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Bilinear Signal Synthesis

Franz Hlawatsch, Member, IEEE, and Werner Krattenthaler

Abstract—We discuss the signal synthesis problem in the gen-
eral framework of bilinear signal representations (BSR’s),
thereby obtaining a unified treatment which encompasses, e.g.,
Wigner distribution and ambiguity function as special cases.
The inclusion of a signal space constraint serves to impart flex-
ibility to the signal synthesis process and to relax mathematical
requirements. The characterization of signal spaces either by
orthogonal projection operators or by orthonormal bases leads
to two different signal synthesis methods. Both methods assume
the BSR to be unitary (i.e., satisfy Moyal’s formula) on the
signal space on which signal synthesis is performed. As an ap-
plication of the general signal synthesis methods, we consider
band-limited signal synthesis in the case of Wigner distribu-
tion.

I. INTRODUCTION AND PROBLEM STATEMENT

ILINEAR signal representations (BSR’s) play an im-

portant role in signal analysis and signal processing.
In this paper, we consider BSR’s depending on two pa-
rameters ¢ and e which may be time 7, frequency f, time
lag 7, and/or frequency lag v. Any such BSR can be writ-
ten as [11, [2]

T.Ir,}'(a’ 6) = Sl Sr MT(O', € 1y, 12)%._\»(’1, t2) dtl dt?
1 2
(1.1

where
e (115 1) = x(6)y*(5)

is the outer product of the signals x(¢) and y(¢), and u,
(0, € 1y, ;) is a kernel function specifying the BSR T.
(All integrations are from —oo to o.) T, (o, €) is the
“‘cross BSR’’ of two signals x(¢), y(r); the éorresponding
“‘auto BSR’’ of a single signal is then defined as 7, (o, €)
=T, .(0,¢).

Examples of BSR’s depending on two parameters are
the outer signal product g, ,(;, t,) and, in particular, all
bilinear time-frequency signal representations [3]-[6] such
as Wigner distribution (WD):

Wt f) = S x <z + %) y <z - %) e P dr (1.2)

Rihaczek distribution:
R, f) = S x(t + 1)y* (e 7 dr

Manuscript received April 11, 1989; revised November 20, 1990. This
work was supported in part by the Fonds zur Férderung der Wissenschaft-
lichen Forschung under Grant P7354-PHY.

F. Hlawatsch is with the Institut fiir Nachrichtentechnik and Hoch-
frequenztechnik, Technische Universitat Wien, A-1040 Vienna, Austria.
W. Krattenthaler is with Schrack Telecom, A-1120 Vienna, Austria.

IEEE Log Number 9104890.

and the following two versions of ambiguity function

(AF):
Ty % _T ~j2wut
S!x (t + 2> y <t 2> e dt

A_:.y(’T, v) = S X([ + T)y*(t)e“ﬂ"“’ d.
t

I

Ay (1, 0)

The problem considered in this paper is the synthesis
of a signal x(¢) based on the (approximate) specification
of its BSR outcome T, (0, €). Let T be a given BSR (e.g.,
WD) and let T(o, €) be a given ‘‘model function.”” We
wish to find a signal x(¢) such that the signal’s BSR out-
come T (o, €) equals the model function T(a, €)

T (0, ¢) = T(o, ¢). (1.3)

Unfortunately, the model will not, in general, be a valid
BSR outcome of any signal, and therefore (1.3) will not
have a solution. In this situation, it is natural to look for
the signal x(r) whose BSR outcome 7, (g, €) is closest to
the model T(o, €) in the sense that it minimizes the ‘‘syn-
thesis error’’ ¢, = |T — T,|

e = T~ T, » min (1.4)

where
e=IT-TJ & S S |T(a, € — T.(o, €)|* do de.

The minimization (1.4) will be termed the bilinear signal
synthesis problem. We shall also consider a subspace-
constrained version of the bilinear signal synthesis prob-
lem where the signal x(7) is constrained to be an element
of a given linear signal subspace &, x(t) € ©:

e, = |T - T.| » min.
x€@

(1.5)

If, in the extreme case, the signal space & is the ‘‘total
signal space’” ¥ (which we define somewhat loosely as
the space containing all signals, although we will usually
identify ¥ with the space L, (5) of square-integrable or
finite-energy signals), then the constrained synthesis
problem (1.5) reduces to the unconstrained (‘‘global’’)
synthesis problem (1.4). Hence global signal synthesis can
be treated as a special case of subspace-constrained signal
synthesis.

There are two reasons for including a subspace con-
straint x(f) € & in the formulation of bilinear signal syn-
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thesis. First, the subspace constraint can be used for im-
posing certain properties on the synthesis result x(r): by
prescribing a suitable signal subspace &, x(f) can be
forced to be band-limited, analytic, time limited, causal,
symmetric, etc. Second, in some instances, the very
structure of the BSR T calls for a signal subspace con-
straint. For example, discrete-time WD suffers from se-
vere aliasing effects unless the signals are restricted to a
suitably defined subspace of band-limited signals [7].

The signal synthesis problem (1.5) could be called
‘“autosynthesis’’ since the model T(o, €) is approximated
by an auto-BSR outcome. An obvious extension is the
“‘cross synthesis’’ problem ¢, , = |T — T, .| = min with
signal space constraints x() € &, y(z) € &': here, the
model is approximated by a cross BSR outcome of signals
x(1), y(2) belonging to linear spaces @, &', respectively.
Note that autosynthesis is not simply a special case of
cross synthesis since the implicit condition x(r) = y(¢) of
autosynthesis is really an extra constraint which comes in
addition to the signal space constraint. While we here re-
strict our discussion to the (practically more important)
problem of autosynthesis, we remark that a similar de-
velopment and similar solutions can be found for the
cross-synthesis problem as well.

There exist two main applications of bilinear signal
synthesis. The first application is obviously the BSR-based
design of signals. This becomes a time-frequency signal
design if the BSR T is a bilinear time-frequency signal
representation. For example, the time-frequency design
of window functions and filter impulse responses based
on WD has been proposed in [8], and AF has been used
for the time-frequency design of radar pulses [9], [10].
The second application is a BSR-based scheme for signal
processing (see Fig. 1) which consists of the following
three steps: i) calculation of the BSR outcome 7, (o, €) of
the input signal x(7); ii) modification of the BSR outcome
T, (o, €); iii) synthesis of the output signal y() from the
modified BSR outcome 7T(o, €). This scheme has been
proposed for WD-based time-varying filtering in [8], [11].

The bilinear signal synthesis problem has been studied
for specific BSR’s by various authors. The case of AF has
been considered by Wilcox [9] and Sussman [10]. Both
authors use a characterization of the underlying signal
space by an orthonormal basis. The global signal synthe-
sis problem in the context of discrete-time WD has been
studied by Boudreaux-Bartels and Parks [8] who used a
transformation approach, and by Kumar er al. [12] and
Yu and Cheng [13] with the basis approach of Sussman.
Subspace-constrained signal synthesis for general sub-
space-unitary BSR’s has been considered by Hlawatsch
and Krattenthaler [14]. Signal synthesis algorithms for
smoothed versions of Wigner distribution such as pseudo-
Wigner distribution have been developed by Yu and
Cheng [15] (see also the comments given in [16]) and by
Krattenthaler and Hlawatsch [16]-[18].

This paper unifies and extends previous work by de-
veloping solutions to the bilinear signal synthesis problem
for arbitrary (sub-)space © and arbitrary BSR’s possess-
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Fig. 1. A general scheme for BSR-based signal processing.

ing a unitarity property on the space ©. A brief account
of the main results of this paper has been given in [14].
The development relies on a linear-operator description
and calculus of BSR’s which is more extensively dis-
cussed in [2], [19]. We here use a continuous-time for-
mulation; however, the theory can easily be reformulated
in a discrete-time setting.

The paper is organized as follows. As a basis for sub-
sequent development, Section II provides a brief review
of linear spaces, considers the linear-operator description
and unitarity property of BSR’s, and discusses the con-
cept of induced spaces. With these fundamentals as a
background, Sections III and IV derive two solutions to
the signal synthesis problem: the projection-transforma-
tion method, discussed in Section III, relies on the char-
acterization of spaces by orthogonal projection operators
whereas the basis method, described in Section 1V, uses
the characterization of spaces by orthonormal bases. The
interrelation of the two methods is studied in Section V,
and some special situations are considered in Section VI.
Finally, Section VII demonstrates the application of the
two synthesis methods to the problem of band-limited sig-
nal synthesis in the case of WD.

II. LINEAR-OPERATOR DESCRIPTION OF BSR's,
UNITARITY, AND INDUCED SPACES

This section briefly summarizes some fundamentals
which form a theoretical basis for the signal synthesis
methods derived in Sections III and IV.

A. Linear Spaces, Projection Operators, and Bases [20]

A (linear) signal space & is a class of signals satisfying
the following linearity property: if x;(r) € & and x, () €
@, then ¢, x, (1) + ¢,x,(1) € & for arbitrary complex coef-
ficients ¢, c¢,. The orthogonal projection xg(¢) € & of an
arbitrary signal x(f) € X on the space & (see Fig. 2) is
given by

xe(t) = Uex) (1) = S Io(t, 1')x(t') dr

where Ig is the (orthogonal) projection operator of & and
Ig (1, t") is its kernel. Note that a projection operator sat-
isfies I3, = I (idempotency) and I¢ = I (self-adjoint-
ness; I is the adjoint of I with kernel I (¢, t') = I (',
7). Any signal x(t) € & satisfies Isx = x; the projection
operator Ig is thus an identity operator on & and, in fact,
it defines the space & as the class of signals x(7) satisfying
Iex = x. Alternatively, a space © may be defined by an
orthonormal basis {e;(s)} spanning & such that every x(¢)
€ & can be represented as

x(f) = % are () with oy = (x, ) = S x(H) e (v) dt.
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Fig. 2. Orthogonal projection on subspace.

Orthonormality of the basis signals is expressed by
(e, ) = & » Where 8y is the Kronecker delta symbol.
In terms of the basis signals e, (1), the projection xg (f) of
a signal x(r) € X can be written as

X@([) = ; akek(t) with o, = (X, ek).

B. Linear-Operator Description of BSR's
Any BSR 7T{(g, €) can be written in the ‘‘normal form™’

(1.1)

T, (0, ¢) = S S ur(o, € 1y, fz)Q.n)»(flv 1) dt, dt,
1 n
2.1

where g, ,(t;, ) = x(t;) y* (t;) is the outer product of x(r)
and y(r), and the kernel u (o, €; t;, 1) can be interpreted
as the BSR’s impulse response, ur(o, €; 1y, 1) = T,
(0, € for x() = 8@t — 1,) and y(f) = &(t — ;). The
normal form (2.1) can be considered to express a linear
transformation of the signal product g, (¢, t;) [19]; as
such, it will be briefly written as '

Tx.)' = uqu.)'

with the linear BSR operator u; whose kernel is the im-
pulse response uy (o, €; t;, ;). Note that the BSR operator
ur (or, equivalently, the BSR’s impulse response ur(a, ¢€;
t;, i) fully characterizes the BSR T.

C. Domains and Spaces

In the process of BSR calculation as expressed by (2.1),
three ‘‘domains’’ can be distinguished: the signal domain
(signals x(1), y(#)), the g-domain (signal product ¢, (1),
f,)), and the 7-domain (resulting BSR outcome T, , (o,
¢)). We now associate linear spaces with these domains.
The total signal space X has already been introduced as
the linear space containing all signals. In the g-domain,
we define the total g-domain space £ as the linear space
containing all two-dimensional functions §(z), ;). Note
that not every element §(¢,, 1) € Q is a valid signal prod-
uct g, (t;, 1,): all signal product outcomes g, (1, ;) are
contained in £ but they do not themselves form a linear
space. Finally, we define the total T-domain space T as
the linear space containing all two-dimensional functions
T(o, €). Again, there exist elements of T (e.g., the model
T(o, €) of the signal synthesis problem (1.5)) which are
not valid BSR outcomes T, , (o, €). We note that the spaces
9 and T are in fact identical as they both consist of all
two-dimensional functions. We shall nevertheless distin-
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guish between £ and ¥ since these spaces are different
when a discrete-time formulation is used.

We next define inner products, norms, and identity op-
erators for the spaces ¥, £, and . For this, we identify
¥ with L,(") and © and T with L,("1?). In the signal
domain (space ¥), inner product (-, ), norm |/-|l, and
identity operator I are then given by

(¥ = Sx(r)y*(r) di, xl* & x, x),

I, ') 260 —1)

where I(f, t') denotes the kernel of the identity operator
I. For the g-domain (space £), the definitions of inner

product (-, *), norm |- ||, and identity operator Iy are
o> 4v) = S’ S, Go(ty, )5 (1), 1) dty dy,
1 2
lgl* = @ @

In(t, i 1], t3) & 8(6 = 17) 8(ry = 13).

The T-domain definitions are analogous.

D. The Induced q-Domain Space

A linear signal space © € X = L, () “‘induces’’ [10]
a corresponding linear g-domain space &, € Q = L, (! 2.
Loosely speaking, the induced g-domain space &, is de-
fined as the linear space of all linear combinations of outer
signal products g, .(f;, ;) with x(r), y(t) € &. If x(t) € &,
then ¢, (1), 1,) € &, and vice versa. Projecting a signal
x(r) on the signal space & corresponds to projecting the
signal product ¢, (11, t,) on & : there is

q!@x = I@qqx

where I, is the orthogonal projection operator of the in-

duced g-domain space &,. The kernel of this *‘induced
g-domain projection operator’’ is given by

Io (1, s 11, 13) = Is (1, tDIE(R, 13). (2.2)

¢

The induced g-domain space & is spanned by an ‘’in-
duced g-domain basis’ {q,(t;, 1)} with

qkl(tl’ t2) é qu.e/(th 12) = ek(tl)el*(tz) (23)

where {e,(r)} is any orthonormal basis of &. The induced
g-domain basis {qy(#;, 1;)} is again orthonormal, (qy,
Qr) = Oy

E. The Induced T-Domain Space [19]

The linear signal space & also induces a corresponding
linear 7-domain space ©r S ¥ = L,(%?) which is again
defined as the linear space of all linear combinations of
cross BSR outcomes T (o, €) with x(r), y(r) € ©. If x(¢)
€@, then T, (0, ¢€) € ©&y. To find the orthogonal projection
operator and an orthonormal basis of the induced 7-do-
main space &y, we now assume that the BSR 7 satisfies
a unitarity property on the signal space &.
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F. BSR Unitarity [19]

We shall call a BSR T unirary on the space © (briefly
©-unitary) if it satisfies Moyal’s formula [21], [3] on &,
i.e.,

(Tn.,vn sz.,\‘z) = (‘hl.yn qxz.yz) = (x5, %) (yi, »2)*

forx; (1), x,(0), y, (1), », (1) € &. If & = L, (%), i.e., Moy-
al’s formula holds on the entire space of finite-energy sig-
nals, then the BSR 7 will be called globally unitary. Ev-
idently, a globally unitary BSR is also ©-unitary for
arbitrary signal subspaces &.

To formulate a condition for @-unitarity, we first note
that the BSR operator uy can be replaced by the operator

A
Ure = urlg,

MT@(U, €1, tl) = S,S, uT(U’ € ti» [é)
Yy

: 1@(;([{7 té’ tla tZ) dti dté
if the signals x(¢), y(¢) are elements of &:

T., = urq,, = for x(2), y(t) € ©.

This alternative expression for the BSR T does not require
T to be ©G-unitary. The kernel of the operator urg can be
interpreted in a way similar to the impulse response ur(a,
€ 1, ) since urg(o, € 1, 1) = T, (0, €) for x(¢r) =
Is(t, 1) and y(t) = Is(t, 1,) (note that Ig(z, 1) is the
projection of 6 (r — t') on &). A necessary and sufficient
condition for &-unitarity can now be expressed in terms
of the new operator uyg as

uT@qx.y

u?@“r@ = Ig, (2.4a)
S S uts(ty, by 0, Qure(a, € 11, 15) do de
= Ig, (t1, 13; 11, 13) (2.4b)

where u7e, the adjoint of urg, is characterized by the
kemnel uf(t), b; 0, €) = uie(0, € 1, t,). In the case of
global unitarity where & = L,([R), condition (2.4) re-
duces to

u;'-uT = ID (253)
S S us(ty, tr; 0, Our(o, € ti t3) do de
=6(t) — t7) 6(t, — t3). (2.5b)

We note that all BSR’s listed in Section I are globally
unitary. The discrete-time WD [7], on the other hand, is
not globally unitary but unitary on all ‘‘halfband sub-
spaces’’ [14]. Smoothed versions of WD (such as the
pseudo-WD, the spectrogram, and the Choi-Williams dis-
tribution) are nonunitary on any signal space.

G. Implications of Unitarity

The S-unitarity of a BSR T has some important impli-
cations which will be utilized in Sections III and IV. First,
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TABLE 1
INDUCED SPACES, PROJECTION OPERATORS, AND BASES

Space  Projection Operator Basis
Signal domain & I {e.(D}
g-domain S, Is, Eq. (2.2) {qu (1. 1)} Eq. (2.3)
T-domain Sy I:rEq. (2.6) {Tu(o, &} Eq. 2.7)

if a BSR T is @-unitary, then the orthogonal projection
operator of the induced 7T-domain space &y is given by

I@T = uT@,u?@ (263.)
Igr(o, €6 0',¢") = S S urg(o, € 1y, 1)
HJvn
. u;@(ﬁ, 1 g, 6’) dt] d[2 (26b)
and an orthonormal basis {7}, (o, €)} of ©ris
Tylo, e) =T, (0, € 2.7

where {¢; (1)} is any orthonormal basis of &. Table I sum-
marizes the corresponding spaces, projection operators,
and orthonormal bases in signal domain, g-domain, and
T-domain.

Second, the induced spaces &, and S are related by a
unitary mapping which is given by the operator urg and
inverted by its adjoint ujg. Indeed, any element
T(0, €) € &7 can be represented as

T = ureg
with a unique §(t;, 1,) € &, given by

q e u;@ T. (2.8)
The mapping between G(¢,, t,) and (o, €) is unitary, i.e.,
inner products and norms of corresponding elements
T(o, €) € &rand (1), 1,) € ©, are equal

(Tm Tb) = (qa’ qb)’ ”TH = “67H

The unitary mapping relating @, and &y is illustrated in
Fig. 3. We note that if T(c, €) € &y is a valid BSR out-
come of signals x(z), y(t) € &, T(o. €) = T, (o, €), then
the corresponding §(z;, t,) is a valid signal product of the
same signals, §(7), 1) = q, (), &).

Finally, if the BSR T is globally unitary (unitarity on
© is here not sufficient), then the projection of an arbi-
trary signal x(r) on & corresponds to the projection of
T.(o, €) on &7

TI@X = I@TTX' (29)

H. Ambiguity of the Signal Synthesis Solution

The solution to the signal synthesis problem (1.5) is not
uniquely defined. Let us assume that the BSR T is in-
variant with respect to some signal transformation a such
that T, (0, €) = T, (g, ¢) for all x(r) € ©. We furthermore
suppose that the signal transformation a is ‘‘space pre-
serving’’ with respect to the given signal space © in the
sense that x(¢) € © entails (ax) (f) € &. Then, if £() € &
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2 &, ure z
yee, —
1) \ &
=Ny
/ ?(@1-
0 0t

Fig. 3. Unitary mapping between induced spaces ©, and &7

is a solution to (1.5), (af) (¢) is a solution as well since it
is also an element of & and achieves the same (minimal)
synthesis error

€at = ”T— Tae“ = ”T“ Tx“ = €

We thus see that any invariance of the BSR with respect
to a space-preserving signal transformation entails a cor-
responding ambiguity of the signal synthesis solution.
Now, in the case of an &-unitary BSR, only a very trivial
and comparatively harmless invariance exists. In fact, it
can be shown that T, (o, €) = T,(0, €) (with x, (), x, (1)
€ ©) then implies x, (f) = x, (1) e’* with ¢ being an arbi-
trary phase constant. Hence the only transformation a for
which an ©-unitary BSR is invariant is the multiplication
of the signal by a constant phase factor ¢’*, and the syn-
thesis solution is thus unique up to a constant phase fac-
tor. (For very special models, however, there exists
another ambiguity of the synthesis solution which is dis-
cussed in Section VI.)

III. THE PROJECTION-TRANSFORMATION METHOD

Using the framework of induced spaces developed in
the previous section, and assuming the BSR T to be uni-
tary on the prescribed space &, a solution to the subspace-
constrained bilinear signal synthesis problem (1.5)

& = IT - 7.l > min
XEG

3.H

can be derived in two different ways. According to the
characterization of signal spaces by either an orthogonal
projection operator or an orthonormal basis, there exist
two equivalent signal synthesis methods which we shall
term projection-transformation method and basis method.
The projection-transformation method, to be discussed in
this section, derives its name from the fact that it involves
a projection of the model T(o, €) on the induced T-domain
space &y and a subsequent transformation into the g-do-
main. In the following, we assume that the BSR T and the
space © are given by the BSR operator u7 and the projec-
tion operator I, respectively. The model T(a, €) is re-
quired to be square-integrable, Tel, (Pﬁz). Finally, and
most important, the BSR T is supposed to be ©@-unitary.

A. Model Decomposition (‘‘Projection’’ Step)

To solve (3.1), we first note that~T_‘. € ©; due to our
constraint x € &. While the model T € L, (%?) will gen-
erally lie outside @y, it can be decomposed as
(3.2)
where

ey

0

Fig. 4. Decomposition of T-domain model and synthesis error.

is the model’s projection on @; and thus an element of
©r, and T, = T — Ty is orthogonal to 7. With (3.2),
the (squared) synthesis error €2 can then be decomposed
as

e=IT-1l°=Te + T - T.IP
I(Te = 1T) + T, |

ITe = TP + 1T P = et + €4

1

I

where we have applied the Pythagorean theorem [22] to
the orthogonal functions (T — T,) € &rand T, L &7
(see Fig. 4). Since the ‘‘orthogonal’’ error component ¢
= ||T, || does not depend on the signal x(¢), it can be dis-
regarded for minimization. Note that €, is altogether zero
if the model T happens to be an element of &;.

B. Q-Domain Formulation (‘‘Transformation’’ Step)

We now use the unitary mapping relating the induced
spaces © and &, to reformulate the relevant error com-
ponent €g_, in the g-domain

where (cf. (2.8))

~ ‘A +
Jo =uigTe and g, =ursT;

with gg. g, € ©, (see Fig. 5). Hence the bilinear signal
synthesis problem is expressed as

¢s.c = lge = gl — min.

xe®

At this point, a simple indirect proof shows that the con-
straint x(f) € © can be dropped since the unconstrained
minimization problem will itself assume its solution in ©.
Suppose that the solution X(f) to the unconstrained prob-
lem €g , — min lies outside &, i(r) ¢ ©. From Fig. 6, it
is then clear that the projection fg(f) of £(r) on © will
achieve a smaller synthesis error than %(7) itself; hence
X(t) € © cannot be the solution to the unconstrained prob-
lem.

C. Another Model Decomposition

The auto signal product g, (¢, t;) is always a Hermitian
function, i.e., ¢, (t;, ,) = g (t,, t;). While the g-domain
model §g (1), #;) will not be Hermitian in general, it can
be split into a Hermitian component §gy(#,, ;) and an
anti-Hermitian component gg, (1), 1),

de(ti, b)) = Gen(ti, 1) + Geaty, ).
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z Q
&y

T, N // e
vre P

9 "

Fig. 5. Transformation into the g-domain.

a 9
“ [
leqds = asg
'*e( l*
Ye

[}

Fig. 6. Dropping of subspace constraint.
The (squared) synthesis error e , can then be shown to
allow the following decomposition:
2 ~ 2 - -
¢ = 3o = .17 = |@Gen + Gou) — 4.1
- ~ 2
= (Gen — 4) + Geall

= |lgen - %”2 + [l gea * = 62@1“ + EZ@A

where the ‘‘anti-Hermitian’ error component eg, =
[l gsall does not depend on the signal x(¢) and can be dis-
regarded for minimization.

D. The Basic Approximation Problem

There finally remains to minimize egy . in the absence
of any constraint

lgen — .l

2
€SH, x

Sl Sr |Gen(ti, ) — q.(ty, t)|* dt, dt, = min.
1 2 X

(3.3)

This minimization amounts to the approximation of a two-
dimensional Hermitian function ggy(?, #,) by a separable
function g, (¢1, t;) = x(¢;)x*(f,). As is shown in the Ap-
pendix, this basic approximation problem is solved by

X (1) = €/ NNy (1) (3.4)

where \; € R is the largest eigenvalue of the Hermitian
function ggy(t, t;) (or, to be more precise, of the self-
adjoint integral operator with kernel g (7, 2;) [20]), u, ()
is the corresponding (normalized) eigenfunction, and ¢ is
an arbitrary phase constant. It has been assumed that X\,
is nonnegative; the case A\, < 0 is discussed in Section
VI. Inserting (3.4) and the spectral decomposition (see
the Appendix)

Jon(t ) = 20 Nat(n)uf (1) (3.5)
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into (3.3), the residual synthesis error is obtained as

o0 o]

2
2 _ 2 _ * _ 2
€H.min = €BH.xop — 1232 N () ug () || = ,(22 hY:

where the orthonormality of the eigenfunctions u; (¢) (see
the Appendix) has been used.

E. Algorithm Summary
Based on the above derivation, the projection-transfor-
mation method can now be summarized as follows.

_ Step 1: Form the projection Tg = Ig;T of the model
T(o, €) on the induced T-domain space Sy

Te(o, €) = S ’ S er(o, € o', eNT(o', ') da' de’.

Step 2: Transform the projected model T (o, €) into
the g-domain

de(t, 1) = S S ure(ty, tr; 0, € T (o, €) do de.
(3.6)

Step 3: Take the Hermitian component §gy (2, 1) of
q@([h tZ)

Jon(ti, ) = 3[Gs(t, &) + @&, 1)),

Step 4: Calculate the largest eigenvalue A, and the as-
sociated (normalized) eigenfunction u, (¢) of ggy(t;, 1,);
if A} = 0, then the synthesis solution is given by

xopt(’) = ejv \/5\_1141 (t)

where ¢ is an arbitrary phase constant.

We finally note that step 1 (projection) and step 2
(transformation) can be combined into a single transfor-
mation step: as it is easily shown that

+ o
ureler = ure,

de(t1, 1) can be directly calculated from the original
model (o, €) as g = uygT or

Gelt, 1) = S S u;@(h, b g, E)T(G, e dode. (3.7)

IV. THE Basis METHOD

The basis method [14] derived in this section is an ex-
tension of the signal synthesis method for AF described
in [9] [10]. We here suppose that the signal space & is
characterized by an orthonormal basis {e,(¢)}. The BSR
T is again assumed to be unitary on the signal space ©.

A. Derivation of the Basis Method

Using the initial result in Section III, we have to min-
imize eg , = [Tg — T.|l subject to the subspace con-
straint x(f) € ©. We incorporate this constraint by repre-
senting the signal x(r) in terms of the basis {e;(?)}
spanning &

N
(1) = El e () @.1)
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where N, the dimension of the space ©, may be infinite.
This induces a corresponding 7-domain representation of
T, (o, €) in terms of the induced 7-domain basis {7 (o,

e)}

N N
Lo, 6 = 2 % vuTu(o, €)

with Yk = akoz,*.

4.2)

The model projection Tg (o, €), too, is an element of the
induced 7-domain space @7 and can thus be represented
in terms of the induced 7-domain basis {7}, (g, €)}

N N

Te(o, €) = 21 E: YuTu(o, €

with 7, = (T, Ty).
4.3)

Using (4.2), (4.3), and the orthonormality of the induced
T-domain basis {T,(a, €)}, the (squared) synthesis error
can be developed as

2

62@./\' - ”T@ - Tx”2 =

NN
k§1 IZE Fu — o /)Ty

N
2 e~ e =T - o[

I
HMZ

with the (N X N)-dimensional coefficient matrix I' =
(Ju) and the N-dimensional coefficient vector a = (o );
Il denotes the Euclidean matrix norm (Frobenius
norm), and ‘‘*”’ stands for complex transposition. The
dyadic-product matrix @e” is Hermitian and rank 1; the
matrix I', on the other hand, is generally not Hermitian
but can be split into a Hermitian component I'y and an
anti-Hermitian component I',. With this, the squared syn-
thesis error can be decomposed as

€5, = IIT —aa™ [ = Ty + Ty) — aa™ |}
=Ty — aa*) + L,z
=Ty — aa” 7 + IT4l7 = e3u. + eba

where the ‘‘anti-Hermitian’’ error component egy =
(T, |l does not depend on x(r) (i.e., on @) and can hence
be disregarded for minimization. Thus, it remains to min-
imize the ‘‘Hermitian’’ error component

oy = 1Ty — aa™ ¢ 4.4

in the absence of any constraint (note that the constraint
x(t) € © has been taken account of by representing x(r)
according to (4.1)). Minimization of (4.4) amounts to the
approximation of the Hermitian matrix 'y by a dyadic
product aa.*; this is a discrete version of the basic ap-
proximation problem (3.3). With y, and v, denoting, re-
spectively, the real-valued eigenvalues and the corre-
sponding orthonormal eigenvectors of the Hermitian
matrix T'y, a derivation analogous to that of the Appendix
yields the solution

Qo = € Vi v, @.5)

where we have again assumed that the largest eigenvalue
p; is nonnegative, and ¢ is an arbitrary phase constant.
Inserting (4.5) and the spectral decomposition

N
= E [J,kU;(U[

4.6)

into (4.4), the residual synthesis error is obtained as

N 2

+
Z w UV
k=2 K

N
= 2 ui
k=

2 _ .2 _
€oH.min = €@H.xp —

where the orthonormality of the eigenvectors v, has been
used.

B. Algorithm Summary

We can finally summarize the basis method as follows:
Step 1: Calculate the expansion coefficients of the
model projection Ty (o, €)

Fu= T Ty = S S T(0, €) T} (0, €) do de,

<k Il <N

a

@.7

Step 2: Form the matrix I' = () and take its Her-
mitian component

Iy=1@ +T7).

Step 3: Calculate the largest eigenvalue u; and the as-
sociated (normalized) eigenvector v, of I'y; if u; = 0,
then the synthesis solution is given by (cf. (4.1))

N
xop((t) = 1211 Clopl.k ek(t)

where
= v/
Qopy = € w10

with ¢ being an arbitrary phase constant.

V. RELATION BETWEEN PROJECTION-TRANSFORMATION
METHOD AND BAsis METHOD

There are striking similarities between the projection-
transformation method (PTM) and the basis method (BM).
Indeed, both methods perform an orthogonal projection
of the model T(o, €) onto the induced 7-domain space &y
and a transformation either into the g-domain (PTM) or
into a discrete coefficient domain (BM). Then, the Her-
mitian component of the g-domain model §g (¢;, #;) (PTM)
or of the model coefficient matrix I' (BM) is calculated,
and finally a continuous (PTM) or discrete (BM) version
of the basic approximation problem (approximation by a
separable function or matrix) is solved.

To further demonstrate the relation between PTM and
BM, we note that the PTM makes implicit use of the spec-
tral decomposition (3.5)

Gon(t, 1) = 2 Neat(t)uf (1) 5.1
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From (6.3), we readily obtain the spectral decomposition
(cf. (5.1)

Jon(ti, 1) = Eau(t)uf () + Ean(t)ud (1)

where (apart from arbitrary constant phase factors) u, ()
= x,(1)/VE, and u (t) = x, (1) /VE,. It follows that \; =
N\, = E,and A\, = 0 for k > 2; the largest eigenvalue \,
= N\, = E, is thus seen to have multiplicity K = 2.

In general, if the largest eigenvalue A\ has multiplicity
K, then K orthonormal eigenfunctions u; ,(¥) (k = 1, 2,
- -+, K) can be associated with A\, and any linear com-
bination

K K
u (@ = kgl crdy 1 () with kg} |ck|2 =1

is again a normalized eigenfunction corresponding to A,.
Hence the signal synthesis solution x,p (f) = e’ \/)\_1 u, (1)
is ambiguous in that u, (r) may be any (normalized) ele-
ment of the K-dimensional signal subspace spanned by the
basis {u; (()}.

D. Pathological Model

For a given signal space &, we shall call a model
T(o, €) pathological if the largest eigenvalue A of ey (¢,
t,) (or, equivalently, of Ty) is zero or negative. An
example is T(o, ¢) = —T.(0, € with x(r) € &; we
here obtain the spectral decomposition gGgy(t), ) =
—E, u(t,)u*(1,) where E. = ||x||* and (apart from an ar-
bitrary constant phase factor) u(r) = x(t)/x@,(, It follows
that all eigenvalues \; are zero apart from one eigenvalue
which is —E, and thus negative.

To find the synthesis solution for a general pathological
model, we decompose the squared synthesis error (3.3) as

ezux = lden — al* = lgeul® + la. P = 2(Gem 90
(6.4)
where
lg.ll = lxl? 6.5)
and

Geu, 4) = S} S! den(ti, 1) g (1, 1) di, dn,
1 2

= S” Sm Geu(ty, L)X* () x(t) dt, dt, (6.6)

is recognized as a Hermitian form. For a pathological
model, the largest eigenvalue of ey (¢, t) is zero or neg-
ative; hence all eigenvalues are zero or negative and the
Hermitian form (6.6) is negative semidefinite [20]

(Gen, 4:) < 0 for all x(¢) (6.72)

and

(Gou» ) =0 forx(r) = 0. (6.7b)

With (6.5) and (6.7), (6.4) shows that the zero signal x(f)
= 0 minimizes the error egy ,; since it also satisfies our
signal space constraint x(¢) € &, we conclude that the zero
signal is the synthesis solution for a pathological model,
Xop(1) = 0.

VII. EXAMPLE: BAND-LIMITED SIGNAL SYNTHESIS FOR
WIGNER DISTRIBUTION

In the previous sections, we have derived and discussed
two general methods for subspace-constrained signal syn-
thesis. These methods are applicable to arbitrary linear
signal spaces & and to arbitrary @-unitary BSR’s 7. To
demonstrate the application of both methods, we now spe-
cialize to a specific BSR 7, namely, Wigner distribution
(WD) W(t, f), and to a specific signal space &, namely,
the space B of signals which are band limited on a pre-
defined frequency band [ fi, f21.

From the definition (1.2) of WD and the fact that uy (1,
fit, 1) = W (@ f) for x(r) = 6(t — t;) and y(?)
= §(r — 1,), WD’s impulse response uy (1, f; #;, 1) is
obtained as

uw(t, fi 1, 1) =06 <t - ﬁ—?) exp [—j27 (s, — ) f].

Inserting into (2.5b), it is easily shown that WD is glob-
ally unitary and thus also @-unitary for arbitrary signal
subspace &; hence the projection-transformation method
(PTM) or the basis method (BM) can be applied for global
signal synthesis as well as subspace signal synthesis on
arbitrary signal subspaces ©. We now specialize to the
given subspace B of band-limited signals. It is easily
shown that the kemel of the orthogonal projection oper-
ator Iy of B is

Ig(t, t') = h(t —t")
where

h(1) = ™"y sinc (vr)

is the impulse response of an ideal bandpass filter with
passband [ fi, f]; hete, fo = (fi + o)/2andv = f, = fi
denote the passband’s center frequency and bandwidth,
respectively. Also, it follows from the sampling theorem
that an orthonormal basis {e,(¢)} spanning B is given by

e (t) = h(t — k/v),

—o < k < oo, (7.1)

A. Projection-Transformation Method

To apply the PTM, we have first to calculate the op-
erator uyg. With uyg (¢, f3 1), 1) = W, (¢, f) forx(t) =
Iy(t, 1) = h(t — 1)) and y(1) = Iy(t, 1) = h(t — t;) (cf.
Section II), it is easily shown that

t + ¢t
uwg (@, f3 0, 1) = W <t - 5 2,f>

“exp [=2m (1 — 1) f]
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whereas the BM uses the spectral decomposition (4.6)
N

Iy = EJ] WOV (5.2)

These spectral decompositions can be related to each other

by inserting (4.3) into (3.6); straightforward manipula-
tion then yields

M=

N
Gen(t, ) = 1 /§| Vh.i1qi (s 1)

i

]
™M =
M=

Yajeit) e ().

4 7

We now insert (5.1) for Geu(ty, t,) and (5.2) for ¥, ; and
obtain

® N N :
kgl Nt (8 Ui (1) = k§1 Rk [i:l l’k.iei(zl)J

N *
: {Z Vk._,'e_/(’z)} (5.3)

J=1
where v, ; denotes the ith element of the kth eigenvector
v,. Based on the orthonormality of the eigenvectors v, and
the orthonormality of the basis signals ¢;(7), it is easily
shown that the signals X; v, ; e, () are orthonormal as well.
From (5.3), it then follows that

His
A=
-f

N
Z]l v, 1 =<k=<N.

l<k=<N
k>N

and

u (1) (5.4)
We have thus shown that 1) the number of nonzero eigen-
values A, of Gey(t), 1) is not greater than N, the dimen-
sion of the space &; 2) the nonzero eigenvalues A\, of
Gen(t, 1) equal the eigenvalues p, of T'y; 3) the eigen-
functions u, (1) of Gey(#), 1;) and the eigenvectors v, of
T’y are related by (5.4), i.e., the elements v, ; of the kth
eigenvector v, of I'j; are the expansion coefficients of the
kth eigenfunction u, (¢) of ggy (1), 1,) in terms of the basis
{e;(t)} spanning the space &.

VI. SpeciaL CASES

This section considers some special situations which
call for further discussion.

A. Global Signal Synthesis

Global (unconstrained) signal synthesis can be consid-
ered a special case of constrained signal synthesis where
the signal space & equals the entire space of finite-energy
signals, @ = L,(7). In this case, ®, = L,(~’) and
lg, = Iy whence urg = ury. With this, the trans-
formation (3.7) reduces to § = uy Tor

q(ty, 1) = S S uy(t), t; a, €)T(o, €) do de.
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Note, however, that our solution to the global signal syn-
thesis problem is valid only if the BSR 7{(o, €) is globally
unitary, i.e., satisfies u; u; = I,

B. Valid Model

Assuming ©-unitarity of the BSR 7, we next investi-
gate the case where the model T(o, ¢) is a valid BSR out-
come of some signal y(¢), T(c, €) = T, (0, €).

Case A: Let us first assume that y(7) is an element of
the signal space & on which signal synthesis is per-
formed, y(r) € &. Then ¥(z) is itself a particular solution
of the signal synthesis problem since 1) it satisfies our
signal space constraint, and 2) it achieves zero (and thus
minimal) synthesis error €,. Since the synthesis solution
is unique apart from an unknown phase factor e/* (cf. Sec-
tion II), the general synthesis solution is then given by
Xopt (1) = l’”)‘(f)-

Case B: If y(r) ¢ ©, then y(¢) cannot be a solution since
it does not satisfy our signal space constraint. In this case,
the solution is found quite easily if the BSR T is globally
unitary. According to Section III, we have to minimize
ITe — Tl subject to x(r) € &. Now, for a globally uni-
tary BSR T, there is Io7 T, = Tp,, (cf. (2.9)) and thus

To =Ig:T =150, =T, =T,

ve:

This means that the signal is in fact synthesized from the
valid model T,g(o, €), where yg(7) is the projection of
y(t) on &. Since yg (1) € @, this reduces to case A whence
the solution is found as x,, (1) = e”’y@)(r). This solution
can be given an interesting interpretation by noting that
the projection yg(f) is the solution to the classical signal-
domain approximation problem [22]

e/ =]y ~— x| = min.
e@

(6.1)

On the other hand, e’* yg (1) has just been shown to be the
solution to the 7T-domain approximation problem (signal
synthesis problem)

¢ = T, = T/ - min.
ve®

(6.2)

This shows that the solution to the signal-domain approx-
imation problem (6.1) and the solution to the 7-domain
approximation problem (6.2) are equal apart from an un-
known phase constant. This equivalence has been noted
in [10] for the special case of AF.

C. Ambiguous Model

For a given signal space ©, a model T(o, €) will be
called ambiguous (with respect to the synthesis solution)
if the largest eigenvalue A\, of ggy(7,, ;) (or, equiva-
lently, of I'y) has multiplicity K > 1. An example of an
ambiguous model is

T(o, ¢) = T.(0,€) + T.(o, ¢ 6.3)

withx, (1) € &, 5, (1 € S, (x. x;) = 0and |Ix, > = ||x, |*
= E,, i.e., the signals x,(#) and x,(¢) are both elements
of &, are orthogonal and have identical norms (energies).
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where the WD of A(?) is [3]
2 = 2[f = fol) sinc 2 = 2|f = fo])1],

W0, f) = [f = fol <v/2

|f = hl = v/2. (7.2

Inserting into (3.7), the projected g-domain model is ob-
tained as

Gp(ty, 1) = S S W, <T *m,f>
t Jf 2

cexp [2m(t — ) fIWG, f) drdf (7.3)

where W(1, f) is the original W-domain model. According
to (7.3), gg(t), t;) can be calculated by first performing
the W-domain convolution

W%(tsf) = S,' I/Vh(t - tlaf)W(t‘af) dr’ (74)

(this can be shown to be the projection of W(z, f) on the
induced W-domain subspace By), and then performing a
Fourier transform plus a coordinate transform

L

- +t
Gty 1) = S Wﬁ( :
' 2

Note that gg(t;, ;) will be Hermitian if the original
W-domain model W(z, f) is real-valued. Due to (7.2), the
convolution (7.4} can be interpreted as follows: inside the
passband [f, 2], the model W(, f) is filtered with re-
spect to the time parameter ¢t by an ideal low-pass filter
with cutoff frequency f.(f) = v — 2| f — f;| (which de-
pends on f); outside [f;, £], the model W(s, f) is re-
placed by zero.

,f> exp [27 (1, — 1) f] df.

B. Basis Method

To apply the BM, we have first to calculate the induced
W-domain basis functions according to (2.7). With (7.1),
we obtain

k+11
Wy, f) = Wt‘k.l‘h(t?f) =W, <[ h T+;’f>

sexp [=2xk — D) f/v]

and we notice the interesting relation

Wa(t, f) = uwy(t, fi k/v, 1/v).

Inserting (7.5) into (4.7), the model expansion coeffi-
cients are obtained as

_— 7 k11
Y = Sr SfW(f,f)Wh <t 7 u’f>

- exp [2w(k — D) f/v] dt df,
—o < k, 1 < oo,

(7.5)

(7.6)

The coefficients v, will be Hermitian if the model
W(t, f) is real-valued. Comparing (7.6) and (7.3), we no-
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(c)

Fig. 7. Band-limited signal synthesis for Wigner distribution—computer
simulation. (a) Model W(z, f); (b) real part of synthesized signal xqy (1);
(c) WD W, (@, f) of synthesized signal.

tice that 4, is a sampled version of gg(t, t,)

Y = Gpk/v, 1/v).

In the case of band-limited signal synthesis and WD, the
BM is thus simply a discrete version of the PTM.

We conclude this section by presenting a computer sim-
ulation example in Fig. 7. The model (Fig. 7(a)) was de-
signed to resemble the WD of a chirp signal whose in-
stantaneous frequency extends well beyond the band [ f;,
/21 on which signal synthesis is performed. The synthesis
result, shown in Fig. 7(b), was derived using a discrete-
time verson of the BM. From the WD of the synthesized
signal (Fig. 7(c)) it is seen that the signal is indeed band-
limited on [ f1, f5].

VIII. CoNCLUSION

Using the linear-operator description of bilinear signal
representations (BSR’s) and the concepts of BSR unitarity
and induced spaces [19], we have derived the projection-
transformation method (PTM) and the basis method (BM)
as two general methods of bilinear signal synthesis with
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a signal space constraint. The methods are general with
respect to both the BSR T{(o, €) and the signal space & on
which signal synthesis is performed. An essential require-
ment, however, is that the BSR (g, €) is unitary (i.e.,
satisfies Moyal’s formula) on the signal space &. This
requirement is, for example, met by (continuous-time)
WD and AF.

The PTM and the BM rely on the description of the
signal space & by an orthogonal projection operator or an
orthonormal basis, respectively. The methods are theo-
retically equivalent with respect to their results but gen-
erally different with respect to computation and storage
requirements. The BM is particularly advantageous when
the signal space & has small dimension.

The signal space constraint can be utilized to enforce
practically important signal properties. The synthesis of
band-limited signals has been considered as a simple ex-
ample. We note that a band-limitation constraint is par-
ticularly relevant in the case of discrete-time WD where
it assures unitarity and serves to avoid aliasing effects and
a troublesome phase ambiguity in the synthesized signal
[8], [14], [23]. Other signal properties can be accommo-
dated in a likewise fashion provided that they correspond
to a linear signal space and an orthogonal operator or an
orthonormal basis of the respective space is available. A
particularly interesting class of signal spaces is given by
the ‘‘time-frequency subspaces’ introduced in [24].
These spaces are concentrated in a prescribed time-fre-
quency region; when used in the context of subspace-con-
strained signal synthesis, the synthesized signal is itself
forced to be concentrated in this time-frequency region,
which corresponds to a ‘‘time-frequency selective’” mode
of signal synthesis.

While most of the theoretically attractive BSR’s (like
WD, Rihaczek distribution, and AF) satisfy the unitarity
requirement of the PTM and the BM, it should be noted
that smoothed versions of WD (such as the pseudo-WD
[3], the spectrogram [25] or the Choi-Williams distribu-
tion [26]) are inherently nonunitary. For smoothed WD
versions, heuristic extensions of the PTM and BM have
been proposed; these methods are iterative and have been
shown to produce satisfactory results [17], [18].

We finally note that the signal synthesis methods de-
veloped in this paper can be extended to the optimum
time-frequency synthesis of linear signal spaces [27], lin-
ear time-varying systems [28], and nonstationary random
processes [29].

APPENDIX
SOLUTION OF THE BASIC APPROXIMATION PROBLEM

We derive the solution to the basic approximation prob-
lem (3.3)

e2=llg - ql° = S, Sp |G (1), 1)
~ q(ry, t)|* dt; di, — min. (A.1)

Here, §(t,, 1;) is a Hermitian square-integrable function
which allows a spectral representation [20]

g, ) = 2 N @)uf () = 2 Nt 1) (A2)

where the real-valued eigenvalues A, and the orthonormal
eigenfunctions u, (¢) are the solutions to the eigenvalue-
eigenfunction equation

gh q(r), n)ulty) diy = Nu(ty).

The system {u; ()} of eigenfunctions need not be com-
plete in L,(%); in general, it spans some linear space U
c© L, (&) which is either L, (%) (case of completeness) or
some subspace of L, (7). Due to (A.2), (), t,) is an ele-
ment of the induced g-domain subspace U,. As shown in
Section III (cf. Fig. 6), the solution x(¢) of (A.1) must
then itself be an element of U and can thus be represented
in terms of the orthonormal eigenfunction basis {u, (1)}
spanning U,

() = kZl oty (7). (A.3)

Inserting (A.2) and (A.3) into (A.1) and using the or-
thonormality of the u; (f), the (squared) aproximation er-
ror can then be developed as

P = S S
[
n n

C () uf ()

2 121 (M O — ayeef”)

k=11=
2
dt, dt,

®©

o«
2 [E D‘k o — ak011*|2
k=11=1

I

il
i M 8

N — @) + kgl 1§1 aca (A.4)

k=l

k=1

with N 5
a = Iak\

where the g, are realvalued and nonnegative. The neces-
sary conditions for a minimum are obtained as

2

de;

=0
aak

for all k;
this gives the system of equations
2a =N forallk
=1

These equations are incompatible (unless all A are iden-
tical); hence only a marginal minimum is possible. As
0 < a, < oand €2 = oo for g, — oo (with k arbitrary),
there remains the margin 0 to be investigated. We let a,,
= 0 for some m are rederive the necessary conditions

F:) 2
A =0 forallk # m.
day am=0
The resulting equations
a=\N forallk #m

I=1
(+m
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are seen to be still incompatible. We continue by setting
one more a, to zero and reexamining the necessary equa-
tions. This process can be repeated with the necessary
equations being incompatible at each stage. If we assume
all eigenvalues A, to be distinct, then the only way to ob-
tain compatible equations is to let all but one a; be zero

(ay = 0 for all k # n; n arbitrary) whence the necessary
condition becomes

a, = . (A.5)

Inserting (A.5) and g, = 0 for k # n into (A.3) yields

x(t) = e \u, (A.6)

The form (A.6) is necessary for the solution of (A.1); we
now have to ask which » actually minimizes the error ¢,.
Inserting (A.5) and g, = O for k # n into (A.4), we obtain

€ = El A= A2

with n, ¢ arbitrary.

whence it appears that the optimal A, is the eigenvalue
with maximum magnitude; however, since A\, cannot be
negative due to A\, = a, and a, = 0, it follows that the
correct A, is simply the maximum eigenvalue provided
that the maximum eigenvalue is nonnegative (the case of
a negative maximum eigenvalue is discussed in Section
VI).
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