evaluation

In order to assess the difference of our results to previous ones and to obtain further insights

regarding the distributions, entropy and others, simulations and numerical evaluations were

done.

2Jensen’s inequality says, that f
`
Pn

i=1 λixi
´

≥
Pn

i=1 λkf(xk) for a concave function f and f
`
Pn

i=1 λixi
´

≤
Pn

i=1 λkf(xk) for a convex function. For probability calculations the summation may be exchanged by the

expectation operator E(·), then f(EX) ≤ Ef(X) for a concave function [28].
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Figure 3.3: Histograms of |Yn,k| for (a) BPSK input (b) Gaussian input; histograms of

arg(Yn,k) for (c) BPSK input and (d) Gaussian input. Parameters used were

σ2
X = 1, σ2

H
= 1 and N0 = 1W/Hz. The number of realizations was 2048000.

3.3.1 Monte Carlo Simulation Results

The simulations were done for a constant-modulus input X and a Gaussian distributed input

X. The channel coefficients Hn,k are assumed i.i.d. complex Gaussian with path loss σ2
H
. This

assumption is because the correlations are not relevant for the bound on h(Yn,k.

Figure 3.3 shows the simulation of the pdf of the receive symbol Yn,k of an OFDM system.

The simulation is based on the input-output relation in (3.1) with BPSK and Gaussian input

symbols with σ2
X = 1. The path loss is σ2

H
= 1, and the power spectral density of noise-

vector Z is N0 = 1W/Hz. This unrealistic assumptions (extremely low SNR) were made

to emphasize the differences of the various input symbol constellations. With independent

symbols and channel coefficients the simulation simply can be done using (1.25). For Gaussian

input (Figure 3.3(b)) the distribution of Yn,k gets narrower than that for BPSK input. For

comparison the distribution of the magnitude of Yn,k for BPSK input constellation which is

Rayleigh-distributed with variance σY = 2 is shown in Figure 3.3(b). This can also (and

better) be seen in Figure 3.4 for a different noise variance. Even though the distribution of

the output for Gaussian input symbols seems to be Rayleigh it isn’t (cf. (3.12)), but it is for

BPSK. More precisely, BPSK input causes complex Gaussian distributed output Yn,k, which
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Figure 3.4: Histograms of |Yn,k| for BPSK and |Yn,k| Gaussian input symbols with σ2
X = 1,

σ2
H

= 1 and N0 = 10−3W/Hz. The number of realizations was 2048000.

means maximization of entropy. The distribution of the phases for Gaussian and BPSK input

can be regarded as identically distributed. From this diagrams, the fact that Yn,k has lower

entropy for a Gaussian codebook than for a constant-modulus codebook can be confirmed.

Then, the entropy h(Yn,k) for BPSK input denotes an upper bound on the entropy h(Yn,k)

for Gaussian input. In another argumentation the entropy of a less widespread pdf (Gaussian

input) will be lower since there is less uncertainty contained.

3.3.2 Numerical Evaluation

For numerical evaluation a convolution of the pdf in (3.12) divided by |s| (because of pdf-

transformation) and the absolute-part-pdf of (3.16),

p|Zn,k|(|z|) =
|z|

2πN0
e
−

|z|2

2N0 ,

divided by |z|, has to be done by using (3.14). This convolution was done numerically. Figure

3.5 shows the distributions of Sn,k and Zn,k in the complex plane. The distribution of Sn,k (cf.

(3.13)) contains the Bessel function of second kind and order 0 which describes the maximum

point at the origin tending to infinity. Hence these numerical calculations will suffer certain

inaccuracy. The distribution of Zn,k is circular complex Gaussian. Then, the distribution of

output symbols is obtained by convolution pYn,k(yR, yI) = (pSn,k ∗ pZn,k)(yR, yI) (cf. (3.14) ).



3.3. Simulation Results and Numerical Evaluation 37

Figure 3.5: Numerically evaluated pdfs of (a) Sn,k and (b) Zn,k for σ2
X = σ2

H
= 1 and N0 =

1W/Hz.

Figure 3.6: Numerically evaluated pdf of the output Yn,k for σ2
X = σ2

H
= 1 and N0 = 1W/Hz.
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Figure 3.7: Differential entropy of output Yn,k for BPSK input (left) and Gaussian input

(right) obtained with Monte Carlo simulation, numerical evaluation and exact

expression. All results are (as above) for σ2
X = σ2

H
= 1 and N0 = 1W/Hz.

This is shown in (Figure 3.6). It can be seen, that the pdf is similar to a complex Gaussian

pdf, however it is slightly more concentrated at the origin.

3.3.3 Comparison of Simulation and Numerical Evaluation

In this Subsection the Monte Carlo simulated and numerically calculated pdfs of the output

vector Y are used for analysing its statistical properties. The most important value here is

be the entropy of the output. In Figure 3.7 the entropy of Yn,k obtained with different input

symbols and Monte Carlo simulation and numerical evaluation is presented. Here, the above

mentioned fact that the entropy for BPSK input is higher than that for a Gaussian input is

confirmed. There are also negligible differences (caused by too small resolution at the sampling

of the pdfs) between Monte Carlo simulation, numerical calculation and accurate calculation

according to (1.29). In Figure 3.8 similar results are shown for N0 = 10−3W/Hz. Here also

the difference between Monte Carlo simulation and numerical calculation for Gaussian input

constellation can be seen. In Figure 3.8 also an entropy for a numerical result with a resolution

(sampling of pdf) of 401×401 bins is shown. Since the pdf of Sn,k gets infinite at the origin, the

quantization underlying the empirical histogram causes an error. Therefore a more accurate
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ing resolution) and exact expression. All results are for σ2
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H
= 1 and

N0 = 10−3W/Hz.

result can be obtained for a higher resolution of 801× 801bins which is also shown in 3.8. For

increasing resolution the result obtained with Monte Carlo simulation should be reached.

3.3.4 Simulation of Upper Bound on Information Rate

The simulation of the upper bound on information rate is done according to (3.27). Figure 3.9

shows the result for this fourthegy upper bound for two different channels with flat scattering

functions and channel spreads τmaxνmax = 10−2 and τmaxνmax = 10−3. The simulation setup

was taken from [12], where an IEEE 802.11a related system was simulated. The subcarrier

spacing was F = 312.5kHz and TF = N/K = 1.25. The transmit power was P = 1mW,

the path loss for both channels σH = 90dB and N0 = k0 · 400K = 4.1421 · 10−21W with

the Boltzmann constant k0 = 1.3807 · 10−23Ws/Hz. For comparison the result of [12] in

(2.2) and the additive white Gaussian noise (AWGN) information rate are depicted as dashed

curves. The dark solid curves depicts the fourthegy upper bound for τmaxνmax = 10−3 the

bright solid curve the fourthegy upper bound for τmaxνmax = 10−2. It can be seen that the

fourthegy upper bound isn‘t very tight for low to medium frequencies. This can be described
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Figure 3.9: Fourthegy upper bound on information rate for channel spreads τmaxνmax = 10−3

(dark solid curve) and τmaxνmax = 10−2 (bright solid curve).

through the tightness of fourthegy bounding (log (1+x) ≥ x− x2

2 ) that is only given for small

arguments and hence SNR. However, it correctly predicts that in the infinite bandwidth case

the information rate will tend to zero. This effect can be explained with an increasing effort in

channel estimation (since the accuracy of estimation is inverse proportional to bandwidth B).

The second (intuitive) conclusion is that a low channel spread is desirable in order to enable

higher rates.



Chapter 4

System Capacity for a Multiuser

OFDM System

In Chapter 3 we investigated the system capacity of MC-CDMA, where we used a single user

OFDM model combined with CDMA. Results for sum system capacity were presented for a

high number of users. In this chapter we will use a multiuser OFDM model. Hence each user

can be distinguished through its own codebook (i.e., MC-CDMA or OFDMA) and channel.

Further the number of users doesn’t underlie any constraint. This multiuser system will be

subjected to mutual information bounding techniques used in [38, 42]. We will apply these

bounding techniques on mutual information and information rate, respectively. All through

the derivations the focus will be on the sum information rate. This is done according to a total

power constraint over all users. Then, mainly numerical evaluations for the upper bound on

information rate will be presented. Using these results the impact of number of users, input

codebook, channel statistics, and power allocation will be shown. First, lower an introduction

to the multiuser OFDM model will be given.

4.1 Definitions and Notation

The definitions of one users vectors and matrices are similar to those in Section 3.1. Under the

assumption of independent users we now extend the model to a multiuser OFDM model. There,

U users transmit to a single receiver (uplink case). All users apply an OFDM modulator and

the receiver employs an OFDM demodulator. Each user is transmitting over its independent

channel HU . At the receiver there is a superposition of all users output vectors and circularly

symmetric complex Gaussian noise is added. This multiuser OFDM model for an uplink

scenario is shown in Figure 4.1. The received signal will be given by the MK × 1 vector Y

as before but the user specific transmit signal and channel will get a user index u. First a

41



4.1. Definitions and Notation 42
replacemen

User 0

X
(0)
n,k

User 1

X
(1)
n,k

User U − 1

X
(U−1)
n,k OFDM

OFDM

OFDM

OFDM

modulator

modulator

modulator
H0

H1

HU−1

Z

demodulator

Yn,k

Figure 4.1: Multiuser OFDM model for an uplink scenario.

summation over all user signals at the receiver gives

Y =
U−1
∑

u=0

diag
{

H(u)
}

X(u) + Z =
U−1
∑

u=0

diag
{

X(u)
}

H(u) + Z, (4.1)

with U the number of users transmitting to the receiver. In matrix-vector notation this is

Y = HUXU + Z, (4.2)

with the MKU × 1 input vector

XU =
[

X(0)TX(1)T . . . X(U−1)T
]T
,

and the overall channel matrix of size MK ×MKU

HU =
[

diag
{

H(0)
}

diag
{

H(1)
}

. . . diag
{

H(U−1)
}]

.

The MK × 1 matrix Z is circularly symmetric complex Gaussian noise (Z ∈ N (0, N0I)).

Different from the input vector in Chapter 3 the input vector XU now combines all user in-

put vectors. A total power constraint on the input symbols, i.e., E{XH
U XU} = MKUσ2

X is

assumed. Note that the diagonal form of the channel matrix for user u results from the mul-

tiplicative model in (1.25). To take into account correlations on one users channel (different

users will be assumed as independent) HU gets a matrix with entries that are not only posi-

tioned in a diagonal way like above, but on every element of HU . Equivalently the multiuser

input-output relation can be written as

Y = XUHU + Z, (4.3)
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Figure 4.2: Interpretation of the multiple user OFDM model in (4.2) through SU (4.5).

with the channel vector of size MKU × 1

HU =
[

H(0)TH(1)T . . . H(U−1)T
]T
, (4.4)

and the MK ×MKU input matrix

XU =
[

diag
{

X(0)
}

diag
{

X(1)
}

. . .diag
{

X(U−1)
}]

.

For convenience, we use the shortened notation

SU = HUXU = XUHU . (4.5)

To ease the understanding SU = HUXU is depicted in Figure 4.2.

4.2 System Capacity Bounding I

In this section the bounding techniques of Bölcskei and Shamai in [38] will be applied to the

multiuser model introduced above. We assume no channel knowledge neither at transmitter

nor at receiver. The channel itself is assumed to be a time and frequency selective Rayleigh

fading underspread WSSUS channel. In order to preserve generality, the derivations are done

for a general codebook of X(u) as far as possible. An exception will be made for bounding

purposes.

First the signal model is adapted to the multiuser case. We are using the input-output relation

in (4.2) or equivalently (4.3). We start splitting the sum mutual information1 I(Y;X) into

I(Y;X) = I(Y;X,H) − I(Y;H|X). (4.6)

Note that all considerations are for the sum rate of all users. Using (4.6) we calculate upper

and lower bounds for I(Y;X).

1For convenience, we omit the subscript U and write e.g., X ≡ XU .
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4.2.1 Upper Bound on Mutual Information

In order to obtain an upper bound the terms in (4.6) now will be bounded. First the mutual

information I(Y;X,H) is upper bounded by that of an additive Gaussian noise channel where

the transmitter has total control of the input, in that case S = HX. If S is made circularly

symmetric jointly complex Gaussian with correlation equal to that of HX, one obtains

I(Y;X,H) ≤ log det

(

I +
1

N0
RH � CX

)

, (4.7)

with the covariance matrices CX of the transmit signal and RH of the channel. The MKU ×
MKU matrices CX and RH are given by

CX = E
{

XXH
}

=













C
(0)
X 0 . . . 0

0 C
(1)
X . . . 0

...
...

. . .
...

0 0 . . . C
(U−1)
X













, (4.8)

with users input covariance matrices C
(u)
X = E

{

X(u)X(u)H
}

and

RH = E
{

HHH
}

=













R
(0)
H 0 . . . 0

0 R
(1)
H . . . 0

...
...

. . .
...

0 0 . . . R
(U−1)
H













,

with users channel covariance matrices R
(u)
H = E

{

H(u)H(u)H
}

. Note that 0 denotes the

MK ×MK all-zero matrix. Noting this, (4.7) gets

I(Y;X,H) ≤ log

U−1
∏

u=0

det

(

I +
1

N0
R

(u)
H � C

(u)
X

)

=

U−1
∑

u=0

log det

(

I +
1

N0
C

(u)
S

)

. (4.9)

In (4.9), R
(u)
H � C

(u)
X corresponds to the covariance matrix of S(u), i.e., C

(u)
S = R

(u)
H � C

(u)
X .

The goal for the second part of the upper bound is a lower bound or an exact expression for

I(Y;H|X). The input output relation in (4.3) is used. For I(Y;H|X) the channel H acts as

transmit signal and the ’channel’ X is known. In [38] an equality is given, which here reads

I(Y;H|X) = EX

{

log det

(

I +
1

N0
X RHXH

)}

. (4.10)

Defining A = 1
N0

X RHXH and using the eigenvalue decomposition of A leads to

I(Y;H|X) = EX







log

r(A)
∏

i=1

(1 + λi(A))







=

r(A)
∑

i=1

EX {log (1 + λi(A))} ,
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with r(A) and λi(A) denoting the rank and i-th eigenvalue of matrix A, respectively. To

obtain an upper bound on I(Y;H|X), a fourthegy lower bound (like in (3.22)) is used. Then

I(Y;H|X) ≥
r(A)
∑

i=1

EX

{

λi(A) − λ2
i (A)

2

}

=

r(A)
∑

i=1

EX {λi(A)} − 1

2

r(A)
∑

i=1

EX

{

λ2
i (A)

}

= EX







r(A)
∑

i=1

λi(A)







− 1

2
EX







r(A)
∑

i=1

λ2
i (A)







= EX {Tr(A)} − 1

2
Tr(AAH),

with Tr(A) =
∑r(A)

i=1 λi(A) and Tr(AAH) =
∑r(A)

i=1 λ2
i (A). Resubstitution of A gives

I(Y;H|X) ≥ 1

N0
EX

{

Tr
(

X RHXH
)}

− 1

2N2
0

EX

{

Tr
(

X RHXH X RH
H XH

)}

, (4.11)

with

EX

{

Tr
(

X RHXH
)}

= Tr
(

EX

{

XHX
}

RH

)

= Tr (CX �RH) = MKUσ2
Xσ

2
H, (4.12)

which holds for any input codebook (i.e., MC-CDMA and OFDMA), and

EX

{

Tr
(

X RHXH X RH
HXH

)}

=
MK−1
∑

i1,i4=0

MKU−1
∑

i2,i3,i5,i6=0

(X )i1,i2
(RX)i2,i3

(

XH
)

i3,i4
(X )i4,i5

(

RH
X

)

i5,i6

(

XH
)

i6,i1

=
U−1
∑

u=0

U−1
∑

u′=0

MK−1
∑

i=0

MK−1
∑

j=0

EX

{

r
(u)
i,j x

(u)
i x

(u)
j

∗
r
(u′)
i,j

∗
x

(u′)
i

∗
x

(u′)
j

}

=

MK−1
∑

k=0

MK−1
∑

l=0

U−1
∑

u=0

EX

{

r
(u)
k,l x

(u)
k x

(u)
l

∗
U−1
∑

u′=0

(

r
(u′)
k,l

∗
x

(u′)
k

∗
x

(u′)
l

)

}

. (4.13)

Here r
(u)
i,j denotes the correlation of the MK channel coefficients of user u, which is equal

to the channels correlation matrix entry
(

R
(u)
X

)

i,j
. The input symbols x

(u)
i are taken as the

i-th element of users input matrix X(u). For input correlations of the same user (u = u′) and

with EX

{

x
(u)
k x

(u)
l

∗
x

(u)
k

∗
x

(u)
l

}

= EX

{

|x(u)
k |2 |x(u)

l |2
}

we introduce one users MK×MK fourth

moment matrix

K
(u)
X =

















EX

{

|x(u)
0,0 |4

}

EX

{

|x(u)
0,0 |2|x

(u)
0,1 |2

}

. . . EX

{

|x(u)
0,0 |2|x

(u)
M−1,K−1|2

}

EX

{

|x(u)
0,1 |2|x

(u)
0,0 |2

}

EX

{

|x(u)
0,1 |4

}

. . .
...

...
...

. . .
...

EX

{

|x(u)
M−1,K−1|2|x

(u)
0,0 |2

}

. . . . . . EX

{

|x(u)
M−1,K−1|4

}

















,

(4.14)

where the input symbols are x
(u)
0,0 , x

(u)
0,1 , . . . , x

(u)
M−1,K−1.
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Then, with the result in (4.13) and the fourth moment matrix K
(u)
X the remaining expectation

term in (4.11) can be written as

EX

{

Tr
(

X RHXH X RH
HXH

)}

= vecT

{

U−1
∑

u=0

R
(u)
H � R

(u)
H �

[

K
(u)
X −C

(u)
X �C

(u)
X

]

}

1

+ vecT

{

U−1
∑

u=0

U−1
∑

u′=0

R
(u)
H � R

(u′)
H �C

(u)
X �C

(u′)
X

}

1, (4.15)

where vecT {·}1 (with 1 denoting the size (MK)2 × 1 all ones vector) was used to add up

all matrix entries. Here the hermitian conjugation of R
(u)
H and C

(u)
X were suppressed due to

hermitian nature of correlation matrices R
(u)
H

H
= R

(u)
H and C

(u)
X

H
= C

(u)
X , respectively. Fur-

ther the expectation terms in (4.13) which contain more than one users correlation coefficients

simplify to

EX

{

x
(u)
k x

(u)
l

∗
x

(u′)
k

∗
x

(u′)
l

}

= EX

{

x
(u)
k x

(u)
l

∗}

EX

{

x
(u′)
k

∗
x

(u′)
l

}

,

due to the assumption of independent users. Then, these terms can be expressed through the

users correlation matrices C
(u)
X .

An interpretation of the first term in (4.15) leads to the impact of peakiness. By the subtraction

K
(u)
X −C

(u)
X �C

(u)
X there only remain terms EX

{

|x(u)
k |

2
|x(u)

l |
2
}

−E2
X

{

x
(u)
k x

(u)
l

}

(where again

x
(u)
i denotes the i-th element of users input matrix X(u)) describing statistical relations of

different symbols, i.e., for PSK input symbols this gives

K
(u)
X − C

(u)
X � C

(u)
X =















0 σ4
X . . . σ4

X

σ4
X 0

. . . σ4
X

...
. . .

. . .
...

σ4
X . . . σ4

X 0















.

For Gaussian distributed input symbols one would obtain K
(u)
X −C

(u)
X �C

(u)
X = σ4

X11T . More

general, this can be explained using input symbols

Xn,k =







A, with probability p,

0, with probability 1 − p,

where p denotes the probability of Xn,k to have magnitude A. Therefore p also is a measure

of peakiness, e.g. p ≈ 0 characterises a peaky codebook. Then, we obtain

K
(u)
X − C

(u)
X � C

(u)
X = σ4

X















1−p
p 1 . . . 1

1 1−p
p

. . . 1
...

. . .
. . .

...

1 . . . 1 1−p
p















.
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Hence for a peaky codebook (e.g.,(1−p)/p� 0) , as it is supposed to achieve system capacity

in [12] low correlation will be obtained and the first term in (4.15) is getting large.

Another interpretation follows the following conversion, i.e.,

vecT

{

U−1
∑

u=0

R
(u)
H �R

(u)
H � K

(u)
X

}

1 =
U−1
∑

u=0

MK−1
∑

i=0

MK−1
∑

j=0

(

R
(u)
H � R

(u)
H � K

(u)
X

)

i,j

=

U−1
∑

u=0

MK−1
∑

i=0

MK−1
∑

j=0

(

R
(u)
H

)

i,j

(

K
(u)
X

)

i,j

(

R
(u)
H

)∗

j,i

=

U−1
∑

u=0

Tr

{

(

R
(u)
H �K

(u)
X

)

R
(u)
H

H
}

=
U−1
∑

u=0

〈

R
(u)
H � K

(u)
X ,R

(u)
H

H
〉

.

Here by use of the inner product, the impact of input symbols (expressed through the fourth

moment) on the channel is investigated. With the correlation matrix of S, i.e., C
(u)
S = R

(u)
H �

C
(u)
X the second part of the first term in (4.15) can be calculated as follows:

vecT

{

U−1
∑

u=0

R
(u)
H � R

(u)
H � C

(u)
X � C

(u)
X

}

1 = vecT

{

U−1
∑

u=0

C
(u)
S � C

(u)
S

}

1

=
U−1
∑

u=0

MK−1
∑

i=0

MK−1
∑

j=0

(

C
(u)
S

)

i,j

(

C
(u)
S

)

j,i

=

U−1
∑

u=0

Tr
(

C
(u)
S � C

(u)
S

)

=
U−1
∑

u=0

〈

C
(u)
S ,C

(u)
S

〉

. (4.16)

It is a sum over the fourth moments of all users at the receiver.

So far only the effects of single users input and channel coefficients were treated, but no

interactions between users. This can be described through the second term in (4.15). By use

of a similar formulation as in (4.16) it can be rewritten as

vecT

{

U−1
∑

u=0

U−1
∑

u′=0

R
(u)
H � R

(u′)
H � C

(u)
X � C

(u′)
X

}

1 = vecT

{

U−1
∑

u=0

U−1
∑

u′=0

C
(u)
S � C

(u′)
S

}

1

=
U−1
∑

u=0

U−1
∑

u′=0

MK−1
∑

i=0

MK−1
∑

j=0

(

C
(u)
S

)

i,j

(

C
(u′)
S

)

j,i

=

U−1
∑

u=0

U−1
∑

u′=0

Tr
(

C
(u)
S � C

(u′)
S

)

=
U−1
∑

u=0

U−1
∑

u′=0

〈

C
(u)
S ,C

(u′)
S

〉

. (4.17)
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Here the inner product gives information on the similarity of two different users correlation

at the receiver. Hence a maximization of (4.17) is achieved through equivalent input-channel

combinations of all users. Then, the lower bound on I(Y;H|X) can be combined to

I(Y;H|X) ≥ MKU

N0
σ2

Xσ
2
H
− 1

2N2
0

U−1
∑

u=0

〈

R
(u)
H � K

(u)
X ,R

(u)
H

H
〉

+
1

2N2
0

U−1
∑

u=0

〈

C
(u)
S ,C

(u)
S

〉

− 1

2N2
0

U−1
∑

u=0

U−1
∑

u′=0

〈

C
(u)
S ,C

(u′)
S

〉

. (4.18)

By combination of (4.9), (4.12), the first term in (4.15) and (4.17) the total upper bound on

mutual information is obtained as

I(Y;X) ≤
U−1
∑

u=0

log det

(

I +
1

N0
R

(u)
H �C

(u)
X

)

− MKU

N0
σ2

Xσ
2
H

+
1

2N2
0

U−1
∑

u=0

〈

R
(u)
H � K

(u)
X ,R

(u)
H

H
〉

+
1

2N2
0

U−1
∑

u=0

U−1
∑

u′=0
u 6=u′

〈

C
(u)
S ,C

(u′)
S

〉

. (4.19)

The first term in (4.19) (which is similar to a parallel AWGN channel) can further be bounded

by

U−1
∑

u=0

log det

(

I +
1

N0
R

(u)
H �C

(u)
X

)

=
U−1
∑

u=0

r
“

1
N0

R
(u)
H

�C
(u)
X

”

∑

i=0

log

(

1 + λi

(

1

N0
R

(u)
H � C

(u)
X

))

≤
U−1
∑

u=0

r
“

1
N0

R
(u)
H

�C
(u)
X

”

∑

i=0

λi

(

1

N0
R

(u)
H � C

(u)
X

)

=
U−1
∑

u=0

Tr

(

1

N0
R

(u)
H � C

(u)
X

)

=
MKU

N0
σ2

Xσ
2
H
,

where the bound will be tight for low SNR. Then, the sum mutual information for low SNR

is obtained as

I(Y;X) ≤ 1

2N2
0

U−1
∑

u=0

〈

R
(u)
H � K

(u)
X ,R

(u)
H

H
〉

+
1

2N2
0

U−1
∑

u=0

U−1
∑

u′=0
u 6=u′

〈

C
(u)
S ,C

(u′)
S

〉

.

In order to maximize the upper bound two different aspects correlated to the two terms in

(4.20) can be discussed. First the impact of the channel input (in terms of fourth moment)

on the channels correlation structure should be small. Hence an appropriate selection of code-

book contributes to the maximization of sum mutual information. It was shown, that a peaky

codebook will maximize this term.

The second term seems to be much more important because there are more terms to summa-

rize and more interesting it allows insights on the effects of a multiuser system, since the inner
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product expresses similarity of the user’s input-channel combinations. Then, for maximiza-

tion of (4.20) equivalent input-channel combinations are beneficial (i.e.,C
(u)
S ≈ cC

(u′)
S ). This

includes the fact, that different channel statistics may be balanced by different codebooks.

4.2.2 Lower Bound on Mutual Information

For the derivation of the lower bound on the system capacity again (4.6) is used. A further

splitting and bounding of mutual information I(Y;X) gives

I(Y;X) = I(Y;X|H) + I(Y;H) − I(Y;H|X) ≥ I(Y;X|H) − I(Y;H|X), (4.20)

where the trivial upper bound I(Y;H) ≥ 0 was used. By assuming circularly symmetric

jointly complex Gaussian transmit signals the first term is lower bounded by

I(Y;X|H) ≥ EH

{

log det

(

I +
1

N0
HCXHH

)}

. (4.21)

The term in (4.21) now is equivalent to (4.10) with exchange of X by H and RH by CX .

Applying the fourthegy bounding technique we obtain a result dual to (4.18):

I(Y;X|H) ≥ MKU

N0
σ2

Xσ
2
H
− 1

2N2
0

U−1
∑

u=0

〈

C
(u)
X � K

(u)
H ,C

(u)
X

H
〉

+
1

2N2
0

U−1
∑

u=0

〈

C
(u)
S ,C

(u)
S

〉

− 1

2N2
0

U−1
∑

u=0

U−1
∑

u′=0

〈

C
(u)
S ,C

(u′)
S

〉

. (4.22)

with the fourth moment matrix of the channel H(u),

K
(u)
H =

















EH

{

|h(u)
0,0 |4

}

EH

{

|h(u)
0,0 |2|h

(u)
0,1 |2

}

. . . EH

{

|h(u)
0,0 |2|h

(u)
M−1,K−1|2

}

EH

{

|h(u)
0,1 |2|h

(u)
0,0 |2

}

EH

{

|h(u)
0,1 |4

}

. . .
...

...
...

. . .
...

EH

{

|h(u)
M−1,K−1|2|h

(u)
0,0 |2

}

. . . . . . EH

{

|h(u)
M−1,K−1|4

}

















.

(4.23)

Next, simplifications for the complex Gaussian channel coefficients can be applied. For the

fourth moment of channel symbols EH

{

|h(u)
k,l |4

}

(same user, same symbol) in (4.23) we get

EH

{

|h(u)
k,l |4

}

= 2 σ4
H
,

and for the same user and different symbols (k, l) 6= (k′, l′)

EH

{

|h(u)
k,l |2|h

(u)
k′,l′ |2

}

= EH

{

h
(u)
k,l h

(u)
k,l

∗}

EH

{

h
(u)
k′,l′h

(u)
k′,l′

∗}

+ EH

{

h
(u)
k,l h

(u)
k′,l′

∗}

EH

{

h
(u)
k,l

∗
h

(u)
k′,l′

}

,
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by use of Isserlis‘ theorem2. The matrix K
(u)
H in (4.23) then can be expressed by the path loss

σ2
H

and the elements of the channel’s covariance matrix RH :

K
(u)
H = σ2

H

[

I + 11T
]

+ vecT {R(u)
H }vec{R(u)

H }.

Note that this bounding on the first term started with a Gaussian assumption on the input

symbols. The second term in (4.20) is upper bounded by applying Jensen‘s inequality as

I(Y;H|X) ≤ log det

(

I +
1

N0
EX

{

U−1
∑

u=0

diag{X(u)}H
diag{X(u)}R(u)

H

})

= log det

(

I +
1

N0

U−1
∑

u=0

EX

{

diag{X(u)}H
diag{X(u)}

}

R
(u)
H

)

= log det

(

I +
σ2

X

N0

U−1
∑

u=0

P(u)R
(u)
H

)

, (4.24)

with MK ×MK matrix

P(u) =













p
(u)
0,0 0 . . . 0

0 p
(u)
0,1 . . . 0

...
...

. . .
...

0 0 . . . p
(u)
M−1,K−1













,

describing the power allocation of one user to different subcarriers. Hence it is used to define

the input codebook, e.g., for OFDMA the coefficients of P(u) are

p
(u)
n,k =







1, k ∈ KU ,

0, k /∈ KU ,

with KU denoting the subset of subcarriers allocated to user u. In contrast, p
(u)
n,k = 1 for all

n, k with MC-CDMA. The total lower bound then is combined to

I(Y;X) ≥ MKU

N0
σ2

Xσ
2
H
− 1

2N2
0

U−1
∑

u=0

〈

C
(u)
X �K

(u)
H ,C

(u)
X

H
〉

− 1

2N2
0

U−1
∑

u=0

U−1
∑

u′=0
u 6=u′

〈

C
(u)
S ,C

(u′)
S

〉

− log det

(

I +
σ2

X

N0

U−1
∑

u=0

P(u)R
(u)
H

)

. (4.25)

4.2.3 System Capacity Bounding

The bounds for system capacity are obtained by combining the formulas for system capacity

and ergodic information rate in Section 1.4.3, i.e.,

R , lim
M→∞

1

MT
I(Y;X) (4.26)

2The fourth moment of circular complex Gaussian random variables is given through E{x1x
∗
2x3x

∗
4} =

E{x1x
∗
2} E{x3x

∗
4} + E{x1x

∗
4} E{x∗

2x3} [48, 49].
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with the results in (4.16) and (4.25). Since a closed form expression for general assumptions

on the channel’s statistics can not be found here only the result for an uncorrelated channel

(i.e. R
(u)
H = σ2

H
I), uncorrelated input symbols (i.e. C

(u)
X = σ2

XI and K
(u)
X = σ4

X

[

I + 211T
]

)

for every user is derived as

R ≤ RUB = U
B

TF
log

(

1 +
TF

B

Pσ2
H

UN0

)

− Pσ2
H

N0
+
TF

B

3 P 2σ4
H

2 U2N2
0

+
TF

B

U(U − 1)P 2σ4
H

2 U2N2
0

, (4.27)

where σ2
X = PT/K and K = B/F with P the constant transmit power (constant in the sum

over all users) and B the entire bandwidth.

4.3 System Capacity Bounding II

As above, a system capacity bounding will be applied to the multiuser OFDM model defined

in Section 4.1. Further an extension to statistical characterizations like the scattering function

will be done. This derivation is related to system capacity bounding of Shamai and Marzetta

in [42]. We start with a reformulation of the signal model. The time-dependent transfer

function of the channel is defined in (1.4). From the spreading function the time-dependent

transfer function can be calculated by combination of (1.4) and (1.5). The channel coefficients

in the multicarrier system then are

H
(u)
n,k =

Lτ
∑

τ=0

Lν/2
∑

ν=−Lν/2

SH(τ, ν)e−j2π( τkK − νn
M )dτdν.

Note that a single user channel is treated first, with the extension to the multiuser case following

afterwards. The non-zero support region of the discretized spreading function SH(kLτ/K, nLν/M)

is defined in [0, Lτ ]× [−Lν/2, Lν/2] and LτLν < MK with the maximum multipath delay Lτ

and the maximum Doppler frequency Lν . Therefore, the nonzero elements of the spreading

function are arranged into a length LτLν vector as follows:

h(u)
r =













SHc(0, 0)

SHc(0, 1)
...

SHc(Lτ , Lν)













.

Then, the MK × 1 stacked channel vector for user u is defined as3

H(u) = (FK×Lτ ⊗ FM×Lν )hr
(u),

with F the DFT matrix of size K ×Lτ and M ×Lν , respectively. As we will apply the signal

3Here ⊗ denotes the Kronecker product [50].
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model in (4.3) with the MKU × 1 channel vector in (4.4) we get

H =













(FK×Lτ ⊗ FM×Lν )hr
(0)

(FK×Lτ ⊗ FM×Lν )hr
(1)

...

(FK×Lτ ⊗ FM×Lν )hr
(U−1)













= I⊗ (FK×Lτ ⊗ FM×Lν )hr,

with hr =

[

h
(0)
r

T
h

(1)
r

T
. . . h

(U−1)
r

T
]T

,. Next, we write F instead of I ⊗ (FK×Lτ ⊗ FM×Lν ).

The signal model in (4.3) then gets

S =
[

diag
{

X(0)
}

diag
{

X(1)
}

. . . diag
{

X(U−1)
}]

H

=
[

diag
{

X(0)
}

diag
{

X(1)
}

. . . diag
{

X(U−1)
}]

F hr = XU hr,

with

XU =
[

diag
{

X(0)
}

diag
{

X(1)
}

. . . diag
{

X(U−1)
}]

F.

For one users input signal this is equal to

X (u)
U = diag

{

X(u)
}

(FK×Lτ ⊗ FM×Lν ) .

Note that this signal model assumes independent users. The whole signal model then equals

Y = XU hr + Z,

where Z is circularly symmetric complex Gaussian noise (Z ∈ N (0, N0I)). In this chapter the

shorter notation S will be used for S = XU hr. Throughout the whole derivation of upper and

lower bound the input power constraint is

Tr
(

EX

{

XU XU
H
})

= MKUσ2
X .

4.3.1 Upper Bound on Mutual Information

First an upper bound on mutual information will be derived. We are using again the chain

rule of mutual information in (4.6),

I(Y;XU ) = I(Y;XU ,H) − I(Y;H|XU ). (4.28)

Note that the shift through Fourier transformation resulting in XU changes mutual information

since there is loss or gain of information through an non-invertible DFT. This DFT is non-

invertible because the transformation matrix F isn‘t unitary. Out of the chain rule in (4.28)

a simple upper bound on mutual information can be found by dropping the second term

I(Y;H|XU ) > 0 which gives

I(Y;XU ) ≤ I(Y;XU ,H). (4.29)
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Then, a maximization of I(Y;XU ,H) has to be found. The term is maximized by making

S = XU hr zero-mean complex Gaussian with covariance CS = EX{XU Rhr XU
H}. This gives

I(Y;XU ,H) ≤ log det

(

I +
1

N0
EX

{

XU Rhr XU
H
}

)

, (4.30)

with

Rhr = EH

{

hr hH
r

}

=









R
(0)
hr

. . . 0
...

. . .
...

0 . . . R
(U−1)
hr









, (4.31)

the covariance matrix of the channel. Referring to (1.6) for one user u this can be denoted by

R
(u)
hr

= diag
{

C
(u)
Hc

(τ, ν)
}

=









C
(u)
Hc

(0, 0) . . . 0
...

. . .
...

0 . . . C
(u)
Hc

(Lτ , Lν)









. (4.32)

Then, the correlation term in (4.30) can be rewritten to

EX

{

XU Rhr XU
H
}

= EX

{

X (0)
U R

(0)
hr

[

X (0)
U

]H
+ X (1)

U R
(1)
hr

[

X (1)
U

]H
+ · · · + X (U−1)

U R
(U−1)
hr

[

X (U−1)
U

]H
}

= EX

{

U−1
∑

u=0

X (u)
U R

(u)
hr

[

X (u)
U

]H
}

=
U−1
∑

u=0

EX

{

X (u)
U R

(u)
hr

[

X (u)
U

]H
}

=
U−1
∑

u=0

C
(u)
S .

With this result the upper bound can be written as

I(Y;XU ) ≤ log det

(

I +
1

N0

U−1
∑

u=0

C
(u)
S

)

. (4.33)

Then, it easily can be shown that the additive white Gaussian case marks an upper bound on

mutual information by assuming C
(u)
S ≈ CN

(

0, σ2
H
σ2

XI
)

. The trivial Gaussian upper bound

then is

I(Y;XU ) ≤ UMK log

(

1 +
σ2

H
σ2

X

N0

)

. (4.34)

4.3.2 Lower Bound on Mutual Information

The lower bound is found through the splitting of mutual information in (4.28) and the bound-

ing

I(Y;XU ,H) ≥ I(Y;XU |H).

Then, two terms have to be considered for the lower bound, e.g.

I(Y;XU ) ≥ I(Y;XU |H) − I(Y;H|XU ). (4.35)
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For the first term in (4.35) we start with

I(Y;XU |H) ≥MK EH

{

log det

(

1 +
σ2

X

N0
hrh

H
r

)}

,

where we assumed Gaussian distributed and white input XU in order to maximize I(Y;XU |H).

We will use this assumption for the derivation of the entire lower bound. By applying a

fourthegy lower bound (log(1 + x) ≥ x− x2

2 ) we obtain

I(Y;XU |H) ≥MK
σ2

X

N0
Tr
{

EH

{

hr hH
r

}}

−MK
σ4

X

N2
0

Tr
{

EH

{

hH
r hr hH

r hr

}}

= MK
σ2

X

N0
Tr {Rhr} −MK

σ4
X

N2
0

(

Tr2 {Rhr} + Tr
{

R2
hr

})

, (4.36)

were we used

Tr
{

EH

{

hH
r hr hH

r hr

}}

= Tr2 {Rhr} + Tr
(

R2
hr

)

.

Note, that XU already was assumed to be Gaussian for the derivation of the first term in

(4.35). The maximization of the second term in (4.35), I(Y;H|XU ) is again done by making

H zero-mean complex Gaussian. This constellation is equal to the (however virtual) case of

the user sending H over a channel XU . With S = XU hr this gives

I(Y;H|XU ) ≤ EX

{

log det

(

I +
1

N0
SSH

)}

= EX

{

log det

(

I +
1

N0
XU RhrXU

H

)}

≤ log det

(

I +
1

N0
EX

{

XU RhrXU
H
}

)

,

where we used Jensen’s inequality for the second inequation. Then, the result is

I(Y;H|XU ) ≤ log det

(

I +
1

N0
EX

{

XU RhrXU
H
}

)

, (4.37)

which is equivalent to the result in (4.24).

The entire lower bound is given through the combination of (4.37) and (4.36) as

I(Y;XU ) ≥MK
σ2

Xσ
2
H

N0
−MK

σ4
X

N2
0

[

σ4
H

+ Tr
{

R2
hr

}]

− log det

(

I +
1

N0
EX

{

XU RhrXU
H
}

)

.

Finally the result is

I(Y;XU ) ≥MK
σ2

Xσ
2
H

N0
−MK

σ4
X

N2
0

[

σ4
H

+ Tr
{

R2
hr

}]

− log det

(

I +
1

N0
EX

{

XU RhrXU
H
}

)

,

where EX

{

XU RhrXU
H
}

also may be written as EX

{

XU RHXU
H
}

. The dependence of the

lower bound on sum information rate on the scattering function is given through the relations

in (4.31) (4.32). Note, that Gaussian distributed and white input XU was assumed for the

derivation of the lower bound.
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F 312.5 kHz

TF 1.25

P 1 mW

σ2
H

90 dB

N0 4.1421 · 10−21 W

Table 4.1: Simulation parameters for an IEEE 802.11a related system.

4.4 Simulation Results

In order to get an evaluation of the bounds derived above, some simulations are presented

next. First results for exact expressions will be presented. Afterwards numerical evaluation

results are depicted.

4.4.1 Upper bound on sum information rate for uncorrelated channel

The simulations are based on the upper bound on information rate derived in (4.27) (using

bounding techniques presented in [38]) and will be done for an IEEE 802.11a related system

as in Chapter 3. Table 4.1 subsumes these values that are applied for the simulations unless

specified otherwise.

Upper bound on sum information rate for different number of users

Figure 4.3 shows the sum information rate over bandwidth. This numerical evaluation is

based on the upper bound derived in (4.27). The AWGN case which characterises an upper

bound on information rate is depicted as a dashed line. Then, the two-user case and a result

for U = 1000 are depicted through a dark solid line and a bright solid line, respectively.

The achievable capacity region (or equivalently the achievable rates) can be found below the

bounded area. For low bandwidths the AWGN is more tight and hence will be the limit. At

higher bandwidths (beginning at intersection of AWGN rate and RUB) the fourthegy upper

bound is more tight and indicates the upper bound. For an increasing number of users the

fourthegy upper bound on sum information rate decreases. So for uncorrelated channels an

increasing number of users is disadvantageous in terms of sum information rate. Further the

upper bound on sum information rate in the infinite bandwidth case tends to zero.

Upper bound on sum information rate for user-specific path losses

In order to describe the influence of the path losses on the sum information rate first an exact

expression has to be found. The path losses of different users are denoted by σ2
HU

. In the

two-user case this gives an upper bound on sum information rate (derived from (4.27)) which
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Figure 4.3: Fourthegy upper bound on sum information rate over bandwidth for independent

channel coefficients and different number of users.

Figure 4.4: Upper bound on sum information rate for varying path loss σ2
H

(u)
/σ2

H
= 0.1 . . . 1

at a bandwidth of B = 500MHz.
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is

RUB =
B

TF

[

log

(

1 +
TF

B

Pσ2
H0

2N0

)

+ log

(

1 +
TF

B

Pσ2
H1

2N0

)]

−
P
(

σ2
H0

+ σ2
H1

)

2N0

+
TF

B

3 P 2
(

σ4
H0

+ σ4
H1

)

8 N2
0

+
TF

B

P 2σ2
H0
σ2

H1

2 U2N2
0

.

This is shown in Figure 4.4 for a bandwidth of B = 500MHz. Here the upper bound on

information rate is shown in dependence of the users path losses which are depicted normalized

to σ2
H

(defined in Table 4.1). For increasing path losses, e.g. σ2
H

(u)
/σ2

H
is getting small, the

sum information rate is decreasing. Hence, it‘s intuitive to desire low path losses in order to

enable higher sum rates. No trade-offs between the different user’s path losses can be noticed

and therefore a low path loss is preferable for all users. Note that the maximum rate (i.e.

σ2
H0

= σ2
H1

= σ2
H
) can be found in Figure 4.3.

Upper bound on sum information rate for different user power allocation

Here an overall power constraint
∑U−1

u=0 P
(u) = UP is applied, with P defined in Table 4.1.

Then, the upper bound on sum information rate in the two-user case is derived as

RUB =
B

TF

[

log

(

1 +
TF

B

P (0)σ2
H

2N0

)

+ log

(

1 +
TF

B

P (1)σ2
H

2N0

)]

− Pσ2
H

N0

+
TF

B

3
(

P (0)2 + P (1)2
)

σ4
H

8 N2
0

+
TF

B

P (0)P (1)σ4
H

4 N2
0

,

where P (0) denotes the power allocated to user 0. Figure 4.5 shows this for a bandwidth

B = 500MHz (cf. Figure 4.3 and Figure 4.4). For uniformly distributed power, i.e. P (0) = P (1),

the upper bound on sum information rate is minimized. A maximum of RUB is obtained

by allocation of the total power to one user (single user case). Hence in the case of an

uncorrelated channel the single user case is desirable in order to achieve higher data rates.

Again a disadvantageous effect of increasing number of users for transmission over uncorrelated

channels can be approved.

Investigations on the tightness of fourthegy lower bound on I(Y;H|X)

Since the fourthegy bounding technique can be quite loose under certain conditions, an in-

vestigation on this is presented here. To do this a Monte Carlo simulation of (4.10) and a

numerical evaluation for (4.18) at B = 10GHz were done and compared. The Monte Carlo

simulation was done for Gaussian distributed input symbols. The numerical evaluation then

has to use EX

{

|x(u)
k,l |4

}

= 2 σ4
X .

First the influence of the number of users U on I(Y;H|X) was investigated for M = 5 and

K = 12. In Figure 4.6(a) the dark solid curve shows the numerically evaluated fourthegy
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Figure 4.5: Fourthegy upper bound on sum information rate for varying user power allocation

for U = 2 with P (0) + P (1) = 2P for B = 500MHz.

lower bound and the bright solid curve with markers depicts the Monte Carlo simulation re-

sult. There is nearly no gap between the two curves. So the effect of the amount of users on

the tightness can be neglected.

In Figure 4.6(b) the effect of increasing frame length on I(Y;H|X) is depicted for K = 12.

Again the dark solid curve shows the numerically evaluated fourthegy lower bound and the

bright solid curve with markers is the Monte Carlo simulation result. As there is no dependence

of thigthness on U there is even no dependence on M .

Finally the effect of varying path loss on the tightness of the fourthegy lower bound is shown in

4.7. The curves are depicted in the same way as above for M = 5 and K = 12. The difference

between the curves increases with increasing path loss (i.e., the SNR is getting better). Figure

4.7 shows that for a large SNR the fourthegy lower bound is less tight.

The investigation on the tightness of fourthegy lower bound on I(Y;X|H) will be equivalent.

It is needed to develop the lower bound on sum mutual information I(Y;X) and it has to

be shown the same as before with change of X and H. Then, the results are similar to that

above.
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Figure 4.6: Comparison of simulated I(Y;H|X) in (4.10) and fourthegy lower bound in

(4.18) for different (a) amount of users U and (b) frame length M .
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Figure 4.7: Comparison of simulation for I(Y;H|X) in (4.10) and fourthegy lower bound in

(4.18) for varying path losses (equivalently, SNR).
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Figure 4.8: Sum information rate for (a) MC-CDMA and (b) OFDMA over bandwidth for

different amount of users (U).

4.4.2 Upper bound on sum information rate for general assumptions on the

codebook and the channel

In this subsection simulations for different channel statistics, i.e. scattering functions, channel

spreads and different codebooks, i.e. MC-CDMA and OFDMA as well as spreading of symbols

are presented. All simulations are based on the fourthegy upper bound on sum information

rate in (4.16) (bounding technique of Bölcskei/Shamai). While in the case of uncorrelated

channel coefficients the results for MC-CDMA and OFDMA are equal, for more specific channel

statistics there are slight differences. For simulations again the parameters in Table 4.1 will be

used. Exceptions will be made for the subcarrier spacing F because of complexity reduction

reasons. The simulation of OFDMA requires much more effort than that of MC-CDMA. Hence

some simulations will only be done for MC-CDMA and a reference to OFDMA will be given.

MC-CDMA and OFDMA for varying amount of users in the case of uncorrelated

channel

Although more general channel statistics could be applied to (4.16) this simulation was done

for an uncorrelated channel, i.e. R
(u)
H = σ2

H
I in order to extract the effect of MC-CDMA

and OFMDA. Further a comparison with the result shown in Figure 4.3 can be done. The
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Figure 4.9: Calculation of R
(u)
H from C

(u)
H

(τ, ν).

parameters in Table 4.1 are used and the number of users is varying U = 1, 2, 25. Figure

4.8 shows the upper bound on sum information rate RUB over bandwidth B for MC-CDMA

and OFDMA, respectively. The dashed curve is assigned to the AWGN case, the darkest

solid curve denotes the single user case, and the brightest shows the result for U = 25. The

achievable rate region then can be found below the AWGN curve and the fourthegy upper

bound RUB for low bandwidths and high bandwidths, respectively. In the single user case

(U = 1) the fourthegy upper bound will be equal for both, MC-CDMA and OFDMA. With

increasing number of users the OFDMA case is beneficial since no loss of rate occurs. This is

due to the separation of subchannels. For MC-CDMA an increasing number of users is equal

to an increasing uncertainty on channel statistics at the receiver. In general, the upper bound

in the infinite bandwidth limit tends to zero.

Investigations on a varying channel spread τmaxνmax

First a short overview of the calculation of R
(u)
H from scattering function is depicted in Figure

4.9 (a). It shows the scattering function in the upper left-hand corner and the channel cor-

relation coefficients out of a two-dimensional Fourier transformation in the upper right-hand

corner. Then, the R
(u)
H matrix is composed out of this correlation coefficients (cf. 4.9 lower

right-hand corner).

Now some investigations on the effect of different channel spreads on sum information rate will

be performed. The channel spread τmaxνmax will be defined as the non-zero support region
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Figure 4.10: 2-dimensional map of the users scattering functions with varying channel

spreads.

of the scattering function CH(τ, ν). Within this support region the scattering function is

assumed flat (cf. 4.9). In Figure 4.10 different scattering functions in terms of channel spread

are depicted. For these scattering functions Figure 4.11 shows the dependence of a MC-CDMA

system on channel spread. The channel spread was assumed equal for all users channel (i.e.,

τ
(0)
maxν

(0)
max = τ

(1)
maxν

(1)
max, where τ

(u)
maxν

(u)
max is the channel spread of user u). In Figure 4.11 the

AWGN case is depicted by the dashed line, the smallest channel spread by the darkest solid

line, and the biggest channel spread by the brightest solid line. Hence it can be seen, that an

increasing channel spread implies lower rates. The limiting case is given by the uncorrelated

channel considered previously. On the other hand a scattering function equal to a Dirac

impulse at the origin will lead to an upper bound that in the ergodic limit drifts to infinity.

This could be explained as a trend to the AWGN case for infinite bandwidth. Therefore

for quite low channel spreads (highly correlated channels) it‘s hard to find a representative

convergent result. Because of this, meaningful OFDMA results (which are situated above

the MC-CDMA results) are more difficult to obtain. In Figure 4.11 the OFDMA result (not

shown) would lie slightly above that of MC-CDMA.

In Figure 4.12 the upper bound on sum information rate in the two user case is depicted

over different channel spreads (but equal for all users: τ
(0)
maxν

(0)
max = τ

(1)
maxν

(1)
max). The numerical

evaluation was done for bandwidth B = 1GHz, M = 100, and K = 8. The bright line with

the markers denotes the OFDMA result which lies above the MC-CDMA result. As above a

small channel spread is necessary to enable higher rates. For low channel spreads there is an
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Figure 4.11: Impact of varying channel spreads (τ
(0)
maxν

(0)
max = τ

(1)
maxν

(1)
max) on the upper bound

on sum information rate for a MC-CDMA system with M = 60 and K = 16.

exponential rising of rate which could be described through the beneficial effects in channel

state estimation. As low channel spreads imply high correlation at the channel less channel

coefficients have to be estimated. This often used equivalence to channel estimation may be

useful in order to understand noncoherent channels.

Figure 4.13 again shows the upper bound on information rate for bandwidth B = 10GHz,

M = 80 and K = 4. Here, the two users are adepted by different channel spreads but the

sum will remain constant, e.g. τ
(0)
maxν

(0)
max + τ

(1)
maxν

(1)
max = 0.1. Again the bright line with the

markers denotes the OFDMA result which lies above the MC-CDMA result (dark line). In

the case of equal channel spread for both users (i.e., τ
(0)
maxν

(0)
max = τ

(1)
maxν

(1)
max = 0.05) the upper

bound has its minimum. In the case where one user uses a channel with large channel spread

while the second transmits over a channel with small channel spread there is a considerable

increase of rate. Hence at least one channel with a small channel spread can lead to a higher

sum information rate than two with the same sum of channel spreads. An explanation of

this effect can again be obtained in terms of channel estimation. For channel estimation one

highly correlated channel has more impact than even more spread channels. The comparison

of MC-CDMA and OFDMA shows an advantage of OFDMA.
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Figure 4.13: Sum information rate over varying channel spreads for MC-CDMA and

OFDMA with bandwidth B = 10GHz, M = 80 and K = 4. The sum of the
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(0)
max + τ
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maxν
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Figure 4.14: Sum information rate for MC-CDMA and OFDMA for a varying power alloca-

tion, using P (0) +P (1) = 2P with P = 1mW, M = 120, K = 4 and a bandwidth

of B = 10GHz.

Investigations on a different power allocation in the two-user case

For the two-user case Figure 4.14 shows the impact of varying power allocation on sum in-

formation rate. This result is similar to that shown in Figure 4.5 with additional dependence

on channel spread and codebook. The results are for bandwidth B = 10GHz, K = 4, and

M = 120 (for convergence reasons). The sum of the two users powers remains constant, i.e.

P (0) + P (1) = 2P and the channel for both is assumed equal with the same channel spread

τmaxνmax. In Figure 4.14 the bright curves show the result for OFDMA and the dark curves

are the results for MC-CDMA. The different channel spreads are marked through dashed

(τmaxνmax = 0.0267) and solid (τmaxνmax = 0.24) curves. The transmit powers are normalized

to the transmit power P defined in Table 4.1. Then, the sum information rate maximizing

case is given for a low channel spread and the single user case. It’s beneficial in comparison to

uniformly distributed transmit power. This again can be explained with improved conditions

for channel estimation since it’s easier to estimate the channel for a higher SNR. In compari-

son of codebooks again an advantage of OFDMA over MC-MCDMA can be recognized. In an

estimation point of view the reason for this is the better time-frequency allocation at OFDM,

in other words an improved peakiness.
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Figure 4.15: Scenarios with different scattering functions for U = 2. Left: disjoint regions;

center: overlapping regions; right: a more general case with disjoint regions.

The channel spread is fixed at a value of τ
(0)
maxν

(0)
max = τ

(1)
maxν

(1)
max = 0.21333.

Simulations for different channels

So far we treated simulations on different channel spreads or number of users. Now more

general setups will be used to search for the impact of different scattering functions on the

upper bound on sum information rate. These investigations will be done for the two-user case.

The first three scenarios are shown in Figure 4.15. Here the support regions of the scattering

functions C
(u)
H

(τ, ν) for user 0 and user 1 are shown above and below, respectively. The first

scenario on the left hand side shows disjoint support regions for the two users. The second

scenario depicts equal support regions and the third scenario on the right hand side a more

general case of non-overlapping scattering functions with more multipath delay for user 0. Note

that the channel spread remains constant for every user, i.e. τ
(0)
maxν

(0)
max = τ

(1)
maxν

(1)
max = 0.21333.

Then, the upper bound on information rate over bandwidth is shown in Figure 4.16. The

dashed line shows the AWGN upper bound which will be tight for small bandwidths. The

dark line shows the result for scenario two where full overlapping was assumed. The brighter

line shows the result for the disjoint support regions of scenario one and the brightest line

depicts the more general disjoint case of scenario three. All solid curves are for MC-CDMA.

Equivalently, the OFDMA results are shown through markers of the same color. Then, it can

be seen that identical scattering regions are beneficial in a maximization of sum information

rate sense. The more separation between the scattering regions of two user, the smaller the

upper bound and hence the sum rate will be. An explanation can be given through the entire
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Figure 4.16: Sum information rates for MC-CDMA and OFDMA for the simulation scenar-

ios shown in Figure 4.15.

time-delay region used by the users. With increasing joint support regions the upper bound on

information rate decreases. In Figure 4.16 also the advantageous effect of an OFDMA system

on the upper bound is shown. For a higher upper bound the difference between the MC-

CDMA and the OFDMA result increases. Another information gained from this simulation

concerns the location of scattering function. Hence a scattering function positioned near the

origin (τmaxνmax = 0) should result in a higher rate.

A second variation now is presented through the scenarios shown in Figure 4.17. Here in the

two-user case the scattering function of user 1 remains constant while that of user 0 varies.

Both are centered at the origin and therefore overlapped. The dark line characterises scenario

one with different small channel spreads, the brighter line scenario two with equal channel

spreads, and the brightest line characterises different large channel spreads. The MC-CDMA

result for RUB over bandwidth is shown in Figure 4.18. Here again the dashed curve depicts

the upper bound through AWGN. It can be seen that smaller channel spreads for user 0 (since

the channel spread of user 1 remains constant) enable higher rates. As above, one channel

with low channel spread is desirable in order to achieve higher sum rate.
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Figure 4.17: Scenarios for 2D-scattering functions for different channels of user 0 (top) and

user 1 (bottom).
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Chapter 5

Conclusions

In this chapter a summary of the results presented above and an outlook to further topics

will be given. OFDM based multiuser systems, such as Multi-Carrier-CDMA (MC-CDMA)

and orthogonal frequency division multiple access (OFDMA) transmitting over a time and

frequency selective fading channel were investigated. The channel was assumed as noncoherent

(no CSI available). The focus was on the uplink case where multiple users transmit to one

receiver. An analysis was performed in an information theoretic context with emphasis on

sum system capacity and sum information rate calculation.

• In Chapter 1 an introduction to OFDM systems was given. For a pulse-shaping OFDM

system a modulator and demodulator were shown. The OFDM based multiuser com-

munication systems MC-CDMA and OFDMA were explained. Wireless fading channels

were presented in terms of input-output relation, channel statistics, and channel pa-

rameters for the continuous-time and discrete-time case. An approximate multiplicative

input-output relation for small delays and Doppler spreads was shown. Further an in-

troduction to information theoretic parameters like entropy, mutual information, and

system capacity was given.

• Since the search for previous results was a main topic of this diploma thesis, an overview

of known results was presented in Chapter 2. First an overview of relevant channel

and signal properties was given. Next, single user results for time-frequency selective

noncoherent channels were presented. Further multiuser results (including achievable

rate regions) were presented.

• In Chapter 3 a multiuser system was viewed as a single user system with modified input

statistics. First a known single user model was presented. Then an approximation

for MC-CDMA was introduced and partial results for the calculation of sum system

capacity were found. Since a closed form expression for sum system capacity couldn’t

be found, upper and lower bounds on sum system capacity were derived. Simulation

results and numerical evaluations were presented. The simulation of the upper bound on
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information rate shows that the information rate tends to zero in the infinite bandwidth

limit. Further, a low channel spread is desirable in order to enable higher rates.

• In Chapter 4, bounds on sum information rate for MC-CDMA and OFDMA were pre-

sented. A multiuser model was introduced and applied to known bounding techniques

combined with a fourthegy bounding technique. For the noncoherent case, closed form

expressions for upper and lower bounds on sum information rate were found. Then,

numerical evaluations for this fourthegy upper bound were done. The tightness of the

upper bound was confirmed for low SNR. For OFDMA it was shown that for uncorrelated

channels there is no dependence on the amount of users while for MC-CDMA an increas-

ing number of users is disadvantageous. Simulations for different user power allocations

show that the single user case is maximizing the sum information rate. Investigations for

general channel statistics show that a low channel spread is preferable. Further, more

overlapping scattering functions for different users are preferable over disjoint support

regions. All results show the advantage of OFDMA over MC-CDMA in terms of the

upper bound on sum rate.

Finally an outlook to further research on this topic will be given.

• This thesis was focused on sum information rate. Further investigations should address

the achievable rate region in order to show trade-offs between the users (the sum infor-

mation rate only characterises one boundery point of this achievable rate region).

• All models in this work are based on the uplink scenario. This results may be used

to investigate the downlink scenario, e.g. one basestation is transmitting to multiple

receivers (users). Downlink specific scenarios for wireless channels may be included.

• Regarding the recent interest in multiple antenna systems an extension of the results to

the MIMO case could be performed.

• For the bounds presented in Chapter 4, further numerical evaluations in order to investi-

gate the influence of peakiness could be done. The same could be done for the similarity

of users input and channel statistics. Further the influence of different terms in the

bounds could be extracted for various propagation scenarios.
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