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Duality and Classification of Bilinear Time-Frequency
Signal Representations

Franz Hlawatsch, Member, IEEE

Abstract—Bilinear time-frequency representations (BTFR’s)
of signals, like Wigner distribution, ambiguity function, and
spectrogram, are both an important signal theoretic concept
and a powerful tool for signal analysis and processing. This
paper discusses a fundamental duality principle of BTFR’s and
presents a systematic classification of BTFR’s which is consis-
tent with BTFR duality.

BTFR’s are first grouped into two basic domains, namely, the
energy density domain (E-domain) -with energetic interpreta-
tion, and the correlation domain (C-domain) with correlative
interpretation. It is shown that these domains are related by a
Fourfer transform duality: to any BTFR, BTFR relation, or
BTFR property of the E-domain, there corresponds a dual
BTFR, BTEFR relation, or BTFR property of the C-domain, and
vice versa. : .

With this duality principle as a background, a classification
of BTFR’s is given. This classification is based on two dual shift-
irivariance properties and a self-dual scale-invariance property
of BTFR’s. The mathematical description of BTFR’s by means
of kernel functions is simplified inside the respective BTFR
classes. It is shown that BTFR’s which are both shift invariant
and scale invariant can be represented as superpositions of gen-
eralized Wigner distributions (E-domain) or generalized am-
biguity funictions (C-domain).

I. INTRODUCTION

ILINEAR time-frequency representations (BTFR’s)

of signals, like Wigner distribution, ambiguity func-
tion, or spectrogram, characterize signals via a joint func-
tion of time and frequency. The goal is to combine time-
domain and frequency-domain analyses, such that both
temporal and spectral characteristics of the signal under
investigation are displayed simultaneously. BTFR’s have
been and are applied in a wide range of different fields,
such as speech analysis, pattern recognition, optics, radar

and sonar, seismic prospecting, the design of electro-

acoustic transducers and surface-acoustic wave filters, the
analysis of biological and medical signals, window de-
sign, chaotic systems, fault detection, etc.

In view of the practical importance of BTFR’s, it is not
surprising that BTFR’s have been the subject of extensive
theoretical study. Some excellent review papers on
BTFR’s are those of Cohen [1], Mecklenbriuker [2],
Claasen and Mecklenbriuker [3], Janse and Kaizer [4],
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Flandrin [5], Janssen [6], Bastiaans [7], and Boudreaux-
Bartels [8]. While a large body of knowledge and insight
has thus been accumulated over the past years, it seems
that a fundamental duality structure of BTFR’s has not
been given due attention so far. This can be explained by
the fact that most authors concentrate on the ‘‘energetic’’
side of the field, i.e., on BTFR’s with energetic interpre-
tation like Wigner distribution (WD) or spectrogram.
These BTFR’s are mostly studied in the framework pro-
vided by Cohen’s class of shift-invariant BTFR’s [1], [9],
[10]. The goal is to find a BTFR that describes the distri-
bution of signal energy ovér the time-frequency plane and
which is optimal with respect to certain criteria. These
criteria are mostly prescribed desirable properties such as,
for example, the shift-invariance property of Cohen’s
class, the marginal and finite-support properties, or valid-
ity of Moyal’s formula. Accordingly, many papers define
sets of such properties, derive the associated constraints
on the Cohen-class kernel functions, investigate the com-
patibility or noncompatibility of certain properties, com-
pare various definitions of energetic BTFR’s with respect
to the properties they satisfy, and argue that WD is opti-
mal in that it meets the largest set of nice properties [1]-
6], [11].

Another group of papers treats BTFR’s with correlative
interpretation, in particular, various versions of ambigu-
ity function (AF) [12]-[19]. Here, the goal is to obtain a
joint time-frequency correlation function.

The fact that there exists a strict duality between the
two domains of energetic and correlative BTFR’s has only
been partly recognized and utilized. As a special case, the
Fourier transform duality of WD and AF is well known
and is discussed in detail in [16]. A class of correlative
BTFR’s which is dual to the Cohen class of the energetic
domain has recently been introduced in*[19] and [20].
More traditionally, the Fourier transforms of Cohen-class

- BTFR’s have been referred to as ‘‘characteristic func-
tions’’ and have been used to study properties of Cohen-
class BTFR’s [10]. A similar approach is taken in [21]
where the Fourier transform of smoothed WD versions is
used to analyze the effect of smoothing. Here, the fact is
utilized that a convolution operation in the energetic do-
main maps into a simple multiplication operation in the
Fourier domain (i.e., the correlative domain). Thus the
correlative domain is used merely for mathematical con-
venience or ease of intetpretation but not as a separate
domain of BTFR’s with a (dual) interpretation of its own.
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The present paper is a study of BTFR’s which explicitly
takes into account the Fourier-transform duality of ener-
getic and correlative BTFR’s. Indeed, this study is based
on those signal parameters on which the interpretation of
BTFR’s rests, namely, energy densities (instantaneous
power and spectral energy density) on the one hand and
(time-domain and frequency-domain) autocorrelation
functions on the other. The duality of energy densities and
autocorrelation functions forms the basis for the general
duality of energetic and correlative BTFR’s. A classifi-
cation of BTFR’s is then given which is consistent with
BTFR duality. This classification is based on fundamental
BTFR properties, namely, two dual properties of shift in-
variance (differently defined in the energetic and correla-
tive BTFR domains), and a self-dual property of scale in-
variance. These properties are motivated by corresponding
shift-invariance and scale-invariance properties of one-di-
mensional energy densities and correlation functions. In
the energetic domain, the class of shift-invariant BTFR’s
is identical with the well-known Cohen class.

Mathematically, BTFR’s are characterized in this paper
by a standard description of bilinear signal representa-
tions using kernel functions [22]-[24]. It is shown that the
restriction to the aforementioned BTFR classes also brings
about a significant simplification of this description. This
is so because the BTFR properties defining the classes
induce characteristic mathematical structures of the BTFR
kernel functions. Specifically, the class of shift-invariant
BTER’s is characterized by convolution-type (energetic
domain) and multiplication-type (correlative domain) ker-
nels. The description of the classes of shift-scale-invari-
ant BTFR’s is once again simplified since the kernels here
possess a characteristic product form. Thus the classifi-
cation presented can also be motivated from the stand-
point of mathematical structure.

The paper is organized as follows. Section II starts with
a review of important BTFR’s with energetic or correla-
tive interpretation. For both energetic and correlative
BTFR’s, marginal properties are considered, and shift-
invariance and scale-invariance properties are formulated
which are consistent with, and motivated by, respective
properties satisfied by the one-dimensional energy density
and correlation functions. Based on the Fourier-transform
duality of one-dimensional energy densities and correla-
tions, the general concept of dual BTFR’s is introduced
in Section III, and the duality principle is extended to
BTFR relations and BTFR properties. In Section IV, the
dual classes of shift-invariant BTFR’s are considered, and
the simplification of mathematical description provided by
the convolution/multiplication structure of the BTFR ker-
nels is pointed out. Section V introduces the dual classes
of shift-scale-invariant BTFR’s. These are subclasses of
the shift-invariant classes in which the kernels are once
again simplified due to their *‘product structure.”” It is
shown that any shift-scale-invariant BTFR is a linear
combination of generalized Wigner distributions (ener-
getic domain) or generalized ambiguity functions (correl-
ative domain).

II. E-DoMaIN AND C-DOMAIN

Although BTFR’s may be quite different with respect
to their properties, they can be grouped into two funda-
mental domains according to their interpretation. 1) The
interpretation of the BTER’s of the ‘‘energetic’’ domain
(called energy density domain or briefly E-domain in the
following) is based on the instantaneous POWEr py (¥) and
the spectral energy density P, (f) defined by

p() = xOF, P = XN

Here, x(f) is the signal under investigation and X(f) is
its spectrum (note, however, that p, (1) and P, ( f) are not
a Fourier-transform pair). 2) The BTFR’s of the ‘‘correl-
ative’’ domain (subsequently called correlation domain or
C-domain) are interpreted in terms of the time-domain and
frequency-domain correlation functions

r.(r) = S x(t + 1) x*() dt

R.(v) = SfX(er v) X*(f) df

(integrations are from —oo 10 @, and all signals are as-
sumed to be square integrable). We note that the energy
E, of a signal x(¢) can be derived from the energy densi-
ties p,(t), P.(f) and correlations r,.(7), R, (v) according
to

E = S pe(t) dt = Sfo(f) df
E, = r.(0) = R.(0). (2.1
A. E-Domain

BTFR’s of the E-domain seek to combine the one-di-
mensional energy densities p. (9, P.(f) nto a two-di-
mensional, joint ‘‘time-frequency energy density”"' TE,
f). Some important E-domain BTFR’s are the Wigner
distribution (WD) [26]

WD, (t, f) = S x<t + %) x*<t - %)w’z’ff’ dr (2.2)

and smoothed versions thereof, including the pseudo-WD
[26], the smoothed pseudo-WD [27], [28], the exponen-
tial distribution [29], and the well-known and widely used
spectrogram [3]. An E-domain BTFR which cannot be in-
terpreted as a smoothed version of WD is the Rihaczek
distribution (RD) [3]

RD(, f) = S x(t + 1) x*(l)e‘ﬂfff dr.

Both WD and RD are special cases of the family of gen-
eralized Wigner distributions (GWD’s) [31, [6], [30]

'We stress, however, that a strict pointwise interpretation of an E-domain
BTFR as time-frequency energy density is a priori impossible due to the
fundamental resolution limitation imposed by the uncertainty principle [25].
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GWDY(, f) = Sfx[t + G+ o — G - @7l

- eI gy, .3)

They are obtained from GWD with « = Oand @ = 1/2,
respectively. The family of real-valued GWD’s
(RGWD’s) is defined as the real part of GWD [3]

RGWDY(t, f) = YGWD@(, ) + GWD®@*(, f)].

This is motivated by the real valuedness of the one-di-
mensional energy densities p.(r) and P,(f). Other
E-domain BTFR’s which possess a causality (anticausal-
ity) property are the distributions of Page [31] and Levin
[32]. All these BTFR’s are members of Cohen’s class [3],
[9], [10], which will be considered in Section IV.

B. C-Domain

The concept of C-domain BTFR’s is the combination
of the one-dimensional correlations r,(7), R, (v) into a two-
dimensional, joint ‘‘time-frequency correlation’’ TE(r,
v). Note that 7 and v denote a time and frequency lag,
respectively. Important examples of C-domain BTFR’s
are the ambiguity function (symmetric definition) [3]

AF, (7, v) = S x(t + %) x*<t - %)e"'z’"" d (2.4

and the asymmetric ambiguity function (AAF) [12]
AAF, (7, v) = g x(t + 1) x*()e ™ dt
t

which are obtained from the family of generalized ambi-
guity functions (GAF’s)

GAF®(r, v) = S x[t + (% + a)7] X¥[t — (% - a)7]

. e—j21rur dt (2.5)

by inserting, respectively, & = 0 and o = 1/2 for the
parameter «. A modification of GAF, the family of Her-
mitian-GAF’s (HGAF’s), is obtained by taking the Her-
mitian part of GAF

HGAF®(r, v) = ;[GAF®(r, v) + GAF;'*)*(—T, —v)l.

This is motivated by the hermiticity of the autocorrelation
functions r,(7), R, (v).

C. Marginal Properties

We now review some ‘‘desirable properties’” which an
E-domain or C-domain BTFR could be required to sat-
isfy. The E-domain marginal properties

S, TEX, f) df = p.(2)

S T, f) dt = P.(f) 2.6)

gress a strict felatlon between an E-domain BTFR
EXe, f) on the one hand and the one-dimensional energy
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' densities p, (1), ‘P,( f) on the other. Invthe C-domain, it is
natural to define the C-domain marginal properties as
TO0, v) = R, TO@0) =rm. @7
Due to (2.1), the marginal properties imply

S S/ TEG, ) didf = E, TO©,0 =E,. (2.8

D. Shift-Invariance Properties
To a time-frequency shift of the signal x ()

£() = x(t — to)el>™ (2.9

the one-dimensional energy densities p,(f), P,(f) and -
one-dimensional correlations r,(7), R, (v) react by shifts
and modulations, respectively,

Pe@® =t = 10),  Pef) = Pf = fo)
rx(T) = rx(T)ejz'ﬁ’T, Rf(v) = Rx(v)e—jlrmu.

Combining time and frequency domains, it is then natural
to define the shift-invariance properties of E-domain and
C-domain as

190, f) = TO¢ — 10, f ~ f) 2.10)
T, v) = T, v) exp [j2x(fyr — tw)].  (2.1D)

While shift invariance certainly is a very natural property,

. there do exist BTFR’s which are not shift-invariant (e.g.,
one can define a spectrogram with time-frequency-vary-
ing window). Note, also, that there exist BTFR’s which
satisfy the marginal propertles but are not shift-invariant
(see Section IV).

E. Scale-Invariance Properties
To a time-frequency scaling of the signal x ()

LX(J—c> (a #0)
a

2@ = V]a|x(an), T

X(f) =

(2.12)

the energy densities p, (f), P.(f) and correlations r,(7),
R, (v) react as follows:

: 1
Px(t) = lalpx(at)’ P,x’(f) = m Px(z‘>

a

R = Rx<3>.
a

Again combining time and frequency domains, we define
a scale-invariance property (identical in E-domain and
C-domain) as

re(1) = ri(an),

7, fy = T‘E><at g) 2.13)
T‘ (r, v) = 7@( Z) @.14)
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Of course, there exist a large number of other desirable
BTFR properties (an extensive list is given, e.g., in [33]).
We concentrate on the above properties since these form
the basis for our subsequent development.

The discussion of E-domain and C-domain BTFR’s and
BTER properties given so far suggests the existence of a
parallelism of E-domain and C-domain. In the next sec-
tion, it will be shown that this parallelism takes the form
of a strict duality based on the Fourier transform.

F. The Normal Forms of a BTFR

We conclude this section by introducing four equiva-
lent characterizations of BTFR’s using kernel functions.
It is well known [22]-[24] that any bilinear signal repre-
sentation can be written in a standard form which, spe-
cializing to E-domain BTFR’s, reads

Ti'E)(L f) = Sr Stz u(TE)(I’ fa ty, tZ)-x(tl) : x*(t2) dtl dt2-

(2.15)

Here, u(TE)(t, f; t1, ty) is a four-dimensional kernel func-
tion which characterizes the specific BTFR 7’ and which
can be interpreted as the BTFR’s ‘‘impulse response’’
[24], [33].

From (2.15), the following four (strictly equivalent)
“‘normal forms’’ can be derived by means of Fourier and
coordinate transforms:

T, f) = S S ’k(f;)(t,f; t', ') q.(t', ') dt’' dr’

(2.16)
, S kTR £ £ 0 QS ) df d!

2.17)

f
—

, Sf, Krwte, f5 ¢/, f) WDL(t', ') dit' df’
(2.18)
k(E)(t f . " , ,
) kra ; 7, v') AR (7', v') dr' dv'.

(2.19)

Here, g, (t, 7) and Q. (f, v) are the time-domain and fre-
quency-domain signal product defined as

q.(t, 1) = x<t + %> x*<t - %)

Y gxr_ Y
s =x(s+ 2 we(r-2)

and WD and AF are defined by (2.2) and (2.4), respec-
tively. The functions g, (¢, 7), Q,(f, v), WD, (t, f), and
AF (7, v) are related by Fourier transforms as illustrated
in Fig. 1(a) [3]. Inverse Fourier transform relationships
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v AF _(t,v) t
vhl=
t f
t v
A%(t,7) S Qfw
1 f
T v
t L f /
f t
WD, (t,f)
(a)

K$E) (4,£;,7,0)

.
W \
,

v

oy € E) (¢ ¢
Kt KR (4,,v)

T ¥
T v
ty f
f t

K$E), (4,6:¢,)
(b)
Fig. 1. Fourier transform relations (a) connecting q.(f, 7), Q. fs v,
E
WD, (t, f), AF,(7, v), (b) connecting BTFR kernels K fie ) kg1,
Fof v K fi 0 O KRG o ).

(see Fig. 1(b)) apply to the BTFR kemnel functions k(}?(t,
Fott, 7 kB £ f 0, ke, £ 1, f), and KT, f;
', v'), each of which characterizes the BTFR T\"(, f).
For example, in the case of WD (T = WD) the BTFR
kernel functions are

kwp. o, f5t', 1) = 6@t — 11y eI
kwp.o, f3 f', V') = 5(F — fryelt
kwpw(ts f3 0, f1) = 8t — t') 8(f = f")
kwp At 3 7', v") = pd2mitv' =),

Analogous normal forms (using BTFR kernel functions
k$(r, vi t', '), etc.) exist for a C-domain BTFR T,
v). Indeed, the normal forms are not based on any time-
frequency interpretation of BTFR’s but only on their bi-
linear mathematical structure. While any one of the four
normal forms suffices for BTFR characterization, we yet
consider all four normal forms since some questions are

best studied using a specific normal form.

III. DuaLiTY oF E-DoMAIN AND C-DOMAIN

Clearly, the previous section has suggested the exis-
tence of a parallelism of E-domain and C-domain. This
parallelism, in fact, is a strict duality based on the Fourier
transform; it is consistent with the well-known duality of
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one-dimensional energy densities p,(#), P,(f) and cor-
relations r,(7), R, (v)

R = § p, ()= sff" P(f). (.1
~y s .

Here, & and F~! denote Fourier transformation and in-
verse Fourier transformation, respectively. Conceptually,
an E-domain BTFR T®(s, f) combines the one-dimen-
sional energy densities p,(r), P.(f); similarly, a
C-domain BTFR T{E(+, v) combines the dne-dimensional
correlations r, (1), R, (v). It is thus reasonable to combine
the one-dimensional duality relations (3.1) into the fol-
lowing definition of BTFR duality [20]:

Definition: An E-domain BTFR T®(, f) and a
C-domain BTFR T{“(7, v) are said to be dual if they are
related as

Tz, v)

F 5180 1)

toy for

S Sf T, f) exp [=j2x vt — 7f)) dt df.

.(3.2)

Equation (3.2) expresses a unitary one-to-one mapping
between dual BTFR’s. Representing both T®(t, f) and
Tz, v) by the normal forms (2.16)(2.19), it is easily
seen that the kemels of dual BTFR's T&)(t, f) and T)(r,
v) are likewise related by the double Fourier transform
3.2),eg.,

kR vt vy = § kD, £ o, 7).

t—v for

(3.3)

Due to the duality relation (3.2), we can find a duall

C-domain BTFR Tz, v) to any E-domain BTFR T,
f), and vice versa. Examples of pairs of dual BTFR’s are
presented in Table 1.

A. Dual BTFR Relations and Properties

The parallelism constituted by the duality of E-domain
and C-domain BTFR’s extends to BTFR relations and
BTER properties. The following results are easily derived
using the duality definition (3.2).

1) If two E-domain BTFR’s Tz, f) and T, f) are
linearly related as

20, f) = f L, «O, fi 0, f) TEW, 1) dv' df’
' : (3.4)

(with transformation kernel «®)(t, f; ¢', f') independent
of x(#)), then a dual linear BTFR relation exists for the
dual C-domain BTFR’s T)(, v) and Tz, v)

I, v = S j ,

7' Jy

kz, v; 7, V) TOG, v')dr' dv’

(3.5)

wlbl_ere the E-domain and C-domain transformation kernels
B, f; ¥, f') and k©z, v; 7', v') are themselves re-
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TABLE 1
EXAMPLES OF DUAL B'_I‘FR‘s
E-domain C-domain Rem-arks
WD AF
RD ’ AAF
GWD GAF Special cases: WD /AF (a = 0)
and RD/AAF (a = 1/2)
RGWD HGAF Special case: WD /AF (a = 0)

lated according to
O, v; 7', v")

=35 5's' § «Bu £, ).

toy for 'y o

3.6)

We illustrate this type of dual BTFR relations by means
of a simple example. In the E-domain, WD and GWD can
be shown to be related by

owoen = | | oy %P el - - )
- WD, (', f') dt’ df’

which corresponds to the transformation kernel

3.7

O, f: 1, f') = - exp [jzw Le-m- f’)]-
|ex| o
(3.8)

The dual C-domain BTFR’s associated with WD and
GWD are AF and GAF, respectively, and the dual
C-domain transformation kernel can be derived from (3.8)
and (3.6) as

K, v; 7', 0') = 8(r — 7') 8(v — v’ )e
Inserting into (3.5), the dual C-domain relation connect-
ing AF and GAF is seen to be

GAF®(z, v) = e/2*™AF, (7, v). (3.9)

We see that the E-domain convolution (3.7) maps into a
multiplication in the C-domain.
2) If an E-domain BTFR T&(t, f) is linearly related

~ with a bilinear, one-dimensional, E-domain signal param-

eter a®(t) or a®'(f)
alo) = S Sf «Bo; v, f1) TE@, £') dt’ df’
o e

where ¢ stands for ¢ or f, then a dual relation holds in the
C-domain

ale) = S ’ S kUe; 7', 0") TO@, v') dr' dv'.
T v

Here,e = vforo =tande = 7 foro = f, TO(, v) is
dual to T®(t, f) in the sense of (3.2), a©(e) is a dual
C-domain signal parameter given by

90 = § a®)  or  a) =3 aP(f)

t—=v for
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and the C-domain transformation kernel is

K(C)(U; T', UI) = F g_l F K(E)(t; t,’ f’)

1=y ' flor!
or

kO v, 0y =" F «Bf 0, f).

for oy o

Prominent examples of this type of dual relations are the
marginal properties (2.6), (2.7):

p(0) = Sf T, f) df © R(v) = T°(0, v)

and

P.(f) = S TE(, f) dt < r() = T, 0)

where the symbol < denotes the duality of E-domain and
C-domain. We have thus obtained the following result: if
an E-domain BTFR satisfies the E-domain marginal prop-
erties, then the dual C-domain BTFR satisfies the
C-domain marginal properties.

3) If an E-domain BTFR T¥(t, f) is linearly related
to a constant bilinear signal parameter a,,

a, = S Sf‘ kB, f) TEQ, f1) di’ df’

then a dual C-domain relation involving the dual
C-domain BTER T (7, v) is

a, = S ‘ S 4K(C)(T', VYTO, v') dr' dv’

with the dual C-domain transformation kernel given by

K(C)(T’, U’) - g—l F K(E)(tl,fl)'

oy flort

Examples of this kind of dual relations are the properties
(2.8)

E = S Sf T8, £y di df © E, = T, 00 (3.10)

and, as a generalization of (3.10), the following ‘‘mo-
ment properties’’:

no = | § 1o aeare mt
1 Jf
\" o
N N R, ()
(~am) gm0,
and
M = S Sf”TiE’(t,f) dr df & MY
t Jf

1\" 9
_ (LY 9 ro
(21rj> ar" To(r v)

r=v=0

where the nth order time and frequency moments are de-
fined as

m = S x| dt, MY = Sff"|X(f)|2 df.

4) If an E-domain BTFR T(t, f) reacts to a given
linear signal transformation

X = g,h(t; t'yx@') dt’'

by a linear transformation according to
15w ) = S S,. B, £ 0, £ TG, £1) di’ df’

then the dual C-domain BTFR T'(7, v) reacts to the same
signal transformation by a dual transformation

C ’
T, v) = S S K, v; 7', 0" TOG', v’y dr' dv'.
7' Wy’

(3.11)

The kernel of this dual C-domain transformation is given
by (3.6)
PIRCRTEATD
-5 55" F @S

t—u for oy o

(3.12)

As an example, consider the E-domain shift-invariance
property (2.9), (2.10). Here, the E-domain transforma-
tion kernel is

kB, fit', f1) = 8@ — 1) — 1) 8(f = fo) = f)

and its C-domain dual according to (3.12) is found as

C
K, v; 7', ')

= §(r — 7') 8(v — v') exp (27 (for — to)].

Inserting into (3.11), we obtain as dual C-domain prop-
erty the C-domain shift-invariance property (2.9), (2.11).
E-domain and C-domain shift-invariance properties are
thus recognized as dual properties. Specifically, we have
obtained the following result: if an E-domain BTFR sat-
isfies the E-domain shift-invariance property, then the
dual C-domain BTFR satisfies the C-domain shift-in-
variance property. An analogous result holds for the (self-
dual) scale-invariance properties (2.12), (2.13) and
(2.12), (2.14).

The above results show that, just as there are pairs of
dual BTFR’s, there are also pairs of dual BTFR relations
and BTFR properties. This duality structure simplifies
BTFR analysis: if we know that, e.g., a given E-domain
BTFR TE(1, f) satisfies a certain relation or property,
then we know at once that the dual C-domain BTFR
T'(z, v) satisfies the associated dual relation or property.
For example, from the E-domain shift invariance of WD
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there immediately follows the C-domain shift invariance
of AF since WD and AF are dual BTFR’s and E-domain
and C-domain shift invariance are dual BTFR properties.

IV. THE SHIFT-INVARIANT CLASSES

If the definition of BTFR classes is based on certain
BTFR properties, then the duality of BTFR properties dis-
cussed in the previous section naturally leads to a corre-
sponding duality of E-domain and C-domain BTFR
classes. Of all properties which may be considered desir-
able for E-domain and C-domain BTFR’s, the dual shift-
invariance properties (2.10), (2.11) are perhaps the most
important and fundamental. Let us, therefore, define the
class Cg of E-domain shift-invariant BTFR’s as the total-
ity of E-domain BTFR’s T®)(, f) satisfying the E-domain
shift-invariance property (2.10),

(@) = x(t — t5) e/ =
1O ) = TOC ~ 10, f = ).

Similarly, we define the class €. of C-domain shift-in-
variant BTFR’s as the totality of C-domain BTFR’s
Tz, v) satisfying the C-domain shift-invariance prop-
erty (2:11),

4.1

(1) = x(t — tg)e/™ =

C i -
ng )(1_, U) = T)((C)(T’ v)e/21r(fo'r lov).

Since the underlying shift-invariance properties are dual,
the classes G and € are themselves dual in the follow-
ing sense: if an E-domain BTFR T¥)(¢, f) is an element
of Cg, then the dual C-domain BTFR T (7, v) is an ele-
ment of C, and vice versa.

A. Description of Shift-Invariant BTFR's

The shift-invariance properties impose characteristic
structures on the BTFR kemels or, equivalently, on the
normal forms (2.16)-(2.19). Indeed, the left-hand side of
the E-domain shift-invariance equauon (4.1) can be ex-
pressed as

]

T ) H Krwes, f3 1/, ') WDe(@', ') di” df

S,,S krw(e, £ ¢, )

* WD, (t' — 1, f' — fp) dt’ df’

= H kSwt, £ ' + 1o, f' + fo)

- WD(t', f') dt’ df'

where we have used the third normal form (2.18) and the
fact that WD is itself E-domain shift invariant. Similarly,
the right-hand side of (4.1) is
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E
TG — to, f — fo)

= S 5 k(e = to, f = fos ' f)
.
- WD, (', f') dt’ df .
By comparison, we obtain
Kew(t, i1 + 00, +f)
(E) (t - tO’f ﬁ)a t f ) fOl' all tO’.fb

as a necessary and sufficient condition for E-domain shift
invariance of T, f). Th1s condition is satisfied if and
only if the BTFR kernel kTW(t £t f)is convolution
type, i.e.,

ke, 50, f) = frwt = t, f = f) (4.2

with an arbitrary two-dimensional function fm (¢, f). In-
serting into the third normal form (2.18) then gives the
important relation

TE, f) = S , Sf,fw(r, — ', f = f) WD,(t', f') dt’ df’
| “4.3)

which shows that an E-domain shift-invariant BTFR can
be derived from WD by a convolution. What is more,
(4.3) shows that the class Cx of E-domain shift-invariant
BTFR’s is identical with the well-known Cohen class of
E-domain BTFR’s [1], [3], [9], [10]. Cohen’s class is thus
seen to be defined axiomatically by the property of
E-domain shift invariance [S], [34].

Invoking the Fourier transform relations (see Fig. 1(b))
connecting the four BTFR kernels, the remaining three
BTFR kernels can be derived from (4.2), and we finally
obtain the normal forms of an E-domain shift-invariant
BTFR as

T, f)

S Jr@t — t', T)e g (¢, ') dt’ dr’

I
I L

Fro(f = £, v Q" ) df dv'

Sf Jow(t = o', f = f) WD,(¢', f') at’ df’

I

S S Fu(', v') exp [j2n(v' — f11)]

« AF, (7', v') dr' dv’

where the four two-dimensional kernel functions Jrg (8, 7),
Fro(f, v), frw(t, f), and fr,(7, v) are related by Fourier
transforms according to Fig. 2 (cf. Fig. 1(a)). Any one of
these kernel functions provides a complete characteriza-
tion of the shift-invariant BTFR T&)X(¢, f). The kernel
fra(z, v) is usually considered in the literature on the
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fTA(‘C,U) T
v 1 <
t f
t v
frqlt,o) frqlf.v)
T f
T v
t ) f
f t
frwlt,f)

Fig. 2. Fourier transform relations connecting kernels fr, (t, 7), fro(f. v),
frw(ts £), fra(z, v) of shift-invariant BTFR’s.

Cohen class; in particular, the validity of desirable BTFR
properties has been expressed by means of constraints on
fra(7, v). For example, it is well known that TiE)(t, D)
satisfies the E-domain marginal properties (2.6) if and
only if f7,(0, v) = fr4(zr, 0) = 1 (note, however, that
there exist BTFR’s which satisfy the E-domain marginal
properties but are not E-domain shift-invariant, i.e., are
not contained in Cohen’s class [20]).

The normal forms of a C-domain shift-invariant BTFR
Tz, v) can be derived in a similar way or, alterna-
tively, by using the duality relations (see (3.3)) for the
BTFR kernels. We obtain

T, v) = fra(r, v) S,e‘f““”qx(r', 7) dr’

= fra(r, v) Sf, Q£ v) df’

= fra(7, V) § Sf, exp [j27 (rf' = vt")]
. WDX(tr’fl) dt; dfl

= fra(7, v) AF (7, v). 4.4)
The first three expressions are simply restatements of the
fourth. We see, in particular, that a C-domain shift-in-
variant BTFR is derived from AF by a multiplication. The
class C. of C-domain shift-invariant BTFR’s has been
considered previously in [19] and [20].2

It should be noted that any of the four kernels fr, (¢, 7),
fro(fi v), frw(, f), fra(7, v) characterizes both the
E-domain shift-invariant BTFR T©(r, f) and its
C-domain dual TO(r, v). If TE(t, f) € Cg and T\ (7, v)
€ Ccand if TE(, f) « Tz, v), then

.

8w f) = S Sf,ﬁw(r — ', f = f)YWD.(t', f') dt’ df’
Tr, v) = fra(7, v) AR (7, v)

zln' [19], this class has been given the name ‘‘generalized ambiguity
function.”” which, in the present paper, is used for the C-domain BTFR
family GAF\® (7, v) defined in (2.5).

where frw(t, ) and fr, (7, v) are related by a double Fou-
rier transform (see Fig. 2) exactly as are dual BTFR’s (cf.
(3.2)
fratz,v) = § Ef-]frw(f, -
v -7

In particular, if T, f) is a smoothed version of WD
like pseudo-WD or spectrogram, then fr (¢, f) will have
low-pass character, i.e., its Fourier transform fr,(7, v)
will generally tend to zero for large values of |7| and/or
lv| 1211, [29].

B. BTFR Relations

If two E-domain shift-invariant BTFR’s Tz, f) and
TE¢, f) are linearly related as in (3.4), then it is easily
shown that this relation must itself be a convolution

o0 f) = S{, va B0 =t f = f")
- TE@W, f) dt"df’. .5)
In the C-domain, the dual relation (3.5) is a multiplica-
tion:
T, v) = o7, v) T, v).
The E-domain and C-domain transformation kernels

0 B(t, f) and (7, v) are again related by the usual dou-
ble Fourier transform

Oz, v) = § 57 B0, £).

1oy for

4.6)

We also note that (4.5) and (4.6) entail the kernel rela-
tions

ff'W(Lf) = S Sj’ ‘P(E)(t - t’7f_fl)fTW(t”f,) dt’df’

.
fra(r, v) = <P(C)(T, v) fra(7, v).

As an example, we reconsider the relations connecting
WD and GWD in the E-domain and the dual BTFR’s AF
and GAF in the C-domain. With (3.7) and (3.9), the
transformation kernels are seen to be

1 . .
«’(E)(t’ f) — |_ ej’lr(l/a)er ¢(C)(T, U) - eﬂrcxrv.
04

V. THE SHIFT-SCALE-INVARIANT CLASSES

In the previous section, it has been shown that the dual
shift-invariance properties entail a characteristic convo-
lution/multiplication structure of BTFR kernels and BTFR
relations. We shall now see that the additional assumption
of scale invariance (2.13), (2.14) leads to a further char-
acteristic structural constraint. We define the class Og of
E-domain shift-scale-invariant BTFR’s as the totality of
E-domain shift-invariant BTFR’s satisfying the scale-in-
variance property (2.13)

20 = Vialx@) = TS0, f) = Ti”<"” 5)
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Similarly, we define the class D of C-domain shift-scale-
invariant BTFR’s as the totality of C-domain shift in-
variant BTFR’s satisfying the scale-invariance. property
2.14)

x@) = \/m.x(at) = Tf;c)(r, v) = T)((C)<ar, 5)

5.1

We see that Dy and D are subclasses of Cp and Cg,
respectively. Just as Cp and C., Dy and D¢ are dual
classes: if TE(t, £) is an element of D, then the dual
C-domain BTFR T)(7, v) is an element of D, and vice
versa.

A. Description of Shift-Scale-Invariant BTFR’s

Using (4.4) and the fact that AF is itself scale i mvanam
the left-hand side of the C-domain scale-invariance rela-
tion (5.1) can be written as

Tr, v) = fru(r, v) AF, <a1, §>

Similarly, the right-hand side of (5.1) is

7§C><ar, 3) Fra <a1- )AF <a7, 3).
a a

By camparison, we obtam

Jra(r, v) = fry <a7', s> foralla # 0

as a necessary and sufficient condition for scale invari-
ance. This condition is satisfied if and only if fr (7, v) is
of the product type

fra(7, v) = Gr(rv) (5.2)

with an arbitrary one-dimensional function Gr(§). Using
the Fourier-transform relationships of Fig. 2, the remain-

ing three kernels fr, (¢, 7), fro(f, v), and fry (¢, f) can be -

derived from (5.2); we obtain

1
f_rg(t, 7) = S gr(e) 8(t — ar) da = Tl gr<£>

rothin = | arte o+ oy e = L o1
Fw(, f) = S gr(a) — e‘”""“"’ da (5.3
Sfra(z, v) = S gr@)e ™™™ do = Gr(1v) 5.4

where

- Gr) = E_F'E gr(a).

It follows from (5.3) that fry (z, f), too, is a product-type
function, i.e., only depends on the product of ¢ and f.
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A prototype example of shift-scale-invariant BTFR’s is
given by the dual families of GWD (2.3) and GAF (2.5)
which, for a specific parameter a = «, are characterized
by

7wt f) = T e
' |exol
or

= ej21rao'ru.

f&Wp.4(7, ) (.5

(Note that we name the kernel functidns f, g, and G after
the E-domain BTFR even though they are characteristic
of the dual C-domain BTFR as well.) Comparing with
(5.3) and (5.4), we obtain

gg”&,)D(a) =8 + o), GSup(f) = e/t

The dual families of RGWD and HGAF, too, are mem-
bers of Dy and D¢, respectively; they are characterized
by

gmwu(a) 5[0 + ap) + 8(a — ap)]

G j2 -j2
Growp(§) = 5[e/7™% + e7/2m0f]

= cos 2mwayf).

We note that conventional smoothed versions of WD, like
pseudo-WD or spectrogram, are not scale invariant. How-
ever, the exponential distribution (ED) [29] is scale in-
variant; it is characterized by

gep(a) = Vwo exp (—-w2oa?),

Gep(¥) = exp (—£*/a) (0 > 0).

The particular structure of shift-scale-invariant BTFR’s
can be given another interpretation. Let TV(t, f) and
Tz, v) be a pair of shift-scale-invariant BTFR’s char-
acterized by the kernel fr,4 (7, v). With (5.5), (5.4) can be
wriften as

Jra(r, v) = S gr(_a)f(Ga\)VD,A(T, U) do

whence it follows that T‘E)(t 7) and T(z, v) can be ex-
pressed as

TEw, f) = S gr(—~@) GWD{ @1, f) da

T, v) = S gr(—a) GAF® (z, v) da.

‘We have thus obtained the following result: any E-domain
(C-domain) shift-scale-invariant BTFR is a linear com-
bination of GWD’s (GAF’s). In both cases, the weighting
function is gr(—a). We conclude that GWD and GAF are
indeed the basic elements of Dy and D, respectively.
Apart from shift and scale invariance, a number of other
desirable BTFR properties are satisfied by BTFR’s of D¢
and D provided that the weighting function gy («) satis-
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fies some few constraints [33]. Specifically, let us assume
that gr(c) is real, even, normalized such that § gr(c) da
= 1, and zero for || > 1/2. It can then be shown that
T, £) and T'(7, v) are real-valued and Hermitian,
respectively; furthermore, they will satisfy the marginal,
moment, finite-support, and instantaneous-frequency/
group-delay properties [3], and they will be invariant with
respect to Fourier transformatlon of the signal (1 e., ifx()

= (F2)(1), then Tt £) = TE(—f, 1) and T (r, v) =
T(~v, 7).

B. BTFR Relations

The transformation kernels ¢ &'(z, f) and ¢'“)(7, v) de-
scribing the relations of shift-invariant BTFR’s (see (4.5),
(4.6)) can be shown to have the following product forms
if the BTFR’s are also scale invariant:

1 .
<p(E)(f, N = S v (@) ﬁ e ~I2m /el g
o o

¢, v) = S y(@e ™ do = T'(rv)  (5.6)

with

r'eé) = 5957(01).
According to (4.6) and (5.6), a linear relation of two
BTFR’s of D has the simple form

Tz, v) = T'(rv) T, V).

We finally note that a linear BTFR relation in O or D¢
entails the kernel relations

gr() = S (@ ~ o) grle') da’

and

Gr(§) = T'(§) Gr(®).

VI. CoNCLUSION

Fig. 3 illustrates the classification scheme of bilinear
time-frequency signal representations (BTFR’s) devel-
oped in the previous sections. In the following, we briefly
summarize the different steps of this classification.

1) A first and fundamental distinction is between
E-domain and C-domain BTFR’s. E-domain BTFR’s are
interpreted in terms of time-domain and frequency-do-
main energy densities p,(f) and P, (f) while C-domain
BTFR’s are interpreted in terms of time-domain and fre-
quency-domain correlations r,(7) and R, (v). The affilia-
tion of a BTFR to the E-domain or the C-domain is a
matter of interpretation and thus not specified by a math-
ematically strict criterion. There exists, however, a math-
ematically strict Fourier transform duality of E-domain
BTFR’s and C-domain BTFR’s. This duality is consistent
with the Fourier transform duality p, (f) < R, (v), P.(f)
< r.(7) of energy densities and correlations, and it ex-
tends to BTFR relations, BTFR properties, and BTFR
classes.

C-DOMAIN

E-DOMAIN

Fig. 3. A BTFR classification scheme.

2) Inside the E-domain and C-domain, the dual classes
@ and €, of E-domain and C-domain shift-invariant
BTFR’s are defined by two dual shift-invariance proper-
ties. These shift-invariance properties are consistent with
the shift-invariance properties of energy densities p. (1),
P.(f) and correlations r.(7), R.(v), respectively. The
class @ of E-domain shift-invariant BTFR’s is identical
with the well-known Cohen class. The mathematical de-
scription of shift-invariant BTFR’s is simplified as com-
pared to the general case: while the most general descrip-
tion of a BTFR is in terms of a four-dimensional kernel
function, a shift-invariant BTFR is characterized by a two-
dimensional kernel function. If two E-domain (C-domain)
BTFR’s are linearly related, then this relation is a con-
volution (multiplication).

3) Inside the classes C; and C of shift-invariant
BTFER’s, the dual subclasses Dz C Cpand D C Cc of
E-domain and C-domain shift-scale-invariant BTFR’s are
defined by a self-dual scale-invariance property which is
again consistent with the scale-invariance properties of
energy densities p, (¢), P,(f) and correlations r,(7), R, (v).
The description of shift-scale-invariant BTFR’s is once
again simplified: due to a characteristic product structure
of the BTFR kernels, a one-dimensional kernel function
now suffices for BTFR characterization. Any shift-scale-
invariant BTFR is a superposition of generalized Wigner
distributions (E-domain) or generalized ambiguity func-
tions (C-domain).

4) Inside the shift-scale-invariant classes g and D,
the two dual BTFR families generalized Wigner distri-
bution (GWD) and generalized ambiguity function (GAF)
are distinguished by the simple (exponential) form of their
kernels, the large number of desirable properties they sat-
isfy, and by the fact that any shift-scale-invariant BTFR
is a superposition of GWD’s or GAF’s. GWD and GAF
are characterized by a real-valued parameter «.

5) Inside the dual BTFR families GWD and GAF, the
dual BTFR’s Wigner distribution (WD) and ambiguity
function (AF), which are obtained with o = 0, are finally
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uniquely defined by the single requirement of real valued-
ness (E-domain) or Hermiticity (C-domain).

It should be noted that the classification scheme pre-
sented (with the exception of the basic distinction be-
tween E-domain and C-domain) is only one of many pos-
sible such schemes. Obviously, any pair of dual BTFR
properties can be used for the definition of two dual BTFR
classes of E-domain and C-domain. Still, the classes Cpg,
Ccand Dg, D of shift-invariant and shift-scale-invariant
BTFR'’s are fundamental for two reasons: i) they are ax-
iomatically defined by basic geometrical invariance prop-
erties of BTFR’s, and ii) they correspond to characteristic
mathematical structures of BTFR’s and, by that, to sim-
plifications of BTFR description. Our classification is thus
well motivated from the viewpoint of mathematical struc-
ture and mathematical description. There exists, how-
ever, a class of bilinear time-frequency representations
which does not fit into the classification considered in this
paper. This class is derived from the class of bilinear time-
scale representations by formally introducing frequency
as the inverse of a scale parameter [35]-[37]. Here, the
concept of ‘‘frequency’’ is somewhat different from the
usual frequency concept based on Fourier analysis.
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