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Abstract— We present a solution to the problem of identifying
clusters from MIMO measurement data in a data window,
with a minimum of user interaction. Conventionally, visual
inspection has been used for the cluster identification. However
this approach is impractical for a large amount of measurement
data. Moreover, visual methods lack an accurate definition of a
“cluster” itself.

We introduce a framework that is able to cluster multi-path
components (MPCs), decide on the number of clusters, and
discard outliers. For clustering we use the K-means algorithm,
which iteratively moves a number of cluster centroids through the
data space to minimize the total difference between MPCs and
their closest centroid. We significantly improve this algorithm by
following changes: (i) as the distance metric we use the multi-
path component distance (MCD), (ii) the distances are weighted
by the powers of the MPCs. The implications of these changes
result in a definition of a “cluster” itself that appeals to intuition.

We assess the performance of the new algorithm by clustering
real-world measurement data from an indoor big hall environ-
ment.

Keywords—MIMO channel; MPC clustering; geometry-based
stochastic channel models

I. INTRODUCTION

Many advanced radio channel models base on the concept of

multi-path clusters consisting of many multi-path components

(MPCs) showing similar parameters such as azimuth and

elevation of arrival and departure, and delay [1], [2]. The major

problem of these models is the accurate parametrisation of

clusters, where the parameters have to be extracted from mea-

surement data. Currently there is no fully automatic clustering

algorithm available to identify clusters from multi-dimensional

parametric MIMO channel estimates. In many papers visual

inspection of measurement data was used [3], [4], which

becomes impractical for large amounts of measurement data.

Recently, a semi-automatic algorithm was introduced in [5],

which bases on clustering windowed parametric estimates and

tracking the cluster centroids. The window-based clustering

algorithm was subsequently improved by using the multi-path

component distance (MCD) as the distance function in [6],

[7].

In this paper we propose to use a new framework consisting

of three algorithms to significantly improve the clustering

performance: (i) a new clustering algorithm, (ii) a cluster

validation metric and (iii) an improved cluster shape pruning.

This framework leads to an intrinsic and intuitive definition

of a “cluster” itself. In the following we will describe the

framework, its single components and their interaction. Finally

we assess the performance of the new framework by applying

it to measurement data.

II. PROBLEM DESCRIPTION

The starting point is a large number of multi-dimensional

parametric channel estimation data, obtained from MIMO

measurements. The measurements provide numerous snap-

shots of the impulse response of the – typically time-varying –

radio channel. These measurements are fed to a high-resolution

algorithm, e.g. SAGE [8], to estimate the channel parameters

for each snapshot individually. It has been found in several

MIMO studies that these parameters tend to appear in clusters,

i.e. in groups of multi-path components (MPCs) with similar

parameters, e.g. [3], [4]. The problem is to find an automatic

procedure to identify and track these clusters.

We consider one data window with a number of L MPCs,

where every single MPC is represented by its power Pl,

l = 1 . . . L, and a parameter vector xl containing the delay

(τ ), azimuth and elevation AoA (ϕAoA, θAoA) and azimuth

and elevation AoD (ϕAoD, θAoD). The data for all paths are

collected in the vector P = [P1 . . . PL]T and the matrix

X = [x1 . . .xL]T .

III. FRAMEWORK

For automatic clustering, a range for the expected number

of clusters has to be specified first, then the algorithm assigns

each MPC to a cluster and estimates the correct number of

clusters (“cluster validation”) (see Algorithm 1). Initially, a

range [Kmin,Kmax] for the possible number of clusters has

to be specified. The number of clusters, K, and the data

from all MPCs, P and X, are external parameters for the

clustering algorithm. For each possible K, the clustering

algorithm KPowerMeans is performed, the results are collected

in the data sets RK . Subsequently, each result is validated by

CombinedValidate which provides the validation index vK .

The optimum number of clusters Kopt is finally determined

by the largest validation index vK with corresponding cluster

set Ropt. This optimum set is then pruned by ShapePrune for

improved visualisation.



Framework algorithm:
1. Do For all number of clusters K = Kmin To Kmax

a. Cluster window with K clusters:

RK = KPowerMeans(P,X,K)
b. Validate K clusters:

vK = CombinedValidate(RK)
c. Next K

2. Find optimum number of clusters:

Kopt = arg max
K

vK , Ropt = RKopt

3. Prune optimum cluster set:

Rp = ShapePrune(Ropt)

Alg. 1: Framework Algorithm

KPowerMeans clustering algorithm:
1. Randomly choose K initial centroid positions

c
(0)
1 , . . . , c

(0)
K

2. For i = 1 To MaxIterations

a. Assign MPCs to cluster centroids and store indices:

I
(i)
l = arg min

k

{Pl · MCD(xl, c
(i−1)
k )}, (1)

I(i) = [I
(i)
1 . . . I

(i)
L ], C

(i)
k = Indices

l
(I

(i)
l =k)

b. Recalculate cluster centroids c
(i)
k from the allo-

cated MPCs to coincide with the clusters’ centres

of gravity:

c
(i)
k =

∑

j∈C
(i)
k

(Pj ·xj)
∑

j∈C
(i)
k

Pj
(2)

c. If c
(i)
k = c

(i−1)
k for all k = 1 . . . K, then GoTo 3.

Else Next i

3. Return RK = [I(i), c
(i)
k ]

Alg. 2: KPowerMeans algorithm

A. Clustering algorithm — KPowerMeans

The task of the clustering algorithm is to assign a cluster

index to each of the L MPCs. The concept of the K-means

algorithm [9] is well suited for this challenge if one uses the

appropriate distance function. Algorithm 2 describes the pro-

posed KPowerMeans algorithm, which introduces the novelty

of regarding powers of the MPCs.

This algorithm iteratively minimizes the total sum of power-

weighted distances of each path to its associated cluster

centroid. In the following the single steps of the algorithm

are described in more detail.

Ad 1) The centroid starting positions are chosen randomly

from the data X.

Ad 2a) Every MPC is associated with a cluster centroid

such that the function of the total sum of differences

D =
L

∑

l=1

Pl · MCD(xl, cI(i)
l

) (3)

is minimized. We use the MCD as the basic distance function

[6], [10] but also include the power of the paths, which has

not been considered in previous works. It can be shown that

the global distance (3) can be minimized by the introduced

algorithm, when using (1). The index I
(i)
l is the cluster number

for the lth multi-path in the ith iteration step. Vice-versa, the

set C
(i)
k contains the MPC indices belonging to the kth cluster

in the ith iteration step.

By including power into the distance function, cluster cen-

troids are pulled to points with strong powers. This is intuitive

and yields massive performance improvements, to be demon-

strated in Section IV. Considering receiver design one usually

adresses the most dominant clusters, which are characterised

by power. So, in development of MIMO transceiver algo-

rithms, the weighting by power is quite natural. Furthermore,

the global distance function (3) is an inherent definition for a

cluster:

For a given number of clusters, clusters are chosen

such that they minimize the total distance from their

centroids.

This implies that, for a given K, clusters are selected such that

the cluster angular and cluster delay spreads are minimized,

which is again intuitive.

Ad 2b) In the second step of the iteration, the centroids

move to the centres of gravity of the groups of MPCs allocated

in the previous step. Note that moving centroids can result in

a new group of MPCs that will be associated with the centroid

in the next iteration step.

Ad 2c) If the centroids do not move any more the algorithm

has converged to a stable solution. Should this procedure take

too much time, it stops after a maximum number of iterations.

Ad 3) The output of the algorithm is the index set I(i) and

the associated cluster centroids c
(i), which were obtained by

the last iteration.

As usual, when using algorithms with random initial values,

we perform KPowerMeans multiple times. The best result is

determined by the smallest value of (3).

B. Cluster validation — CombinedValidate

For cluster validation we used a combination of two

methods well-known in literature [11], the Caliñski-Harabasz

index and the Davies-Bouldin criterion. Both indices and their

proposed combination are described in the next paragraphs.

1) Caliñski-Harabasz index: When clustering L MPCs in

K cluster, the Caliñski-Harabasz index (CH) is given as

CH(K) =
tr(B)/(K − 1)

tr(W)/(L − K)
,

which corresponds to the ratio between the traces of the

between-cluster scatter matrix B and the within-cluster scatter

matrix W [11]. Using the MCD as distance function, tr(B)
and tr(W) are respectively given as

tr(B) =
K

∑

k=1

Lk · MCD(ck, c)2 ,

tr(W) =

K
∑

k=1

∑

j∈Ck

MCD(xj , ck)2 ,



where Lk denotes the number of MPCs related to the kth

cluster and

c =

∑L
l=1(Pl · xl)
∑L

l=1 Pl

denotes the global centroid of the entire data set.

If we calculate the CH index for different values of K,

e.g. in the range [Kmin, Kmax], the number of cluster KCH

corresponding to the best partition is achieved as

KCH = arg max
K

{CH(K)} , (4)

corresponding to the partition with the most compact and

separate cluster.

2) Davies-Bouldin index: The Davies-Bouldin index (DB)

is a function of intra-cluster compactness and inter-cluster

separation [11]. Using the MCD, the compactness Sk of the

kth cluster is given as

Sk =
1

Lk

∑

l∈Ck

MCD(xl, ck),

and the separation, i.e. the distance, between two centroids i
and j, is defined as

dij = MCD(ci, cj) .

Finally the considered DB index is given as

DB(K) =
1

K

K
∑

i=1

Ri ,

where

Ri = max
j=1,...,K

j 6=i

{

Si + Sj

dij

}

.

When calculating the DB index for different values of K, the

optimum number of cluster KDB, corresponding to the best

partition, is achieved as

KDB = arg min
K

{DB(K)} .

As for the CH index, also the DB index bases on seeking for

the partition with the most compact but separated clusters.

3) Combined Validation: A combination of the two in-

troduced validation criteria yield significant performance im-

provements (see Section IV. The basic idea of the Com-

binedValidate (CV) index is to restrict valid choices of the

optimum number of clusters by a threshold set in the DB

index. Subsequently the CH index is used to decide on the

optimum number out of the restricted set of possibilities.

We consider the set of feasible choices F =
{K1, . . . ,KN} ⊆ [Kmin, Kmax] containing only the

values Ki for which the following condition is satisfied,

DB(Ki) ≤ t · min
K

{DB(K)} ,

where we chose t = 2. The optimum number of clusters Kopt

is then obtained as

Kopt = arg max
K∈F

{CH(K)} .

ShapePrune algorithm:
1. Initialize pruned result set with optimum set: R(p) =

Ropt

2. For k = 1 To Kopt

a. Save the original power and spread of the kth

cluster:

P
(0)
k =

∑

j∈Ck
Pj ,

S
(0)
k = [στ , σϕAoA

, σϕAoD
, σθAoA

, σθAoD
]T

b. While P
(cur)
k > p · P

(0)
k And S

(cur)
k > s · S

(0)
k ,

remove the MPC with largest distance

– Find MPC with largest distance to current cen-

troid ck

– Remove MPC from R(p)

– Recalculate P
(cur)
k and S

(cur)
k .

c. Restore the last deleted MPC

d. Next k

3. Return R(p)

Alg. 3: ShapePrune Algorithm

In the unrestricted case F ≡ [Kmin, Kmax] we obtain Kopt

using (4).

C. Cluster pruning — ShapePrune

After successfully finding the optimum number of clusters,

we use the ShapePrune cluster pruning algorithm for dis-

carding outliers. This is achieved by removing data points

that have largest distance from their own cluster centroid.

As a constraint, cluster power and cluster spreads must not

change significantly. This last condition allows to preserve the

clusters’ original power and shape, which is fundamental to

achieve consistent results. The resulting algorithm is summa-

rized in Algorithm 3.

For each cluster, the algorithm discards the MPCs with

the largest distance to the cluster centroid, until one of the

constraints is not fulfilled. The single steps of the algorithm

are described in the following.

Ad 2a) Before starting to prune the kth cluster, the algo-

rithm stores the original values of its cumulative power to

P
(0)
k , and its (vector-valued) cluster spread to S

(0)
k , where

στ , σϕAoA
, σϕAoD

, σθAoA
, σθAoD

denote the rms cluster

spreads of delay, and azimuth and elevation angles of departure

and arrival of cluster k, respectively.

Ad 2b) Until the power of the cluster and its cluster

spreads are below the two respective specified thresholds,

the algorithm removes the MPC with largest distance to the

centroid from the cluster, where we use the MCD as distance

function. We define the power and spread thresholds as a

fraction p of the original power and factor s of the original

cluster spreads, respectively. Since we have to cope with a

vector-valued spread, we define the condition S
(cur)
k > s ·S

(0)
k

to be satisfied, when it holds true for all dimensions separately.

Ad 2c) Since we want the cluster power and spread to be

larger than the specified thresholds, we have to restore the last



pruned MPC. This implementation simply allows to speed up

computation time.

Ad 3) The output of the algorithm is the pruned set of MPCs

R(p).

IV. RESULTS

A. Using MCD as distance function

The advantage of using the MCD as distance function for

clustering algorithms is discussed extensively in [7], where the

performance is compared to different distance measures. It was

shown that using the MCD significantly improves clustering

performance.

B. CombinedValidate

We tested the performance of the cluster validation scheme

at different angular cluster spreads. For this we used synthetic

MIMO channel data obtained from the 3GPP spatial channel

model (SCM) [12], implemented by [13], but we extended the

model to cope with varying angular spreads. For the following

evaluation, we used 200 different samples of MIMO channels

with 6 clusters, where each cluster consisted of 8 MPCs.

Fig. 1 demonstrates the performance of the different clus-

ter validation indices, i.e. the novel CombinedValidate, the

Caliñski-Harabasz, and the Davies-Bouldin index. The Figure

shows the fraction of the correctly estimated number of

clusters versus the cluster angular spreads. The CH index has

troubles with finding the correct number of clusters with low

cluster spreads. On the other hand the DB index decreases with

larger cluster spreads. The CombinedValidate index always

outperforms the CH index and outperforms the DB index for

cluster angular spreads larger than 2.5◦. We demonstrated in

[7] that the clustering framework almost always finds the true

(simulated) clusters as long as the correct number of clusters

is detected.

C. KPowerMeans + CombinedValidate

To test our clustering algorithm we used real-world MIMO

measurements conducted with the wideband radio channel

sounder PropSound CS in a big hall with 8 Tx and 16 Rx

antennas. A description of the measurements is provided in

[6]. In a post-processing step parametric channel estimates

were obtained using the SAGE algorithm [8]. We consider

a sample data set of a line-of-sight (LOS) and of a non-LOS

(NLOS) measurement scenario.

Fig. 2 shows the considered LOS snapshot of the MIMO

channel, MPCs are colour-coded with their power. Visual

inspection gives the impression of nicely separated clusters

in space. Applying our clustering framework without user

interaction (yet without pruning) to this data, we obtain

the result depicted in Fig. 3. The resulting partition into

seven clusters realizes the optimum trade-off between cluster

compactness and separation. Since the two small groups of

MPCs, denoted by purple and light blue colour, represent an

insignificant contribution to the total power, they are combined

with the two larger clusters, represented by the corresponding

colours. Surprisingly, the large group of MPCs (around 27

1 2 3 8 5 6 7 8 9 10
0  

20

40

60

80

100

cluster angular spread / degree

c
o
rr

e
c
t 
n
u
m

b
e
r 

o
f 
c
lu

s
te

rs
 /
 %

CombinedValidate

CH

DB

Fig. 1. Comparing performance of validity indices
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Fig. 2. Unclustered MIMO measurement data in LOS scenario; power of
MPCs is colour-coded
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identified
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Fig. 6. Results of clustering after pruning: weak components were removed

ns), holding most of the total power, is split into four separate

clusters. Cluster centres are attracted by strong powers. As

MPCs powers in this group are strongly varying, it is most

sensible to split up this group into several clusters. Here, the

algorithm splits up clusters that could by visual inspection,

perhaps, be considered one cluster.

Results of clustering this environment disregarding MPCs

power is shown in [6].

D. KPowerMeans + CombinedValidate + ShapePrune

Using the pruning algorithm with s = p = 0.9, outlier

paths are removed. Fig. 4 shows results of applying the whole

framework algorithm including pruning. The clustering algo-

rithm results in well-defined separable clusters. The pruning

algorithm improves the visibility without changing cluster

parameters. Clusters can be well identified, they are indicated

as MPCs showing the same colour.

Obviously, the weak-powered cluster at large delay was

pruned. This makes sense as its power did not add much to the

channel. Also the large light blue cluster, around 28 ns now

looks smaller, but still has similar properties to the original

one.

As a second example we demonstrate the capabilities of

the clustering algorithm for NLOS data which is far more

challenging. Fig. 5 shows the considered snapshot of the

channel, the clustering and pruning results are shown in Fig. 6.

In this scenario 16 clusters were identified. Still, the resulting

cluster set looks convincing.

V. CONCLUSIONS

One of the main problems in evaluating channel measure-

ments is the identification of multi-path clusters.

We presented a scalable framework to automatically identify

multi-path clusters from MIMO channel measurement data

that is novel in four respects: (i) The framework algorithm en-

ables to cluster MIMO channel parameters automatically with

a minimum of user input; (ii) by including power and the MCD

into the K-means concept, we make it applicable to clustering

in propagation research; (iii) the cluster validation provides

a trustworthy estimate of the correct number of clusters; (iv)

the implemented cluster pruning algorithm does not change

the cluster behaviour significantly, but improves visibility and

future cluster tracking performance. Furthermore, the cluster-

ing algorithm introduces a convincing, inherent definition of

a cluster itself.

We evaluated the performance of our clustering algorithm

with both, synthetic and real-world MIMO channel data. We

could demonstrate that the algorithm even outperforms visual

inspection.
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