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Abstract - A time-frequency analysis of linear, time-varying
(LTV) syst may be based on two new time-frequency repre-
sentations of LTV systems called the “input Wigner distribution
(WD)" and the “output WD.” The two WD definitions coincide
in the case of normal systems. The proposed WD representation
can also be applied to the optimum design of LTV systems.

1. INTRODUCTION

LTV systems. We consider a linear, time-varying (LTV) system
H with impulse response H(t,t). The system's input-output
relation is (all integrations go from - to )

(Hx)(t) = {H(t,t‘) x(t')dt . 1.1
We note, for later use, that the singular value decomposition 1]
Hitt) = S oy ho k() hY (t) (1.2)

exists for square-integrable H(t,t'). Here, 6, 20 are the singular
values and hg ; () and hy,; (t) will be called the "output” and
“input” singular functions, respectively.

Time-frequency analysis of LTV systems. Since the system
H is time-varying, & joint time-frequency (TF) description ap-
pears to be advantageous. TF representations which are linear
in H(t,t') are Zadeh's time-varying transfer function and the
Weyl symbol [2-4]. In this paper, we adopt a different (quad-
ratic) approach based on energetic quantities, specifically, the
Wigner distribution (WD) of a signal x(t) [5]

W, (t,f) = {x(t*i') x*(t-5 ) e 2™t gy
W, (t,f) describes (with some restrictions due to the uncertainty
principle) the signal's energy distribution over the TF plane. In
particular, the signal's energy, E, = [|x(t)|2dt, is obtained as
E, = {{ W, (,f) dtdf . (1.3)
It is well known [6] that the input-output relation (1.1) induces

the following linear relation between the WD of the input signal
x(t) and the WD of the output signal (Hx)(t),

Wi (66 = S Wiy p(65.F) W, (t,F) dt df . (1.4)
t'f

The transformation kernel Wy, y(t,f;t,f), subsequently called

transfer WD of the LTV system H, is given by

Wit = SEHE S, t+F) B (-5, - ) e F270 ) oy,
T

The transfer WD (TWD) describes the mapping from the “input
TF plane” (W, (t,f')) to the “output TF plane” (W, (t,f)) in an
energetic framework. The TWD yields a fairly complete TF

description of the LTV system H; however, being a four-dimen-
sional function, it is cumbersome to work with. Therefore, we
will propose a partial TF description of H using two two-dimen-
sional TF representations called “input WD" and “output WD."

Survey of paper. The input WD and output WD are intro-
duced in Sections 2 and 3, respectively. Section 4 considers
the information about the system's TF weighting/displacement
properties provided by these TF representations. Section 5
studies normal systems for which the two WD definitions coin-
cide, and Section 6 considers a simple example. The application
to the TF design of LTV systems is discussed in Section 7.

2. THE INPUT WD

Definition. Conceptually, the input WD W, ,(t,f) at t=t,, f=f, is
the energy of the output signal (Hx)(t) for an input signal x(t)
that is perfectly TF-concentrated at the TF point (t,,f,). Al-
though the uncertainty principle prohibits the existence of such
an input signal x(t), we may formally replace W, (t.f') by the
impulse 3(t'-ty)3(f-fy) in (1.4) and apply (1.3) to obtain the
energy of the (fictitious) output signal. This yields the input WD
of the LTV system H as

Wi (to, fo) 2 J‘.ff Wiy (4,55 to,fo) dtdf ¢ R. (2.1
X 1 A

Note that the input WD (IWD) is a "marginal” of the TWD; it
is obtained by integrating the TWD over the entire “output TF
plane.” Just as the TWD, the IWD is quadratic in H(t,t).

Expressions. The IWD can be expressed in terms of the
impulse response H(t,t) as

Wi (t,f) = {q,,u(ﬁ%,t—%) e i2rfryg (2.2a)

with

qu(tt) = { H*(t", ) H(t"t) dt" . (2.2b)
qn,I(t,t) is the impulse response of the composite system H*H
(H* denotes the adjoint of H [1] whose impulse response is
H*(t,t)=H*(t',1)). Eq. (2.2) shows that the IWD is the Wey/
symbol [3,4] of the system H*H. Alternatively, an expression
in terms of the singular quantities (cf.(1.2)) is

w,.._.(t,f) = % Gf( whl'k(t,f) N (2.3)

i.e., the IWD is a linear combination of the WDs of the input
singular functions hy | (t). Note that the output singular func-
tions ho’k(t) do not enter in the IWD.

Energy relations. Even though the definition of the IWD was
motivated by an argument that ignored the uncertainty principle,
the IWD turns out to be a fundamental and significant TF re-
presentation. Specifically, it can easily be shown that the inner
product of the WD of the input signal x(t) and the IWD of the
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system H equals the energy of the output signal (Hx)(t),

Epx = (WX,WHJ) = {{W,(t,f) Wiy i(t,f) dtdf. (2.4)
We now reformulate the concept of the IWD in a way that is
consistent with the uncertainty principle. The best realizable
approximation to an input signal perfectly concentrated at (to,fo)
is a Gaussian signal g(t) TF-shifted to the TF point (t,,f,),

x(t) = gtofod(t) & g(t-t,) /20,

Again, we are interested in the energy of the output signal.
Using (2.4), we easily obtain
Engto,fo) = .tf{ Wglt-to, f-fo) Wy (£,f) dtdf, (2.5)

which is essentially the IWD of H convolved with the WD of g(t).
Repeating for each point (ty,f)), Exg(to,fo) defines a (non-
negative) TF representation of H which, according to (2.5), is
simply a smoothed version of the IWD. Eq. (2.5) is valid for
any signal g(t) and is analogous to the convolution relation
connecting the spectrogram and the WD of a signai [5].

The conclusion to be drawn is that the IWD does not permit
a pointwise energetic interpretation but that local averages of
the IWD do allow such an interpretation. This is perfectly anal-
ogous to the WD of a signal [5].

3. THE OUTPUT WD

Definition. Conceptually, the output WD Wh,olt,f) is the WD
of the output signal (Hx)(t) for an input signal x(t) whose
energy is distributed perfectly homogeneously over the entire
TF plane. Aithough such an input signal does not exist, we
may formally replace W,(t,f') by the constant 1 in (1.4); this
yields the output WD of the LTV system H as
Wholtf) £ {.‘[WH,T(t,f;t',f')dQ' df' ¢ R. (3.1

The output WD (OWD) is a “marginal” of the TWD obtained
by integrating the TWD over the entire “input TF plane.” The
OWD is again quadratic in H(t,t).

Expressions. The OWD can be expressed in terms of the
impulse response H(t,t') as

Wy,o(t,f) = {qH’o(t'*i-,t-i-) e-i2nfryr (3.2a)

with
qH,0(tt) = J Hitt ) H*(¢,t) dt" . (3.2b)
b
9H,0(t,t) is the impulse response of the composite system
HH¥. Due to (3.2), the OWD is the Weyl symbol of the system
HH*. The expression in terms of the singular quantities is

Wiolth) = Saf Wy, (69, (3.3)

which does not contain the input singular functions hy k().

Adjoint system. There obviously exists a strict analogy be-
tween the IWD and the OWD. Indeed, it is easily shown that
the IWD (OWD) of H is the OWD (IWD) of the adjoint H*,

WHJ(t,f) = WH+,°(t,f) N WH,O(t,f) = wa’l(t,f) .

"Averaging” interpretation. The definition of the OWD was
motivated assuming a fictitious signal whose WD is 1 over the
entire TF plane. We now show that this concept does make
sense if it is slightly reformulated. We are interested in the
WD of the output signal (Hx)(t), averaged over all possible

input signals x(t). This averaging may be performed either in a
deterministic or a stochastic setting [7].

Deterministic averaging. Let {e, (1)} be any orthonormal basis
of Ly(R), the space of finite-energy signals. This basis repre-
sents an ideally homogeneous energy distribution over the entire
TF plane in the sense that 3, W, (t,f) =1. The sum of WDs of
the filtered versions (He,)(t) of all the e, (t) will thus reflect
the average output energy distribution of the system H. This
sum can be shown to be equal to the system's OWD,

% WHe, (6) = Wiy o(tf) .

Stochastic averaging. Let w(t) be wide-sense stationary,
zero-mean white noise with power spectral density 1. The WD
of w(t) is itself random; we therefore take the expectation
Wy (t,f) = E{W,,(t,0)} which is known as the Wigner-Ville spec-
trum (WVS) [8]. We obtain W, (t,f) = 1, which again expresses
an ideally homogeneous energy distribution over the entire TF
plane. The WVS of the filtered version (Hw)(t) of w(t) will
thus reflect the average output energy distribution of the sys-
tem H. The WVS of (Hw)(t) can be shown to be equal to the
system’'s OWD,

Whw(t.f) = Wiy o(t9) .

4. TIME-FREQUENCY WEIGHTING /DISPLACEMENT EFFECTS

Taken together, the IWD and the OWD yield an overall descrip-
tion of the TF weighting and displacement properties of an
LTV system. As illustrated in Fig. 1, the system picks up energy
of the input signal in cer-
tain regions of the TF
plane and transfers it to
(generally different) TF
regions in the output sig~
nal; this energy transfer
(or displacement) gener-
ally includes a TF-de-
pendent weighting (atten-
uation or amplification)
[9]. A detailed descrip-
tion of both the weighting
and displacement effects
is given by the TWD,
Wy 1(t,ft,8).

The WD, Wy ,(t,f),
shows how susceptible
the system is to input
energy located around a
given TF point (t,f). It
does not, however, show
to which TF locations the energy is transferred. In fact, it
averages over all possible output locations (cf. (2.1)). The OWD,
Wi, o(t,f), shows how much energy is transferred to local
neighborhoods around output TF points (t,f). It does not, how-
ever, show from which input TF locations this energy is taken.
In fact, it averages over all possible input locations (cf. (3.1)).

Itis convenient to define the input region Ry (output region
Ry, o) of the system H as the effective TF support of the IWD
(OWD). From the energy theorem (2.4), it follows that the
system’s output signal will be nonzero only if the input signal's
WD is at least partially inside the input region Ry ;. Similarly,
the WD of the system’'s output signal for arbitrary input signal
must be essentially inside the output region Ry o.

Thus, it is seen that the IWD and OWD provide important
information about the TF characteristics of an LTV system.
This information is less complete than that given by the TWD,
but it comes in a form that is easier to use.

weighting and
f 4 displacement

W olt,f)

.~y

Wi i(t,f)

Fig. 1: Schematic illustration
of the TF~weighting/displace~
ment effects introduced by
an LTV system.
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5. NORMAL SYSTEMS

The TF description discussed previously b much si
if the system H is normal, i.e., H*H = HH* [1]. Here, it follows
from (2.2) and (3.2) that tho IWD and OWD coincide,

Wi (6 = Wiy o () £ Wi(t,f).

Wy(t,f) will simply be calied the WD of the (normal) LTV sys-
tem H. As a consequence, the input region Ry,i and output
region Ry o coincide as well, Ry | =Ry o=Ry, where Ry will be
called the' TF pass region of H. Note that the identity of Ry,
and Ry, 0 does not imply that the system does not introduce a
TF di 1it. H er, the displ t is now confined to
the TF pass region Ry, i.e., the system H picks up input energy
inside Ry and transfers it to some output TF locations inside
the same region Ry,. This TF displacement is not described by
the system’s WD (see [S] for further discussion).

In the case of a normal system, the singular value decom-

ition (1.2) red to the eigenvalue decomposition

H(t,t) = Z A hy (9 Y ()

with the complex eigenvalues A, and the orthonormal eigenfunc-~
tions hy (t). The expressions (2.3), (3.3) then reduce to

Wy (tf) = gml’ W, (69 (5.1

Note that Wi, (t,f) is independent of the eigenvalues’ phases.

Classes of normal systems. We now specialize our results
to some interesting classes of normal systems.

Time-invariant systems. For a linear, time-invariant systom
there is H(t,t')=g(t-t') wh b a luti
The WD of H here reduces to the squared magnitude of tht
system's transfer function G(f) (the Fourier transform of g(t)),

WhtH = |GHI3, (5.2)
and is seen to be independent of the time t. As a consequence,
the pass region Ry is one or several strips running parallei to
the time axis (corresponding to the pass band(s) of the system).
Note that the phase of the transfer function G(f) (and thus the
group delay describing the time displ t introduced by the
system) do not enter in Wy(t,f).

Frequency-invariant systems. For a "frequency-invariant”
system, there is H(t,t')=g(t)3(t-t) so that (1.1) becomes a
multiplication, (Hx)(t) = g(t) x(t). Here, the WD of H is

Wyt = [g(t)]*,

which is independent of the frequency f and, of course, dual to
(5.2). The pass region Ry is one or several strips running par-
allel to the frequency axis (corresponding to the effective time
support of the factor g(t)). Note that the phase of g(t) (and
thus the instantaneous frequency describing the frequency
displacement introduced by the system) do not enter in Wy,(t,f).

Unitary systems. A system is unitary if H*H = HH* =1 (the
identity operator) or, equivalently, |\ |=1 for all k. It readily
follows that the system's WD is identically 1,

Wyt =1, (5.3)

which expresses the fact that a unitary system does not effect
any TF weighting, i.e., no region of the TF plane is attenuated
or amplified. The system causes only a TF displacement which,
however, is not described by the system's WD (5.3). The sys-
tem's pass region is the entire TF plane, Ry=R* A simple
example of a unitary system is a time-invariant allpass filter.

Projection systems. The orthogonal projection operator Pg
associated with a linear signal space S is an (idempotent and
self-adjoint) LTV system with eigenvalues X\, =1 for 1<k<Ng
(Ng is the dimension of S) and A, =0 for all other k, and ei-
genfunctions h, (t) which constitute an orthonormal basis of 8
[1]. with (5.1), the WD of Pg is

Ng
is(t,f) = kz=:1 th(t,f),
i.e., simply the sum of the WDs of the space’s orthonormal

basis signals. We note that the WD of the projection Pg is
equal to the WD of the space S as introduced in [7].

6. EXAMPLE: TIME-VARYING BANDPASS FILTER

An intuitively appealing normal LTV system is the “bandpass
filter with time-varying ter fr y" depicted in Fig. 2.

q
e‘lq’(t)

e P

x(t) (Hx)(t)

gLp(t)

Fig. 2: Bandpass filter with time-varying center frequency.

1uil

This t ts of a d tion, a linear, time-invariant
Iowpass filter with impuise response g._p(t) (transfer function
Gy p(f)), and a modulation which is the inverse of the initial
demodulation. The lowpass filter is assumed zero-phase so
that it does not introduce a time delay. The overall system is
a bandpass filter with time-varying center frequency f_(t)=
¢'(t)/(27), where ¢'(t) is the derivative of the instantaneous
modulation phase @(t). With the impulse response given by
H(t,t) = ¢fPMg, _(t-t') e IP(), the system's WD is obtained as
Wt = |G ¥ W jelt,N), (6.1
whero W.j.p(t f) is the WD of the signal /(%) and ¥ denotes
with respect to the frequency variable f. Thls result
is shown for an idealized
lowpass filter and a sin-
usoidal center frequency
function f_(t) in Fig. 3; it
is consistent with the
system's interpretation
as a “bandpass filter
with time-varying center
frequency.” If the lowpass
filter is not too narrow-
band, then a (crude) ap-
proximation to (6.1) is

Wt & |Gy p(f-f (D)%

This approximation is exact if and only if &/®P*) is a linear fre-
quency modulation (chirp signal), f_(t) = fy*at.

Fig. 3: WD of bandpass filter with
time-varying center frequency.

7. OPTIMUM TIME-FREQUENCY DESIGN OF LTV SYSTEMS

Design procedure. The WD of a (normal) LTV system can be
used for a TF design of LTV systems. Let W(t,f) ¢R be a TF
function expressing the desired TF weighting characteristic of
the system H to be designed. In general, the "model” W(t,f)
will not be a valid WD of a system; therefore, we define the
system H as the solution to the synthesis problem (cf. [7,10,11])
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Hope £ arg min [ W-wy | 7.9

under the side constraint that H be a positive semidefinite
system (i.e., H is normal with real-valued, nonnegative eigen-
values X,). This side constraint serves to minimize unwanted
TF displacement effects of the system [9] and also assures
that (7.1) has a unique solution. It can be shown that the op-
timum system is derived by the following procedure:

(i) Transform the model W(t,f) according to

0 o= [t f) 2mt-t)f
qee) = [ WG 1) 20t gp
(ii) Solve the eigenproblem
{a(t,t')hk(t')dt' =y hylt) .

Since J(t,t')=Y*(¢',¢) for a real-valued model W(t,5), the eigen-
values {1 and eigenfunctions h,(t) are real-valued and ortho-
normal, respectively.

(iii) The eigenfunctions hy(t) with positive eigenvalues i,
are the eigenfunctions of the optimum system; the associated
system eigenvalues are the square roots of the . Hence, the
optimum positive semidefinite system is (assuming that the in-
dex range k=1,..,N, contains all positive 1t,/)

N.
Hopel(t,t) = k§1 b W hE ).

We note that this design scheme is an extension of the
time-frequency projection filters introduced in [7,10]. While TF
projection filters are only capable of passing or suppressing
signal components, the present design allows the implementation
of a largely arbitrary TF weighting characteristic.

Simulation resufts. The design procedure outlined above is
illustrated in Fig. 4. The model W(t,f), shown in Fig. 4a, expres-
ses a desire to pass only those signal
components which lie inside a quadran-
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gular pass region. This pass region is (a)
divided into two subregions with differ- f

ent weighting factors, corresponding to T
a desired amplification of the signal in
the upper subregion. Fig. 4b depicts the
WD of the optimum system H__,.

A filtering experiment using the sys- \\

tem H,., is shown in Figs.4c,d. The
input signal (Fig. 4c) consists of two
chirp signals of which only one lies in-
side the pass region. From the output

—> 1

signal shown in Fig. 4d, it is seen that

the system passes and partially ampli-
fies this chirp signal as desired; the
other chirp signal is duly suppressed.

8. CONCLUSION

The input WD and output WD allow a
partial but convenient time-frequency
(TF) analysis of linear, time-varying
(LTV) systems. Loosely speaking, the
input (output) WD describes the average
TF distribution of the energy that is

picked up (delivered) by the system at
the input (output). These two TF repre-
sentations coincide in the case of nor-
mal systems. The new concept also pro~

vides a basis for an optimum TF design
of LTV systems, allowing the specifica-
tion of a system’'s weighting character-
istics in the TF plane.

Fig. 4: Qptimum TF design of an LTV system and application to signal filtering. (a) TF
model W(t,f); (b) WD of optimum system H,¢; (c) real part and WD of input signal
x(t); (d) real part and WD of output signal (Hop e x)(0).
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