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Second-Order Time-Frequency Synthesis 
of Nonstationary Random Processes 

Franz Hlawatsch, Member, IEEE, and Werner Kozek, Member, IEEE 

Abstract-We present timefrequency methods for the synthesis 
of finite-energy, nonstationary random processes. The energetic 
characteristics of the process to be synthesized are specified in a 
joint timefrequency domain via a timefrequency model func- 
tion. The synthesis methods optimize the autocorrelation function 
of the process such that the process’ Wigner-Ville spectrum is 
closest to the given model function. An optional signal subspace 
constraint allows the incorporation of additional properties such 
as bandlimitation and also permits the reformulation of the 
synthesis methods in a discrete-time setting. The synthesized 
process is expressed either in terms of an orthonormal basis of 
the constraint subspace or via its Karhunen-Lohe expansion. An 
example involving the prolate spheroidal functions is given, and 
computer simulation results are provided. 

Index Terms- Nonstationary random processes, process syn- 
thesis, Wigner-Ville spectrum, timefrequency signal processing. 

I. INTRODUCTION 
N INTUITIVELY appealing interpretation of a nonsta- A tionary random process is that the process “changes its 

spectral content with time.” Often, this interpretation is in good 
agreement with the physical situation generating the process. 
While the definition of a “time-varying spectrum” for nonsta- 
tionary processes is not unique, a specific definition known 
as the Wigner-Ville spectrum (WVS) [ l ] ,  [ 2 ]  is particularly 
attractive. The WVS is a distribution of the mean instantaneous 
power over frequency, or equivalently, a distribution of the 
mean energy over a joint time-frequency (TF) plane. 

It is natural to exploit the advantages of the WVS repre- 
sentation not only for the analysis but also for the synthesis 
of processes. In many applications (e.g., testing algorithms 
for nonstationary signal processing), one is interested in gen- 
erating nonstationary processes with specified second-order 
characteristics. Conventionally, this would require the specifi- 
cation of the process’ autocorrelation function (ACF) which, in 
the nonstationary case, is a complicated, complex-valued two- 
dimensional function with little relation to physical intuition. 
Often, it would be easier and intuitively more meaningful to 
specify the time-varying spectrum (i.e., WVS) of a process. In 
this paper, therefore, we are looking for a method to generate 
the ACF and furthermore realizations of a process from a 
“specified WVS,” i.e., from a user-defined TF model function 
which, in general, will not be a valid WVS of any process. The 
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TF model function expresses the desired temporal evolution of 
the power spectral density. We shall start our discussion with a 
brief review of the WVS and a statement of the TF synthesis 
problem. 

A. The Wigner-Ville Spectrum 

The Wigner-Ville spectrum (WVS) [ I ] ,  [2] of a complex- 
valued, generally nonstationary random process ~ ( t )  is defined 
as the expectation of the process’ Wigner distribution [3], 141 
or, equivalently, as1 

where R,(tl, t2) = I { z ( ~ I ) x * ( ~ ~ ) }  is the autocorrelation 
function (ACF) of the process ~ ( t ) ,  t and f denote time and 
frequency, respectively, and integrations are from --3o to cc 
unless explicitly specified otherwise. The WVS is a real-valued 
function which can be interpreted as a time-varying power 
spectral density since 

The WVS will reduce to the conventional power spectral den- 
sity if the process ~ ( t )  is wide-sense stationary. Alternatively, 
if the process’ mean energy 

E ,  = /&{lz ( t ) l2}  dt = R,(t, t )  d t  

is finite, then the WVS can also be viewed as a distribution 
of E, over the TF plane in the sense that 

t 1 
~ p V ( t , f ) d t ( 4 f  = E , .  

- 

The WVS provides strictly the same information as the ACF 
R,(tl,t2). Indeed, these two quantities can be derived from 
one another by means of (1) and the inversion of (l), 

However, the WVS typically yields a characterization of a 
process which is clearer and easier to interpret than the ACF 
from which it is derived, since both temporal and spectral fea- 
tures are displayed simultaneously. A simple example showing 
the advantages gained from a TF description by means of the 

‘The bar notation in r g ( f .  f )  emphasizes the expectation taken and also 
serves to distinguish the WVS of a process . r ( t )  from the process’ Wigner 
distribution U ; ( t .  f )  which is random. 
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Fig. 1. 
WVS, (c) and (d) real parts and Wigner distributions (incorporating a small amount of TF smoothing)2 of two realizations of the process. 

Comparison of the ACF and the WVS for a nonstationary process consisting of two statistically orthogonal components. (a) Magnitude of ACF, (b) 

WVS is given in Fig. 1. The process under analysis consists of 
two statistically orthogonal components. The first component 
is a finite-duration bandpass noise with time-varying center 
frequency according to a sinusoidal modulation law. The 
second component is a finite-durafion chirp (i.e., linear FM) 
signal which is deterministic except for a random amplitude. 
The process’ TF structure is clearly shown in the WVS but 
not in the ACF. 

B. TF Synthesis of Nonstationary Processes 

We have seen above that the WVS is a “TF version” of 
the ACF which, in many cases of practical interest, has a 
more immediate relation to the physical reality generating the 
process than the ACF itself. We now consider the genera- 
tion of a nonstationary process where our specifications are 
formulated in the TF plane. For example, we could specify 
a TF energy distribution that crudely resembles the WVS in 
Fig. l(b), and look for the process whose WVS is closest to the 
specified TF energy distribution. The advantages gained from 
such a “TF specification” or “TF synthesis” are analogous to 
the advantages gained from a TF analysis (see Fig. 1). 

* A  judicious smoothing of the Wigner distribution is usually employed to 
reduce interference terms which would otherwise mask the TF structure of 
the signal under analysis [4]. Such a smoothing it typically unnecessary for 
the WVS of a random process, since here the interference terms are usually 
“averaged out” by the expectation operation [5] .  

As a first step, let us attempt to specify? WVS by prescrib- 
ing a real-valued TF function (“model”) Wf& f ) .  There arises 
the question whether the model function W ( t , f )  is a valid 
WVS. In contrastto the special case of stationary processes, 
nonnegativity of W k f )  is neither necessary nor sufficient 
for the “validity” of W ( t ,  f )  [6]. In fact, it will be made clear 
presently that typically a given model W ( t , f )  will not be a 
valid WVS, i.e., there will not exist a process ~ ( t )  such that 

In this situation, it is natural to consider the process z(t)  
whose WVS is closest to the TF model in a least square 
sense; this process is the solution to the minimization problem 
(synthesis problem) 

W z ( t , f )  = W t , f ) .  

E ( t )  A arg mint, (3) 
X 

with the synthesis error given by 

E ; =  l ~ W - W , ~ ~ 2 = / /  [W(t , f ) -W,( t , f ) I2d td f .  (4) 
t f  

To make the definition (4) of the syntheJlJ error E, mean- 
ingful, we have to require that the model W(t ,  f )  be square- 
integrable, i.e., W ( t ,  f )  E &(R2). 

Since the WVS w,(t, f )  contains strictly the same infor- 
mation about the process ~ ( t )  as the ACF R,(tl,t2), it is 
clear that properties of ~ ( t )  not contained in the ACF do 
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not enter in the optimization criterion (i.e., the synthesis error 
6,). In fact, our synthesis method is a “second-order’’ method 
which generates not the process as such but its ACF, which 
means that other process characteristics (such as the mean 
mx(t)  = E { z ( t ) }  or probability density functions) are left 
unspecified to a certain degree. The generation of specific 
realizations of ?(t) is based on additional assumptions and 
will be discussed in later sections. However, it is clear that 
this fundamental ambiguity of the synthesis result is removed 
if, for example, the process z ( t )  is assumed a priori to be 
zero-mean and normally distributed. 

C. Subspace-Constrained Synthesis 
The TF synthesis of a random process can be made more 

flexible by including a signal subspace constraint in the 
formulation (3) of the synthesis problem. We here require that 
the realizations of the process z ( t )  be elements of a given 
linear signal subspace S C &(AX) of the space &(at) of 
square-integrable (finite-energy) deterministic signals [7]; this 
will be briefly denoted as z ( t )  E S. The resulting subspace- 
constrained synthesis problem then reads 

?(t)  a arg rnin t, 
X E S  

The advantage of the subspace constraint z ( t )  E S is that 
it allows us to enforce certain properties of the synthesis 
result 2(t) .  Choosing, for example, the signal subspace S 
to be the space of signals bandlimited in a given frequency 
band B, it is guaranteed that the synthesis result a(t)  is 
bandlimited in B. More generally, a “TF subspace” according 
to [8] can be used to enforce energetic concentration of 2(t) 
in a given region of the TF plane; this results in a “TF- 
selective” synthesis with implicit TF filtering. It is convenient 
to consider synthesis without a subspace constraint as in (3) 
(termed global synthesis in the following) as a special case 
of subspace-constrained synthesis (5): for global synthesis, 
S = C 2 ( R ) .  The resulting condition ~ ( t )  E &(R) means 
that the synthesized process ?(t) has finite energy. Thus our 
synthesis approach is essentially suited for the generation of 
“random transients.” 

The synthesis problems (3) and (5) can be considered as 
stochastic versions of the well-known TF signal synthesis 
problem [9]-[ 121 

2(t) argmin IIW - WJ (6) 
XES 

where ~ ( t )  is a deterministic signal and Wx(t ,  f )  denotes 
its Wigner distribution [3]. Here, 2(t)  is defined as the 
deterministic signal whose Wigner distribution is closest to the 
TF model function W(t ,  f ) .  In fact, it will be seen presently 
that the solutions to the two problems (5) and (6) are closely 
related. 

D. Outline of Paper 

The subsequent sections of this paper are organized as 
follows. In Section 11, we derive a solution to the subspace- 
constrained synthesis problem (5) which is formulated in terms 
of an arbitrary orthonormal basis of the constraint signal 

subspace S.  In Section 111, this solution will be reformulated 
in terms of a “natural” basis, which is shown to result 
in the Karhunen-Lohe expansion [13] of the synthesized 
process L?(t). This basis is also best suited for generating 
specific realizations of the process. Another version of the 
synthesis method, which does not use a basis, is considered in 
Section IV. Section V gives an example of theoretical interest, 
where the model function and the subspace constraint restrict 
the synthesized process in both time domain and frequency 
domain; it is shown here that the synthesis solution involves 
the well-known prolate spheroidal functions [ 141. Section VI 
considers the discrete-time implementation of the synthesis 
algorithms, and Section VI1 presents computer simulation 
results illustrating the performance and application of the 
synthesis methods. 

11. SOLVING THE SYNTHESIS PROBLEM 

We now discuss the solution of the subspace-constrained 
synthesis problem (5). 

A. Transformation into the ACF Domain 

Equations (1) and (2 )  connecting the WVS and the ACF 
describe a unitary mapping which is known as the Weyl corre- 
spondence [ 151-[ 171. This mapping relates the ‘‘TF domain” 
and the “ACF domain.” Using ( I ) ,  the TF model W(t ,  f )  can 
be written in the form of a WVS 

where R(t1, t 2 )  is an “ACF model” which is derived from the 
TF model @(t, f )  by the inverse mapping ( 2 )  

For a real-valued TF model @(t,  - f ) ,  the ACF model - k(t1, t 2 )  

is a Hermitian function,j.e., R*(tz, t l )  = R(t1,tz). Note, 
however, that in general R(tl,Lz) will not be a valid ACF (it 
is a valid ACF if and only if W ( t ,  f )  is a valid WVS). 

Since the mapping between the TF domain and the ACF 
domain is unitary, the synthesis error E ,  can be reformulated 
in the ACF domain as 

This has to be minimized subject to the subspace constraint 
z ( t )  E S 

Thus we have shown that the synthesis problem (5) is equiv- 
alent to the optimal approximation of a Hermitian function 
R ( t 1 , t ~ )  by the ACF RX(t l , t2)  of a process z ( t )  whose 
realizations belong to a given signal space S. 
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B. Process Expansion 

Let us assume that the linear signal space S has dimension 
N and that an orthonormal basis {sk(t)}r=l of S is available3. 
The subspace constraint ~ ( t )  E S can then be taken into 
account by representing x ( t )  as4 

N 

k = l  

with the coefficient vector a = ( a k )  and the basis vector 
s ( t )  = ( s k ( t ) ) .  For a given basis {sk(t)}f=l ,  the properties 
of ~ ( t )  are now determined by the properties of the random 
variables (coefficients) a k .  For example, the ACF R,(tl, t 2 )  

is given by 
N N  

where R, = &{aaH} = (R,(lc, 1)) with R,(lc, 1) = & { U & }  

is the correlation matrix of the coefficients U k ,  and the super- 
script stands for conjugate transposition. 

C. The Induced ACF-Domain Subspace 

The linear signal subspace S C &(AX) can be shown 
to “induce” a linear ACF-domain subspace SR C & ( A X 2 )  
which, loosely speaking, consists of all linear combinations 
of outer signal products x(tl)y*(t2) with ~ ( t ) ,  y(t) E S [19], 
[lo]. The outer products of all orthonormal basis functions 
s k ( t ) ,  R k l ( t l , t 2 )  fi sk ( t l ) s ; ( t2 ) ,  can be shown to constitute 
an orthonormal basis of the induced ACF-domain subspace 
SR. In fact, (8) describes the expansion of the ACF R,(tl, t 2 )  

in terms of this induced orthonormal basis Rkl(tl, t 2 )  

N N  

k = l  1=1 

Thus from s(t)  E S it follows that Rz(tl , t2) E SR, i.e., 
R, ( t l ,  t2 )  is an element of the induced ACF-domain subspace 
SR. The ACF model function R(tl,t2), on the other hand, 
will not generally Le an elemeEt of SR. HEwever, it can 
be decomposed as R(t1 . t~)  = Rs(t1,tz) +Rl ( t l , t , )  (see 
Fig. 2) where the “projected ACF model” R s ( t 1 , t ~ )  is the 
orthogonal projection of R(t1, t 2 )  on SR, given by 

N N  

k = l  1=1 
with 

In practical applications, N is always finite. However, for theoretical 
analyses it is of interest to allow an infinite dimension N .  In this case, we have 
to assume that the space S be sepuruble 1181, which implies the existence of 
an orthonormal basis of S.  

4Boldface print denotes column vectors and matrices, and the superscript 
stands for transposition. 

0 
3 

Fig. 2. 
synthesis error fi. 

Orthogonal decomposition of the ACF model i?(tl, t 2 )  and the 

D. Error Decomposition 

error can now be decomposed as (cf. Fig. 2) 
Using the Pythagorean theorem [ 181, the squared synthesis 

tf = ( ( E  - R,((2 = (I(& + R I )  - R,(I2 - 
= /I(& - R,) + RL1I2 = ll& - R,112 + llE,112 
= €& + €?. (12) - 

Since the “orthogonal” error component €1 = IlRlll does not 
depend on - x ( t ) ,  there remains to minimize the error component 
t~,, = I(Rs - Rei\. Using the expansions (9) and (IO), E S , ,  

can be reformulated in a “coefficient domain” 
N N  

e;,, = llRs - R,1I2 = y J J Y k 1  - Ru(h1)lRkl Ii k = l 1 = 1  
N N  

where r = ( r k l )  is the matrix of the model’s projection coef- 
ficients y k l  and I (  . ( ( F  denotes the Euclidian norm (Frobenius 
norm) of a matrix. 

E. Optimization of the Correlation Matrix 

It is easily checked thatthe “model matrix” r is Hermitian 
for a real-valued model W(t ,  f). The correlation matrix R,, 
on the other hand, is moreover positive semidefinite. Thus the 
minimization of (1 3) amounts to the optimal approximation of 
the Hermitian matrix r by a positive semidefinite matrix R,. 
It is shown in Appendix I that the solution to this problem 
is given by 

R6 = r+ (14) 

where r+ denotes the positive part of the matrix r, 
N+ 

r+ = XkvkVf = VA+VH.  (15) 
k = l  

Here, XI, and Vk are the (real-valued) eigenvalues and the (or- 
thonormal) eigenvectors of the Hermitian matrix r, N+ is the 
number of positive eigenvalues (the eigenvalues are assumed 
to be arranged in nonincreasing order, XI 2 X2 2 . . . 2 AN), 
A+ is the positive part of the diagonal eigenvalue matrix 
(containing the positive eigenvalues as the first N+ diagonal 
elements, with the remaining diagonal elements zero), and V 
is the unitary matrix whose columns are the eigenvectors Vk. 
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F. The Synthesis Algorithm 

We shall now summarize the results derived above. We have 
shown that the solution Z( t )  E S to the subspace-constrained 
synthesis problem ( 5 )  is given by 

N 
q t )  = C Z k S k ( t )  = iiTs(t) (16) 

k = l  

where s ( t )  is an arbitrary orthonormal basis of the constraint 
subspace S ,  and the correlation matrix Rg of the optimal 
coefficients 2 can be constructed as follows: 

1) The ACF model R(tl ,  t 2 )  is derived from the TF model 
W ( t , f )  according to (7). 

2) The model’s projection coefficient matrix r = ( y k l )  is 
calculated by means of (1 1). 

3) The N+ positive eigenvalues XI, and the corresponding 
(normalized) eigenvectors Vk (k = 1. . . . , N + )  of r are 
determined. 

4) The optimal correlation matrix is obtained as RB = r+, 
where r+ is the positive part of r which is derived 
from the positive eigenvalues and the corresponding 
eigenvectors according to (15). 

Due to (16), the problem of generating the process Z ( t )  is 
reduced to the problem of generating the N random variables 
ak.  These random variables are determined only with respect 
to their correlation matrix Rg. Accordingly, as shown by (8), 
also the resulting process Z ( t )  is specified only with respect 
to its ACF. This means that other characteristics like the mean 
and probability density functions have still to be specified. This 
point will be further discussed in Section 111. In particular, it 
will be shown how to generate realizations of ?(t) for given 
coefficient correlation matrix Rg. 

- 

h 

G. Energy of the Synthesis Result 
It is easily shown that the mean energy 

E.jj = R?(t, t)dt  - . d  
of 2(t)  is given by the trace of the coefficient correlation 
matrix Rg which, due to (14) and (15), equals the sum of 
the positive eigenvalues of r 

N N+ - 
E? = C~{lii~1~) = tr{Rk) = t r{r+)  = Exk. 

k=l k=l 

We see that will be finite if and only if the sum of all 
positive eigenvalues XI, is finite. In particular, this will always 
be the case for a finite-dimensional signal subspace S since 
here N+ 5 N < CO. 

H.  Residual Synthesis Error 

With (1 2), the squared residual (minimum) synthesis error 
is e:,,in = 6; = e:,? + 6:. The “orthogonal” error component 
t~ = llR~ll is zero if and only if the ACF model R(tl , tz)  
belongs to the induced ACF-domain subspace SR. This will 

rarely occur except for the case of global synthesis where5 
S = &(R). For the error component e ~ , ? ,  we obtain with 
( 1 3)-( 1 5 )  

where the spectral decomposition of r 

and the unitarity of V has been used. With (17), e:,? is seen 
to be the sum of the squares of all negative eigenvalues of the 
matrix r. Hence, the error component 6 S . i  is zero if any only 
if the matrix F is positive semidefinite, i.e., r = r+. Positive 
semidefiniteness of r is thus recognized as a necessary and 
sufficient condition for the projected ACF model Rs(t1, t 2 )  

to be a valid ACF, &(tl ,  t 2 )  = R,(t,.t2). We note that this 
“validity” of &(t l ,  t 2 )  will always be satisfied (for arbitrary 
subspace S )  if the original TF model @(t, f )  is a valid WVS. 

I. Relation with Deterministic Signal Synthesis 

The “stochastic” synthesis problem ( 5 )  is closely related to 
the “deterministic” signal synthesis problem (6). The solution 
to the latter problem is [IO] 

N 

Z ( t )  = E i j k S k ( t )  = iiTs(t), 
k=l 

with the (deterministic) coefficient vector 2 given by 

ii= A V ,  (19) 

where A 1  is the largest eigenvalue of r (XI is assumed to 
be nonnegative [lo]) and v1 is the corresponding normalized 
eigenvector. The deterministic synthesis problem can be con- 
sidered a special case of the stochastic synthesis problem: 
if the process x ( t )  to be synthesized is constrained to be 
deterministic, then the coefficient correlation matrix R, = 
&{aaH)  equals the dyadic product aaH, and the minimization 
of (13) thus reduces to the minimization of llr- aaHII$ with 
respect of the vector a, i.e., the optimal approximation of r 
by a dyadic product (rank-1 matrix) uaH. The solution to this 
problem is given by GH = Xlvlvf or, equivalently, (19). A 
major difference between the solutions to the stochastic and 
deterministic problems is that the former involves all positive 
eigenvalues and associated eigenvectors of r whereas the 
latter involves only the largest positive eigenvalue and the 
associated eigenvector. 

51f S = C z ( B ) ,  then we have SH = C z ( R 2 ) .  Since the TF model 
was assumed square-integrable, there is \ r7 ( t .  f )  E C 2 ( R 2 )  and thus also 
E ( t 1 . t ~ )  E C 2 ( R 2 ) .  Combining with SR = L 2 ( R 2 ) ,  it is clear that 
f i ( t 1 .  t 2  ) is an element of the induced ACF-domain subspace SR.  

- 
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111. KARHUNEN-LOEVE REPRESENTATION 

In the previous section, the solution ?(t) to the subspace- 
constrained synthesis problem ( 5 )  has been formulated in 
terms of an arbitrary orthonormal basis s ( t )  of the constraint 
subspace S. We shall now show that ?(t) assumes a particu- 
larly simple form if a special, model-dependent basis of S is 
used. This corresponds to a diagonalization of the coefficient 
correlation matrix Rh and will be seen to result in the 
Karhunen-Lokve expansion of ?( t ) .  The practical advantage 
of this new formulation is that the generation of ?(t) reduces 
to the generation of uncorrelated random variables. 

A. Basis Transformation and Karhunen-Lo2ve Expansion 

s( t )  by means of the unitary transformation 
The new basis, denoted by u(t), is related to the given basis 

u(t) = VTs( t )  (20) 

where V is the unitary eigenvector matrix of the model’s 
projection coefficient matrix r. Just as s( t ) ,u( t )  is an or- 
thonormal basis of S.  Thus 2(t) can be expanded as 

N 

q t )  = C ? k U k ( t )  = &(t) (21) 
k = l  

where 

z =  V H Z  (22) 

due to (20) and (16). With (22) and (14), (15), the correlation 
matrix of the transformed coefficient vector i3 is found to be 
the positive part of the eigenvalue matrix of r. 

R; = V ~ R ~ V  = vHr+v = A+.  

This means that the correlation matrix Rt is diagonal, i.e., the 
coefficients & are orthogonal: 

R:(k,Z) = &{&q} = 0, for k # 1 

Since &{lEk/’}  = 0 for N+ + 1 I k 5 N ,  the expansion (21) 
can be rewritten as 

N I  

k=l 

This shows that the effective “order” of ?(t) is N+, the number 
of positive eigenvalues of r. Note that N+ may be smaller 
than the subspace dimension N .  

With ?(t) = i?u(t) and Re = A+,  the ACF of Z ( t )  is 
obtained as (cf. (8)) 

&(ti ,  t z )  = uH(t2)RTu(t1) = a H ( t 2 ) A + ~ ( t l )  

k = l  

This is the spectral representation (or eigendecomposition) 
of the ACF Rj.(t l , tz) ,  and we conclude that the first N+ 

basis signals u k ( t )  are eigenfunctions of the integral operator 
defined by the kernel Rz( t l  , t 2 )  

l2 R,(tl, t Z ) U k ( t 2 )  d t2  = X k U k ( t l ) ,  1 I k I N+. 

(27) 
This shows that (25) is in fact the Karhunen-Lokve (KL) 
expansion [13] of .^(t), the unique expansion in terms of 
orthonormal basis signals for which the expansion coefficients 
are orthogonal. 

B. Process Generation 

In previous sections, we have derived the ACF of ?(t), but 
the actual generation of ?(t) has not yet been discussed. The 
KL expansion (25) 

N+ 

q t )  = C ? k % l . k ( t )  
k=l 

is particularly advantageous for generating realizations of .^(t). 
Clearly, the generation of Z ( t )  reduces to the generation of N+ 
orthogonal random variables & with given quadratic means 
&{l?k12} = Ak. The (linear) means &{?k}  can be chosen 
arbitrarily apart from the constraint that the resulting mean 
of ?(t) be consistent with the ACF R?(tl , t2).  To evaluate 
this constraint, we note that the KL expansion induces an 
analogous expansion of the mean of ?(t) 

N+ 

m?(t) = &{?(t)} = - p ; - ( k ) U k ( t )  (28) 

where m;(k) = & { e k }  = (m;,,uk). Note that it follows from 
(28) that mi@) is itself an element of S.  The consistency of 
m,(t) with R*(tl ,  t z )  is defined by the requirement that the 
autocovari ance function 

k=l 

Cj.(tl, t 2 )  = &{[?(tl)  - mdt1)1[2(tz) - m,.(tz)I*> 

= & ( t l , t 2 )  - m?(tl)m;(t2) (29) 

be a positive semidefinite function. In Appendix 11, it is shown 
that a necessary and sufficient condition for consistency is 

A trivial but practically important special case where (30) is 
certainly satisfied is a zero-mean process, i.e., mi(t)  0 or 
equivalently me(k) = 0. In this case, the coefficients G are 
uncorrelated in addition to being orthogonal. In the opposite 
case, we can always write ?k = Ek + m;(k) where the random 
variables Ck are zero-mean and uncorrelated and the mc(k)  
are the desired means. Thus in any case, the generation of 
the process ?(t) reduces to the generation of N+ zero-mean, 
uncorrelated random variables with prescribed variances. 

The process synthesis described above is “second-order’’ in 
that the process ?(t) is specified in terms of its ACF and 
mean, but not with respect to its probability density functions. 
In many cases, one is interested in a Gaussian process. 
Gaussianity of E ( t )  will be obtained if the coefficients ?k 
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are Gaussian random variables6. For other desired probability 
density functions, such a simple recipe cannot be given. 

IV. BASIS-FREE METHOD 

The derivation of the synthesis result Z ( t )  in the KL form 
(25) is still based on an initial (arbitrary) orthonormal basis 
s ( t )  of the constraint signal subspace S. While this approach 
may be computationally efficient (particularly so when the 
dimension N of the subspace S is small), a “basis-free’’ 
derivation of the KL expansion is of theoretical interest since 
it shows additional properties of the KL basis u(t). 

With (lo), the projected ACF model can be expressed as 

AT N - 
RS(tl.tZ) = ~ Y k E ~ ~ k ( t l ) S ; ( t 2 )  

k = l  E=l 

= s H ( t 2 ) P s ( t l )  = s ~ ( ~ ~ ) ( V A V ~ ) ~ S ( ~ ~ )  

= uH(t2)nu(tl) = X k U k ( t l ) U : ( h )  (31) 
N 

k = l  

where (18) and (20) have been used. Note that (31) is 
analogous to the expression (26) for R?(tl.tz), the only 
difference being that, in general, Rs(t1. t 2 )  contains also 
negative eigenvalues X k .  Furthermore, it follows from (31) 
that 

l2 k S ( t l 1 t 2 ) U k ( t 2 ) d t 2  = X k U k ( t l ) ,  1 5 /k 5 N (32) 

which is analogous to (27), again with the difference that (32) 
is valid also for the negative eigenvalues X I ,  (if these exist). We 
conclude that the eigenvalues X I ,  of r and the KL basis signals 
u k  ( t )  equal the eigenvalues and eigenfunctions, respectively, 
of the integral operator defined by the kernel & (tl t 2 ) .  

A. Busis-Free Synthesis Algorithm 

The above discussion demonstrates that the eigenvalues X I ,  

and eigenfunctions U k ( t )  are independent of the initial basis 
s ( t )  used in Section 111. Moreover, it allows us to derive the 
KL expansion (25) of the synthesis result Z ( t )  without the use 
of the initial basis s ( t ) ,  as explained in the following. 

Suppose that an orthonormal basis s ( t )  of the constraint 
subspace S in not available; instead, S is characterized by its 
orthogonal projection operator PS with kernel Ps(t ,  t’) [71, 
[18]. It can then the shown [ 191 that the orthogonal projection 
operator PsR on the induced ACF-domain subspace SR is 
given by the kemel E‘S, ( tl  . t 2 ;  ti t i )  = Ps(t1 t i )  P i  ( tz .  t i ) .  
Hence, the projected ACF model R s ( t 1 , t z )  can be derived 
from the original ACF model R ( t l .  t 2 )  as 

(33) 

The resulting “basis-free’’ synthesis algorithm can now be 
summarized as follows. 

1) Transform the TF model W ( t ,  f )  into the ACF domain 

2) Calculate the projected ACF model ks(t1, t 2 )  by means 

3) Find the positive eigenvalues X I ,  and the_correspond- 
ing normalized eigenfunctions U k ( t )  of Rs(t l ,  t z )  by 
solving the eigenproblem (32) for 1 5 IC 5 N+. 

4) The synthesis resu1.t Z( t )  is then given by (25), with the 
statistics of ?k specified by (23), (24), and (30). 

according to (7). 

of (33). 

B. Global Synthesis 

Global synthesis, i.e., synthesis without a subspace con- 
straint, can be considered as subspace-constrained synthesis 
with S = &(R) .  The computationally expensive projec- 
tion steE (33) can here be omitted. Indeed, since the TF 
model W ( t ,  f )  was assumed square-integrable, W(t ,  f )  E 
&(R2),  the ACF model k(t1, t 2 )  is square-integrable as well, 
k(tlltz) E &(R2). But &(E2) can be shown to be the 
induced ACF-domain space associated with S = &(E) i.e., 
there is SR = C2(R2),Hence, we have R ( t 1 ,  t 2 )  E SR, from 
which it follows that Rs(tl , t2) = R(tl . tz) .  

V. AN EXAMPLE 
In this section, we consider the problem of constructing 

a process that is strictly bandlimited in a given frequency 
band If1 < F / 2  and also optimally concentrated in a given 
time interval (ti < T / 2 .  This problem can be foFulated as 
subspace-constrained TF synthesis with a model W ( t ,  f) that 
is 1 inside It( < T/2  and 0 outside 

1, for It1 < T/2  
0, for It1 > T / 2  W ( t ,  f )  = T T ( t )  

and a constraint signal space S that is the subspace S, of all 
signals bandlimited in I f1  < F/2.  The synthesis problem is 
the minimization of 

subject to the subspace constraint ~ ( t )  E SF.  Note that the 
model W ( t ,  f )  = T T ( ~ )  requires that the synthesized process 
Z( t )  feature optimal time concentration in the time interval 
(ti < T / 2  while the subspace constraint x ( t )  E SF forces ?(t)  
to be strictly bandlimited in the frequency band I f 1  < F/2 .  

We shall solve the above synthesis problem by means of 
the basis-free method discussed in Section IV. The orthogonal 
projection operator Ps, on SF is the bandlimitation operator 
on If1 < F / 2 .  Hence, its kernel Ps,(t,t’) is the impulse 
response of the ideal lowpass filter with cutoff frequency F / 2 ,  
i.e, Ps,(t, t’)  = h ~ ( t  - t’) with h ~ ( t )  = F sinc ( F t ) ,  where 

6The generation of Gaussian random variables is discussed in [20]-[22] 

sin ( rn)  
sinc ( a )  = ~ 

r a  
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Evaluation of (33) yields the following expression for the 
projected ACF model fis(t1, t 2 ) :  

- 
Rs(t1, t 2 )  = l h F ( t l  - t ) T T ( t ) h F ( t  - t 2 )  d t .  

It is easily shown that this is the kernel of the composite oper- 
ator PsF Ps, P s F ,  where Ps, is the bandlimitation operator 
on I f 1  < F / 2  and Ps, is the time-limitation operator on J t J  < 
T/2  (or, in other words, the orthogonal projection operator on 
the subspace ST of all signals time-limited in Jtl < T/2). 
Thus the eigenequation (32) defining the eigenvalues XI, and 
eigenfunctions “I, ( t )  reads 

The eigenfunctions U I ,  ( t )  of the operator Ps,  Ps, PsF are 
obviously bandlimited in the band I f 1  < F/2,  i.e., there is 
PsF UI, = “I,; hence, the eigenequation can be rewritten as 

which shows that Xk and u k ( t )  are also the eigenvalues 
and eigenfunctions, respectively, of the operator7 Ps, E‘sT. 
The eigenfunctions of Ps,PsT are known as the prolate 
spheroidal functions $r’“’ ( t )  [ 141. Hence, we obtain 

“I,(t)  = $ p ( t ) ,  0 5 k < m. 

The prolate spheroidal functions $PF)(t) arise in the classical 
problem of maximizing the time concentration of a bandlim- 
ited deterministic signal. Specifically, the zero-order prolate 
spheroidal function $r’F) ( t )  is the signal strictly bandlimited 
in I f 1  < F / 2  which assumes a maximum part of its energy 
in the time interval It1 < T / 2 .  It is shown in [14] that the 
eigenvalues satisfy 0 < XI, < 1. Hence, the number of positive 
eigenvalues is N+ = CO, and the synthesis result can finally 
be written as 

k=O 

where the coefficients i.~, are orthogonal with quadratic means 
&{It#} = X I ,  < 1. 

VI. DISCRETE-TIME FORMULATION 

The synthesis algorithms derived in the previous sections 
must be reformulated in a discrete-time setting if they are to 
be implemented on a digital computer. 

A. The Discrete-Time WVS 
For a discrete-time process ~ ( n ) ,  the WVS is defined as 

Wx(n, e )  2 Rx(n  + m, n - m)e--j4TOm (34) 
m 

with the ACF Rz(nl,n2) = E{x(n1)x*(n2)}. Here, n and 
m are integer time indices and 0 is a normalized frequency 

7Note that, even though the eigenvalues and eigenfunctions of the oper- 
ators P s ,  Ps ,  Ps ,  and P s ,  Ps ,  are identical, the operators themselves 
are quite different (e.g., P s ,  P s ,  P s ,  is a self-adjoint operator whereas 
P s ,  Ps ,  is not even normal). 

variable. With respect to 19, the WVS is periodic with period 
1/2; this is in contrast to the Fourier transform of a discrete- 
time signal whose period is 1. Indeed, the WVS (in analogy 
to the discrete-time Wigner distribution of a deterministic 
signal [23]) suffers from aliasing effects unless the process 
x(n) is a “halfband process,” i.e., bandlimited in a “halfband” 
10 - eo[ < 1/4 with bandwidth 1/2 and given (application- 
dependent) center frequency BO. Note that, in particular, 190 = 0 
corresponds to a halfband containing (among other signals) all 
real-valued signals oversampled by a factor 2 while 00 = 1/4 
corresponds to analytic signals. 

Using the notation of Section I, the “no aliasing” condition 
can be phrased as x(n) E 7 d 8 0 ) ,  where the “halfband sub- 
space” . F I ( ’ O )  is the linear space of all halfband signals with 
center frequency 190 [ 111. We note that a halfband process 
x(n) E is uniquely specified by, e.g., the even-indexed 
samples x(2v)  since the odd-indexed samples can be derived 
from the even-indexed samples by means of the interpolation 

x(2v + 1) = 2 h(2(v - v’) + l)Z(2U’) (35) 
v’ 

where 

is the impulse response of the idealized halfband filter with 
center frequency 190. This fact will be utilized in the discrete- 
time synthesis algorithms described below. 

B. Discrete-Time Synthesis 

The discrete-time synthesis problem is formulated as 

where 

(37) 
Here, @(n,O) is the (real-valued) model function which is 
defined on the halfband 16‘ - 001 < 1/4. The constraint space 
S is assumed to be a subspace of the halfband space 
i.e., S C This assumption assures that the WVS of the 
synthesis result i(n) E S is nonaliased; furthermore, it permits 
the synthesis algorithms developed in previous sections to 
be reformulated in the discrete-time setting considered here. 
Indeed, the synthesis algorithms of Sections 11-IV are based 
on the unitary mapping relating the TF domain and the ACF 
domain (cf. (l),  (2)). In the discrete-time case, the mapping 
between TF domain and ACF domain (as given by (34)) is 
unitary only for halfband processes z (n)  E [ I l l .  Note 
that the condition S C . F I ( ’ O )  disallows global synthesis; the 
place of global synthesis is here taken by the extreme case of 
halfband-constrained synthesis where S = 

In the following, we summarize (without proof) two 
discrete-time synthesis algorithms. These algorithms are 
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analogous to the continuous-time basis method and basis- 
free method discussed in previous sections, apart from two 
differences [ l  11: 

they comprise an initial “halfband projection” of the TF 
model which assures the unitarity of the TF-domain/ACF- 
domain mapping, and 
they feature an implicit decimation by a factor 2 for 
the sake of increased efficiency (this is possible since 
S C E(eo)  and since, as mentioned above, halfband 
signals are fully characterized by, e.g., the even-indexed 
signal samples). 

C. Basis Method 

The discrete-time version of the basis method can be sum- 

1) The model w(n,O) is projected on the induced TF- 
domain subspace corresponding to the halfband sub- 
space E(’o); this projection amounts to the convolution 
[I11 

marized as follows. 

where Wh(n,O) = (1-410-O~l)sinc[(1-4(O-Ool)n] 
is the discrete-time Wigner distribution [23] of the 
halfband-filter impulse response h( n). This convolution 
is seen to be a lowpass filtering with respect to n, where 
the bandwidth of the lowpass filter is (1 - 410 - &1)/2 
and thus depends on 8- 

2) The projected model WH(TL, 0) is transformed into the 
ACF domain according to 

(39) 
This yields the ACF model for even-indexed time in- 
dices. 
The model’s projection coefficients are calculated as 

where { ~ k ( n ) } : = ~  is an orthonormal basis of S.  
The synthesis result is given by 

N 

q.) = iLkSk (71)  = irTs(n) 
k=l 

where the correlation matrix Rh of the expansion coeffi- 
cients iLk is the positive part of the projection coefficient 
matrix r = ( y k l ) ,  i.e., Rk = r+. Alternatively, the 
synthesis result 2(n) can be represented in terms of its 
KL expansion by transforming the basis 4 7 1 )  as detailed 
in Section 111. 

D. Basis-Free Method 

The first two steps of the basis-free method are identical 
with the first two steps of the basis method, but the remaining 
steps are different: 

1) The projection of the model @(n,H) on the induced 
TF-domain halfband space is calculated according to 

2) The projected model w ~ ( n ,  8) is transformed into the 

3) The ACF model RH ( 2 ~ 1 , 2 v ~ )  is projected according to 

(38). 

ACF domain by _means of (39). 

U; U ;  

. P 2 ( 2 ~ 2 . 2 ~ l ) i Z ~ ( 2 v i ,  2 4 )  (41) 

where Ps(n1,nn) is the kernel of the orthogonal pro- 
jection operator on S .  

4) The positive eigenvalues XI, and the corresponding 
eigenvectors u k ( v )  of Rs(2vl; 2 . ~ 2 )  are found by 
solving the eigenproblem 

&@l, 2v2)w(v2) = X k U k ( V l ) ,  1 I IC I N + .  
U 2  

5 )  The even-indexed samples of the synthesis result ?(n) 
are given (in the KL form) as 

N I  

k = l  

where the coefficients Ek are orthogonal with quadratic 
means &{lEI,12} = 2Xk. 

6) The odd-indexed samples of ?(n) are obtained via the 
interpolation (35). 

In practice, the WVS is discretized also with respect to 
the frequency variable B. Both the lowpass filtering (38) and 
the inverse Fourier transform (39) can then be performed 
efficiently by means of fast Fourier transform techniques. We 
note that suboptimal, reduced-cost algorithms are obtained 
simply by omitting the initial projection step (38); the resulting 
process will then still be an element of the subspace S but it 
will no longer minimize the synthesis error (37). However, 
experiments have shown that the difference between this 
suboptimal process and the optimal solution is typically not 
dramatic. 

E. Haljband-Constrained Synthesis 

If the constraint subspace equals the total halfband space, 
S = E(’u), the projection step (40) of the basis method can be 
omitted. In fact, if the orthonormal basis spanning S = E(eo)  
is chosen as s k ( n )  d%(n - 2k)  (cf. (36)), then there 
is directly Y I , ~  = 2 R ~ ( 2 k ,  2 l ) .  Similarly, in the basis-free 
method we can omit the projection (41) since &(2v1,2v2) = 
R H ( 2 V 1 ;  2v2). 

VII. SIMULATION RESULTS 

This section presents computer simulation results illustrating 
the performance and application of TF synthesis. The discrete- 
time synthesis algorithms discussed in the previous section 
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Fig. 3. 
subspace S F .  (b) WVS of the synthesized process 2 ( n ) .  (c) and (d) Real parts and smoothed Wigner distributions of two realizations of .^(n). 

Bandwidth-constrained synthesis from a time-limited plateau model. (a) TF model @(n, 0 )  and frequency band corresponding to the constraint 

were employed to obtain the KL eigenvalues and eigenfunc- 
tions of the process, from which individual process realizations 
(assuming zero mean and Gaussian distribution) were then 
generated as discussed in Section 111. 

Fig. 3 reconsiders the example discussed in Section V, 
namely, the synthesis of a process from a model that is 
strictly time-limited, under a subspace constraiE enforcing 
strict bandlimitation of the process. The model W(n ,  0) and 
the frequency band corresponding to the constraint subspace 
S p  are shown in Fig. 3(a). In the discrete-time setting used 
for these computer simulations, the time-length parameter T 
corresponds to the discrete time length An = 45 and the band- 
width F corresponds to the normalized bandwidth At? = 1/4, 
which is one half of the fundamental frequency period 112. 
From the WVS of the synthesized process (see Fig. 3(b)) we 
verify that the process is indeed bandlimited in the frequency 
band corresponding to SF (apart from small errors caused 
by the finite time support of all signals calcula&d) and well 
concentrated in the time interval defined by W(n,t?). Two 
different realizations of the synthesized process (assuming 
zero mean and Gaussian distribution) are depicted in Fig. 3(c) 
and (d). Both the real parts of the signals and the signals’ 
(smoothed) Wigner distributions are shown. It is seen that both 
realizations are strictly bandlimited in the correct frequency 
band and also well concentrated in the prescribed time interval. 

The second example, shown in Fig. 4, illustrates the results 
of halfband-constrained, discrete-time synthesis for a model 
consisting of two plateaus with different heights, where the 
plateaus are nonoverlapping in the TF plane (see Fig. 4(a)). 
This is the TF model for a process consisting of two sta- 
tistically orthogonal components, where the first component 
is concentrated inside an elliptic TF region and the second 
component is a burst of bandpass noise whose time-varying 
center frequency corresponds to a sinusoidal frequency mod- 
ulation law. The WVS of the synthesized process, depicted in 
Fig. 4(b), is indeed quite similar to the model. Two realizations 
of the process are shown in Fig. 4(c) and (d); again, a zero- 
mean, normally distributed process was assumed. From the 
Wigner distributions of the realizations, it is verified that 
the realizations are well concentrated inside the model’s TF 
support (the Wigner distribution components located outside 
the model’s TF support are residual interference terms [4] 
which do not contain signal energy). 

VIII. CONCLUSION 

We have presented methods for the time-frequency (TF) 
synthesis of nonstationary random processes with finite energy. 
These methods allow a specification of the energetic (second- 
order) properties of a process in a joint TF domain. They are 
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Fig. 4. 
(d) real parts and smoothed Wigner distributions of two realizations of  F ( n ) .  

Halfband-constrained synthesis from a two-component plateau model. (a) TF model @(n. 0 ) .  (b) WVS of synthesized process F(71). (c) and 

based on the energetic TF representation of processes by means 
of the Wigner-Ville spectrum (WVS). The autocorrelation 
function of the process is determined such that the WVS is 
closest to a specified TF energy distribution. The final result 
of this optimization is given by the Karhunen-Lohe eigen- 
values and eigenfunctions which allow an easy generation of 
realizations of the synthesized process. 

A signal subspace constraint can be included which assures 
that the realizations of the synthesized process are elements of 
a prescribed linear signal subspace. By this, certain properties 
(e.g., bandlimitation) of the process can be enforced. Also, 
a particular signal subspace constraint (enforcing a “halfband 
limitation”) allows the synthesis methods to be reformulated 
in a discrete-time setting. 

It should be noted that the TF synthesis methods formulated 
here for the WVS can readily be generalized to other defini- 
tions of time-varying spectra or TF process representations 
provided that these are defined as the expectation of a unitary 
[ 191, [24] quadratic TF signal representation. Examples of uni- 
tary TF signal representations (other than the Wigner distribu- 
tion underlying the WVS) are the Rihaczek distribution, ambi- 
guity function, Altes-Marinovic Q-distribution, and Bertrand 
PO distribution [ 191, [24], [25].  The generalized synthesis 
methods are obtained by extending the results of this paper 
along the lines discussed in [lo] for the deterministic case. 

APPENDIX I 
POSITIVE SEMIDEFINITE APPROXIMATION 

OF A HERMITIAN MATRIX 

The minimization problem to be solved (cf. (13)) is 

where r is a Hermitian matrix and R, is constrained to be 
positive semidefinite. Using the spectral representation of R, 

N 

R, = P k l - k T F  
k = l  

where the eigenvalues pk are nonnegative and the eigenvectors 
T k  are orthonormal, the squared error norm in (42) can be 
developed as 

N 

k=l 
hT N 

k=l k=l 
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where APPENDIX I1 
ACF-COMPATIBILITY OF THE MEAN 

Positive semidefiniteness of the autocovariance C ? ( t l ,  t 2 )  

in (29) means that 

C~(tl,t2)Y*(tl)Y(t2)dtldt2 2 0;  for all Y( t ) .  
Qy k k We first carry out the optimization with respect to the 

eigenvectors r k .  For this, we have to maximize the last term 
of (43) subject to the normalization constraints' 11Tk)I = 1 or, 
equivalently, 1 - [ I r k  (1' = 0. Incorporating these normalization 
constraints via Lagrangian multipliers P k ,  the quantity to be 
maximized is 

In order to show that the condition (30) is necessary and 
sufficient for positive semidefiniteness of C, ( t l ,  t z ) ,  we insert 
(28) and (26) into (29), whereby, after straightforward manip- 
dlations, the following expression for the quadratic form Qy 
is obtained: 

N N 

Setting the gradient Of ov with respect to the ith eigenvector T i  

equal to zero yields the following set of necessary conditions: 
Introducing the diagonal matrix A ,  and the vectors 
according 

and 

P'  
P i  

r r i  = L r i .  

This shows that the ri must be eigenvectors of r. Denoting 
the eigenvectors of r by Vk, the optimal correlation matrix 
Rb can hence be written as 

We next determine the optimal eigenvalues P k  of Ri.  To 
this end, we insert (44) and the spectral representation of r, 
(18), into the error in (42). Using the orthonormality of the 
eigenvectors V k  of I', we obtain 

we can write Qy as 

Qy = yH(A+ - m A H ) y .  (48) 

Since A+ is positive definite, it allows the factorization 
A+ = A:/zA:/2 with the matrix square root A:/2 given by 
(A: /2)~l  = &6kL. The inverse A,'/2 of Ail2 exists and is 
given by (A;' / ' )I ,~ = (1/&)6kl .  We can now reformulate 
(48) as 

Qy = y H ( A +  - mmH)y  
= y ~ ~ : / 2 ( ~  - ~ ; 1 / 2 ~ ~ ~ ~ ; 1 / 2 j @ ~ ~  

= y H ( I  - mmH)y 
= Ilgl; - (mH- Yl 

where the x k  are the (real-valued) eigenvalues of r. The error 
(45) has to be minimized subject to the constraints P k  2 0 
expressing the positive semidefiniteness of R;. Obviously, the 
solution is given by 

where 

y a A:12y and f i  2 A T 1 I 2 m .  (49) 

Applying Schwarz' inequality to the inner product mH y, we 
obtain 

where N+ is the number of positive eigenvalues X I ,  (it has 
been assumed that the eigenvalues XI, are arranged such that 

matrix Ri, is finally obtained as 

which shows that 

XI, > 0 for 1 5 k 5 N+). With (46), the optimal correlation Ilmll$ 51 (50) 

is a sufficient condition for Qy 2 0. On the other hand, we 
may choose a special y ( t )  such that jj = m, which gives N+ 

This shows that Ilriill$ 5 1 is also a necessary condition for which is recognized as the positive part of r. 
Qy 2 0. 

'The orthogonality of the eigenvectors r k  need not be incorporated via 
an explicit constraint since, as will be seen presently, it will be given 
automatically. 

9Note that A+ is different from the A+ defined by (15) in that the zero 
diagonal elements are left out and the matrix size is reduced accordingly. 
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With (47) and (49), the elements of riL are ( r i L ) k  = 
m:(IC)/&, 1 5 IC 5 N+; hence, the necessary and sufficient 
condition (50) becomes 

which is the condition (30) to be proved. 
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