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Phase Matching Algorithms for Wigner-Distribution
Signal Synthesis

Franz Hlawatsch, Member, IEEE, and Wemer Krattenthaler

Abstract—Signal processing by means of discrete-time Wigner dis-
tribution requires a signal synthesis step. It is known that the result of
signal synthesis contains a troublesome phase ambiguity. This paper
analyzes the problem of phase ambiguities for both unconstrained and
halfband-constrained signal synthesis and discusses various strategies
for coping with it. After a review of the well-known phase matching
algorithm using a reference signal, we present ‘autonomous’’ phase
matching algorithms which do not require a reference signal. Next,
‘“‘on-line” versions of both reference-based and autonomous phase
matching algorithms are derived which feature a short-time or causal
mode of operation and are thus suited for the on-line processing of
signals with arbitrary length. The performance of the new algorithms
is finally assessed by computer simulations.

I. INTRODUCTION

THE discrete-time Wigner distribution (DTWD) of a dis-
crete-time signal x(n) is defined as [1]

W,(n, 0) = 2 2 x(n + m)x*(n — m)e~*™m  (1.1)

where n is a discrete-time index and 6 denotes normalized fre-
quency; summations are infinite unless explicitly specified oth-
erwise. DTWD is 1/2-periodic with respect to the frequency
variable 0; this is in contrast to the signal’s spectrum which is
a 1-periodic function. Indeed, DTWD W, (n, 0) is aliased with
respect to § unless the signal x(n) is a **halfband signal’’ whose
bandwidth is restricted to 1 /2 [1].

A recent paper [2] proposes the application of DTWD to time-
frequency signal processing and signal design. An essential step
of this application is signal synthesis, i.c., the generation of a
signal x(n) from a time-frequency function (‘‘model’’) W(n,
6) which is not itself a valid DTWD. Global (unconstrained)
signal synthesis [2] is the solution of the minimization problem

&2 |w-w|
1/4 .
=2 S / lW(”’ 6) — W(n, 0)| df = min. (1.2)
n o J-1/4 1

The notation implies that the synthesis error ¢, is to be mini-
mized over all signals x(n). In contrast, halfband signal syn-
thesis [3] solves (1.2) with the side constraint that the resulting
signal x (n) be a halfband signal, such that aliasing in W, (n, 6)
is prevented. It is shown in [2] that the general solution of global
signal synthesis contains a characteristic phase ambiguity: the
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subsequences of even-indexed and odd-indexed signal samples
of the synthesis solution will assume arbitrary and independent
phase factors. In the case of halfband signal synthesis, on the
other hand, the halfband constraint prohibits the occurrence of
independent phase ambiguities of even-indexed and odd-in-
dexed samples, and only a phase ambiguity affecting the entire
signal remains. We note that the same phase ambiguities exist
if the signal synthesis problem is formulated with smoothed ver-
sions of DTWD (e.g., the pseudo-Wigner distribution), rather
than the DTWD itself [4]-[6].

This paper analyzes the problem of phase ambiguities and
discusses various methods for resolving it. It is organized as
follows. In Section II, the occurrence of phase ambiguities is
shown to result from a basic invariance property of DTWD. The
phase ambiguity of global signal synthesis is represented in
terms of an ‘‘absolute’’ and a ‘‘relative’’ phase, and a fre-
quency-domain analysis of relative phase mismatch is given.
Section III reviews the standard algorithm for phase matching
using a reference signal [2] and presents a modified version
suited for halfband signal synthesis. Section IV derives two
novel algorithms for ‘‘autonomous’’ phase matching which do
not require a reference signal. In Section V, both reference-
based and autonomous phase matching algorithms are modified
to feature a short-time or causal mode of operation and thus
permit on-line processing. Simulation results are finally pre-
sented in Section VI.

II. PHASE AMBIGUITIES IN DTWD SIGNAL SYNTHESIS

As a mathematical basis for discussing phase ambiguities and
developing phase matching algorithms, we first introduce three
signal subspaces with particular relevance to DTWD.

A. The “‘Halfband’’ Subspace H

By definition, the linear signal subspace H consists of all
‘‘halfband signals,’’ i.e., signals band limited to a predefined
frequency interval (‘‘halfband’”) 6, — 1/4 < 6 < 6, + 1/4

with bandwidth 1/2:
x(n)eH o X(0)=0 for 6+ 1/4 <8 <6, + 3/4.

(2.1)

Here, 6, is the center frequency of the respective halfband (see

Fig. 1). Of particular importance are the halfband subspaces
with 6, = 0 (containing, in particular, real-valued signals
oversampled by a factor 2) and 6, = 1/4 (containing analytic
signals). We note that DTWD will be nonaliased only in the
case of a halfband signal [1]. Projecting [7] a signal on a half-
band subspace H amounts to ideal halfband filtering: the (or-
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Fig. 1. Spectrum of a halfband signal.
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thogonal) projection x4 (n) of an arbitrary signal x(n) on H is
given by

xu(n) = Zkl h(n — k)x(k) (2.2)

X(0), 6—1/4<0<6,+1/4
X(0) = HOX@O) = § 10 P oV
0, O +1/4 <0 <0,+3/4
(2.3)
where
h(n) = 1 sinc (3n)e/>™",
1, 6 -1/4<06<6,+1/4
H(0) = =1/ o+ 1/ (2.4)
0, 6G,+1/4<0<86,+3/4

are, respectively, the impulse response and transmission func-
tion of an ideal halfband filter with cutoff frequencies 6, + 1/4.

B. The ‘‘Even-Index’’ Subspace E and the ‘‘Odd-Index’’
Subspace O

We define the linear signal subspace E (signal subspace O)
as the space of all signals for which only the even-indexed (odd-
indexed) signal samples are nonzero:

x(n)eE & x2k+1)=0; x(n)eO & x(2k) =0.

(2.5)

The projection xz(n) (projection xo(n)) of a signal x(n) on
the subspace E (subspace Q) can be written as

n x(n), n=2k
xg(n)=%[1+(—1)]x(n)={0, e
(2.6)
. . 0, n =2k
xO(")=§[l - (=0 ]X(n)::{x(n), n=2k+1,
(2.7)

Since multiplication by (—1)" = exp ( j2x3n) effects a spec-
tral shift by frequency 1/2, the spectra of x;(n) and x,(n) are
aliased versions of the original signal spectrum X(9):

Xe(6) = 3[X(8) + X(6 - )];

Xo(8) = 3[X(8) - X(6 — )]. (2.8)

C. Phase Ambiguity of Global Signal Synthesis

We now discuss the phase ambiguity of the solution of global
signal synthesis (1.2). Let x(n) be some signal, and let us de-
rive from x(n) a new, ‘‘phase-rotated’” signal x'**”(n) by
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applying two constant phase factors e/*, e/ to the subse-
quences of even-indexed and odd-indexed signal samples, re-
spectively,

x'(“’r"Pn)(n) A ej“"xE(n) + ej“’"xo(n)
e’x(n), n
elx(n), n

Alternatively, the phase-rotated signal (2.9) can also be ex-
pressed as

2k
2k + 1.

I

fl

(2.9)

I}

£09(n) = eV (n) (2.10)

with

SO () = » _ "=k

*7(n) = xg(n) + ¢%xo(n) {e”x(n), n=2k+1
(2.11)

The ‘‘absolute phase’’ ¢ = ¢, affects the entire signal and is of
little importance in many applications. The ‘relative phase’ ¥
= ¢, — ¢., on the other hand, describes a phase rotation of
even-indexed and odd-indexed samples relative to each other
and generally leads to severe signal distortion. In the frequency
domain, this distortion can be interpreted as an aliasing effect:
combining (2.10), (2.11), and (2.8), the spectrum of ¥ (n)
is obtained as

Xe9(0) = e*[c, X(8) + c_X(6 — D] with

c, =3(1 £ ). (2.12)
Now, using the definition (1.1) of DTWD, it can easily be
shown that

Wi(n, 8) = W,(n, 0) (2.13)

i.e., DTWD is invariant with respect to arbitrary phase rotation
of the subsequences of even-indexed and odd-indexed signal
samples. Combining (2.13) and the definition (1.2) of the syn-
thesis error ,, it is then clear that

&= W= W] =|W- W] =ec

(2.14)

This shows that the original signal x(n) and its ‘‘phased-ro-
tated”’ version £(n) achieve the same synthesis error. The re-
sult of global signal synthesis is hence ambiguous with respect
to the phases ¢, and ¢, or, equivalently, ¢ (‘‘absolute phase
ambiguity>’) and ¢ (‘‘relative phase ambiguity’’). On practical
application of global signal synthesis, these phases will assume
arbitrary values. The same is true for global signal synthesis
involving a smoothed version of DTWD instead of DTWD it-
self [4]-[6].

D. Phase Ambiguity of Halfband Signal Synthesis

We next consider halfband signal synthesis which solves the
minimization (1.2) subject to the halfband constraint x (n) € H.
Now, if x(n) € H is a solution of halfband signal synthesis,
then the phase-rotated signal #29¥)(n) of (2.10) cannot be a
halfband signal as well unless ¥ = 0: indeed, it follows from
the aliasing relation (2.12) that a relative phase rotation would
destroy the halfband property of a signal. Thus, the result of
halfband signal synthesis does not contain a relative phase am-
biguity; however, the absolute phase ambiguity remains.
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III. REFERENCE-BASED PHASE MATCHING
A. Global Signal Synthesis

The phase ambiguities of global signal synthesis can be re-
solved a posteriori by means of some separate algorithm for
‘‘phase matching.’’ If x(n) is the result of global signal syn-
thesis, then phase matching amounts to forming a phase-rotated
signal £°~¥”(n) as in (2.9) and adjusting the phases ¢, and ¢,
according to some optimization criterion. The definition of such
a criterion is straightforward when a reference signal y(n) is
available [2]: we simply adjust the phases such that the result-
ing signal is as close to the reference signal as possible

(e 02) & |y = 5000

— min (3.1)
e, Po
which means that the distance e (¢,, ¢, ) is to be minimized with

respect to the phases ¢, and ¢,. As shown in [2], the optimal
phases are given by

@eopp = arg Cp, with
Cre = (Y&, x£) = § y(2k)x*(2k) (3.2)
®o,0pt = arg Cg, with

Cro = (Yo, X0) = gy(zk + 1)x*(2k + 1).
(3.3)

B. Halfband Signal Synthesis

While halfband signal synthesis avoids the relative phase am-
biguity, the absolute phase ambiguity remains. If the absolute
phase is of importance and if a reference signal is available,
then the absolute phase can be matched to the reference signal
as

e(e) & ||y — e?x|| = min (3.4)
©

where y(n) is again the reference signal and x(n) is the result

of halfband signal synthesis. The optimal absolute phase is here

obtained as (compare (3.2), (3.3))

¢om = arg Cg  with Cgp = (y, x) = X y(n)x*(n).

(3.5)

IV. AUTONOMOUS PHASE MATCHING

Naturally, the reference-based phase matching algorithms re-
viewed in the previous section cannot be applied in those situ-
ations where a meaningful reference signal is not available. In
this section, therefore, we present a new class of phase match-
ing algorithms which do not require a reference signal. These
‘‘autonomous’’ algorithms, however, only resolve the relative
phase ambiguity; their application is hence restricted to the case
of global signal synthesis where a relative phase ambiguity oc-
curs. Indeed, without a reference signal no reasonable criterion
for adjusting the absolute phase can be formulated in general.
Note, however, that it is the relative phase ambiguity whose
resolution is of primary importance.

Let x(n) be the result of global signal synthesis. Since the
absolute phase is not to be adjusted, we use the phase-rotated
signal version ¥’ (n) of (2.11) and adjust the relative phase ¢
according to some optimality criterion. Two different ap-
proaches are discussed in the following.
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Fig. 2. Distance of signal ¥’(n) from halfband subspace H.

A. The Halfband Approximation Criterion

In practice, DTWD is applied only to signals which are half-
band (or at least nearly halfband) so that no substantial aliasing
of DTWD occurs. Let us, therefore, adjust the relative phase y/
such that the resulting signal £'%’(n) is as nearly halfband as
possible (note that, in general, no choice of the phase ¥ can be
found such that the signal £¥’(n) is exactly halfband). This
will be called the halfband approximation criterion (HAC).
Phrased mathematically, the HAC requires that the distance of
£ (n) from a given halfband subspace H be minimal. This
distance is expressed as d () = || £¥ — £ ||, where £’ (n)
is the projection of £¥’(n) on H (see Fig. 2). The HAC thus
reads ‘

d(y) & |5 - 2| ~ min. (4.1)
1 v

Using Parseval’s relation and (2.3), the squared norm d*(y)

can be expressed in the frequency domain as

d*(y) =

1/2
£ — 2| = S_./z 1[1 - H(e)]X“"(())l2 do

]

1/2 )
S—x/z (1~ H(6)]| XV (8)| a8

1

1/2
S H(0)| XV (0)|" ab.
—-1/2

(4.2)

The first term in (4.2) is simply the energy of £'¥’(n) which is
independent of y. Thus it remains to maximize the second term

1/2 . )
v (¥) —
5_1/2|x (0)| a0

11>

1/2 ’
mu(¥) S_l/z”(")V‘"“(‘”' df

fo+1/4
Sau—l/4

B. The Spectral Spread Criterion

|29(0)|" db » max.  (4.3)
2

According to (4.3), the HAC amounts to maximizing the en-
ergy of x¥?(n) inside the halfband interval 6, — 1/4 < 0 <
6, + 1/4. This can be approximated by maximizing the con-
centration of the spectrum X¥’(6) relative to the halfband’s
center frequency 6, or, equivalently, by minimizing the spread
of X¥)(8) around 6,

+1/2 2
S p(0)| X (0)|" db

fa—1/2

Son+ 1/2
6o—1/2

ol(y) & - min.  (4.4)

|x¥(0)[ db
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This will be called the spectral spread criterion (SSC). The
conventional definition of spread would use p(8) = (8 — 8,)>
as spectral weighting function in (4.4); however, to remain in-
side the framework of discrete-time signals, we here choose the
1-periodic weighting function

p(6) & [sin (0 - t90)]2 =3[1 = cos 27(8 — 6,)]
=1~ 5(6) (4.5)
with
5(6) = 3[1 + cos 2x(6 — 6,)] (4.6)

which is shown in Fig. 3. For minimizing the spread o2 (y),
we first note that the denominator of the definition (4.4) is the
energy of £%’(n) which is independent of the phase ¥. Thus
there remains the numerator of (4.4)

fo+1/2 2
S p(0)|X¥(6)| db
/2

fo—1

I

1/2 ‘
S_I/z [1 - 5(8)]|2¥(9)| a8

1/2 ) 1/2 )
(V) — X (¥)
S_./2|X (0)| a0 571/25(9)|x (0)| a0

(4.7)

to be minimized. The first term of (4.7) again being indepen-
dent of y, there finally remains to maximize the second term

1/2

ms(¥) & S_./z S(G)IX‘”(G)I2 dg - max. (4.8)

C. A Unified Framework for Autonomous Phase Matching

Comparing (4.3) and (4.8), we realize that both the HAC and
the SSC require the maximization of a frequency-domain mo-
ment

1/2
me(¥) = S_l/z F(0)| X (0" do - max.  (4.9)

The only difference between the two criteria is the specific
weighting function F(8): in the HAC case, F(§) = H(0) has
rectangular shape; in the SSC case, F(8) = S(0) is sinusoidal.
The weighting functions are similar, though, since they both
tend to suppress the signal’s spectrum outside the halfband 6,
—1/4 < 6 < 8, + 1/4 while emphasizing it inside the half-
band (see Fig. 4). With this general property of the weighting
function F(8), the unified formulation (4.9) represents a gen-
eralized criterion for autonomous phase matching.

To solve the general maximization problem (4.9), we insert
the frequency-domain version of (2.11) whence mg(y) can be
further developed as

172 s
me(y) = |, FOXO 0 +

1/2 )
S F(8)|Xo(6)|" db
-1/2

1/2
+ S*]/z F(6)2 Re {X:(0) [¢*X,(8)]"} 0.

(4.10)

615
PO e
[sirm(@-@,.)]z
ot 0 e v e

Fig. 3. Weighting functions for the definition of a spectral spread.
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Fig. 4. Weighting functions of HAA and SSA.

Since the first two components of (4.10) do not depend on ¢,
there remains to maximize the last component which, assuming
F(86) to be real-valued, can be written as

2Re {eMCr} = 2|Cp| cos (=¥ + arg Cr) (4.11)

with

1/2

c & g/ F(6)Xz(8)X3(8) do. (4.12)

The optimal relative phase, i.e., the phase maximizing (4.11),
is thus given by

Yop = a1g Cr. (4.13)

Using Parseval’s relation, the constant Cr can alternatively be
expressed in the time domain as

Cr = (Xgr> Xo) = %xEF(zk + 1)x*(2k + 1) = (xgros Xo)
(4.14)

where xgr(n) stands for the result of filtering xz(n) with trans-
mission function F(8) and xzro(n) is derived from xz.(#n) ac-
cording to (2.7). The practical computation of Cr naturally de-
pends on the specific weighting funtion F(8). Specializing to
the weighting functions H(6) and S(8) defined by the HAC and
the SSC, respectively, we obtain the following results.

D. The Halfband Approximation Algorithm
Choosing F(8) = H(0), we insert (2.4) and (2.8) into (4.12)

and obtain Cp = Cy as

o+ 1/4
Cy = Sa Z(6)do with Z(0) 2 3[X(6) + X(6 - 1)]

60— 1/4

- [x(0) - x(8 - H]". (4.15)
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E. The Spectral Spread Algorithm
For F(8) = S(8), Cr = Cs is given by
Cs =3 2 [e7x(2k + 2) + &/x(2K)|x*(2k + 1)

(4.16)

which is obtained from (4.14) and (4.6) after straightforward
manipulation. We note that C can be calculated without the
need for expensive filtering or computing a Fourier transform.

F. Discussion of Autonomous Phase Matching Algorithms

Among all autonomous phase matching algorithms obtained
for various weighting functions F(6), the halfband approxi-
mation algorithm (HAA) with F(8) = H(6) is the most satis-
fying from a theoretical viewpoint since it produces the signal
which is ‘“as nearly halfband as possible’’ and thus causes min-
imal aliasing in DT WD. On the other hand, the spectral spread
algorithm (SSA), obtained with F(8) = §(8), has the practical
advantage of requiring considerably reduced computation.

Since both the HAA and the SSA perform a maximization of
frequency-domain moments whose weighting functions have
similar overall characteristics, the results of HAA and SSA will
be similar in many cases. Indeed, the solutions of HAA and
SSA will be strictly identical in the case of a halfband consistent
model [6]. In this case, there exists a solution x 7 (n) of global
signal synthesis which is a halfband signal and equals the result
of halfband signal synthesis. However, the global signal syn-
thesis algorithm will generally not yield this specific solution
x(n) but some other solution

x(n) = x¥(n) + exE(n) (4.17)

with relative phase mismatch (we suppress the absolute phase
ambiguity since it is irrelevant for our discussion). The *‘half-
band solution’” x#’(n) can then be derived from the phase-
mismatched solution x(n) by proper phase matching. From the
HAC, it immediately follows that the HAA will produce this
halfband solution x ¥’ (n) up to an absolute phase; the minimal
distance dpin (¥) = d(Y,p) is then zero. This means that, in
the case of a halfband consistent model, the result of halfband
signal synthesis and the result of global signal synthesis with
subsequent phase matching by means of the HAA are identical
apart from an absolute phase.

We now show that the very same property holds for the gen-
eral formulation (4.9) of autonomous phase matching (includ-
ing SSA). We assume that the weighting function F(9) is i)
1-periodic, ii) real-valued, and iii) even with respect to §,. Also,
we assume iv) that F(8 + 1/2) < F(8) for 8, < 6 < 6, +
1/4; this, together with iii), assures that F(6) emphasizes (at-
tenuates) the spectrum inside (outside) the halfband. Now, with
x(n) of (4.17) being the result of global signal synthesis, we
form the phase-corrected signal version

P (n) = xp(n) + exp(n) = x¢(n) + 7Y (n).
(4.18)

Obviously, the desired halfband solution will be obtained for ¥
= —y,. We now prove that this indeed equals the result ¢, =
arg Cr of autonomous phase matching. With xz(n) = x¢”(n)
and xo(n) = ex(n), Cr can be expressed as

1/2
Ce = S , F(0)Xz(0)X5(0) df = e~ C{  (4.19)
-1/2

with
1/2
cH) = § y F(O)XE(0)X5*(6) do
-1/2

1/2
_1 : H 2
=1 g_]/z F(0)| X" (0)|" db

1/2
-1 S B F()|X*(0 - 1/2)|" a8
-1

1/2
=1 S_]/Z [F(6) — F(0 + 1/2)]| X ()" ao

(4.20)

where we have used (2.8) and the fact that X (8) X% (6 —
1/2) = 0 since x#’(n) is a halfband signal. Due to the fact
that X’ (8) is confined to the halfband interval 6, — 1/4 < 0
< 6, + 1/4 and our assumptions regarding the weighting func-
tion F(9), it follows from (4.20) that C¥’ > 0 and thus arg
C# = (. With this and (4.19), we finally obtain

Yop = arg Cr ? —yp + arg Ci = =y,

which completes our proof. Of course, halfband consistency of
a model will generally be the exception rather than the rule.
Still, the fact that both HAA and SSA are consistent with half-
band signal synthesis in the above sense seems to indicate that,
in the practically important case of nearly halfband consistent
models, the solutions obtained by HAA and SSA will be very
similar and, in particular, close to the solution of halfband sig-
nal synthesis. This property is confirmed by experiments (see
Section VI).

An interesting relation exists between reference-based phase
matching on the one hand and autonomous phase matching on
the other. According to (3.3), reference-based phase matching
calculates the phase of odd-indexed signal samples as ¢, oo =
arg ( yo, xo)- On the other hand (see (4.13) and (4.14)), auton-
omous phase matching calculates the relative phase ¢ (which,
up to the absolute phase, can be interpreted as the phase of odd-
indexed signal samples ¢,) as Yo = arg (Xgro, Xo). We thus
see that, as far as the relative phase is concerned, autonomous
phase matching can be interpreted as reference-based phase
matching with reference signal y(n) = xge(n).

(4.21)

V. ON-LINE ALGORITHMS

All phase matching algorithms discussed so far use the entire
synthesis result x(n) to derive the optimal phase or phases for
phase matching. This mode of operation is suited for DTWD
signal synthesis where all signal samples are synthesized si-
multaneously. On the other hand, there exist signal synthesis
algorithms for pseudo Wigner distribution where successive
signal samples or signal blocks are synthesized one after the
other [5], [6]; this mode of operation allows the on-line pro-
cessing of signals with arbitrary length. There is thus a need for
phase matching algorithms which are compatible with this on-
line mode of operation.

A. Reference-Based Phase Matching

We first derive an on-line version of the reference-based al-
gorithm (3.2), (3.3) used in the context of global signal synthe-
sis. Suppose that x (k) is the result of global signal synthesis

. and y(k) is a reference signal. At time n, we want to calculate
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local, time-varying estimates ¢.(n), ¢,(n) of the optimal
phases @, o> @, op defined by (3.2) and (3.3). With these local
estimates, the nth sample of the phase-matched signal is then
formed according to

£(n) & &% "xg(n) + e Mxy(n).

(5.1)

Note that, in general, different phases will be used for different
samples £ (7). The phase ¢, (n) is only relevant for even n since
xg(n) = 0 for odd n. Similarly, ¢,(n) is only relevant for odd
n.

To be compatible with on-line processing, we assume that,
at time n, the signals x (k) and y (k) are available only for k <
n + N, where N 2 0 is a fixed parameter. It is then natural to
define the local estimates ¢,(n), ¢,(n) at a given time instant
n as the solution of the local minimization problem

2
..

& Zwlk - m)|y(k) - £ (k)" > min
PesPo

631(‘»0;’ ‘Po) = ” y - F(#epo)

(5.2)

where w(k) is some nonnegative window satisfying w(k) = 0
for k > N. We note that (5.2) is just a local or windowed ver-
sion of the error norm (3.1), and that, due to windowing, only
samples of x (k) and y(k) with k < n + N are contained in this
local error. It can be shown that the solution to the minimization
problem (5.2) is

¢e(n) = arg CR,e(n)’ CA‘R,e(n) = (yE’ xE)W,I

§J w(2k — n)y(2k)x*(2k) (5.3)

‘bo(n) = arg CA‘R,o(n)9 CR.O(") = (y09 xo)n,"

%w(Zk +1 —n)yRk + Dx*(2k + 1). (5.4)

Note that the above result for on-line phase matching is analo-
gous to the result for off-line phase matching as given by (3.2),
(3.3); the only difference is the local windowing contained in
the inner products (5.3) and (5.4).

An on-line version of the reference-based algorithm (3.5) used
for matching the absolute phase can be derived in an analogous
way; we here obtain

¢(n) = arg Ce(n),

Cr(n) = (3, 1),

; w(k — n)y(k)x*(k).

(5.5)

B. Autonomous Phase Matching

For on-line autonomous phase matching where only the rel-
ative phase is adjusted, we define the phase-matched signal as

£(n) 2 xg(n) + ¥ ™xy(n) (5.6)

where ¢ (n) is a local estimate (at time n) of the optimal rela-
tive phase Y. An on-line version of the general algorithm
(4.13), (4.14) for autonomous phase matching is then obtained
heuristically by using a windowed version of the inner product
(4.14); this yields the relative phase estimate

¥(n) = arg Cr(n),

= ‘?‘ w2k + 1 — n)xge(2k + Dx*(2k + 1), (5.7)

Cr(n) = (xer, xo)wn
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Here, xgz(n) is again the result of filtering xz(n) with trans-
mission function F(6); in practice, this filter has generally to-
be approximated by a recursive or short-time (FIR) version in
order to be compatible with on-line processing. Comparing with
(5.4), we see that on-line autonomous phase matching can again
be interpreted as on-line reference-based phase matching with
reference signal y(n) = xg(n). For F(8) = S(8), we obtain
a computationally inexpensive on-line version of the SSA,
where C‘F(n) = C‘s(n) is given by

és(”) £ (xgss xo)w,_

=1 4:.‘: w(2k + 1 — n)[e 7> x(2k + 2)

+ /7% (2k) |x* (2k + 1). (5.8)

C. Window Types, Recursive Calculation, and Convergence

Depending on the type. of the window w(k), there exist two
versions of the local phase matching algorithms presented
above. First, if the window has finite length 2N + 1, w(k) =
0 for |k| > N, then the phase estimates at time n are derived
from a local signal interval n — N < k < n + N centered at
time n. There then results a ‘‘short-time’” algorithm for phase
matching. On the other hand, the window may extend to —oo.
Here, the exponential window

0, k>0

e k=<0

>

w(k) = e*u(—k) = { withae = 0 (5.9)
where u (k) denotes the unit step function, is particularly effi-
cient since the inner products defining the time-varying phase
estimates may then be calculated recursively; for example, the
inner product Cgr(n) of (5.5) can be written as

Cr(n) = e *Cr(n — 1) + y(n)x*(n) (5.10)

with similar recursions existing for all other local algorithms.
For a = 0, the window w (k) equals the time-inverted unit step
function u( —k). In this case, the windowed inner products de-
fining the time-varying phases for the on-line case formally con-
verge to the nonwindowed inner products of the off-line case as
n approaches oo: indeed, comparing, e.g., Cr(n) (with w(k)
= u(—k)) with Cx of (3.5)

Ce(n) = B y(xk).  Co= I y(k)x*(k)

(5.11)

it is seen that the phase estimate ¢(n) = arg Cr(n) and the
optimal phase ¢, = arg Cg become equal in the limit n — co.

VI. SIMULATION RESULTS

We finally present some simulation results for the autono-
mous phase matching algorithms HAA and SSA, including on-
line versions. Global signal synthesis was performed from a
time-frequency model W(n, 8) defined for 1 < n < 256 and 0
< 6 < 1/2 (note that this choice of frequency interval fixes
the halfband center frequency as 6, = 1/4). The model is shown
in Fig. 5; we stress that it is not halfband consistent. The spec-
trum of the result of global signal synthesis without phase
matching is shown in Fig. 6(a). This spectrum by far extends
beyond the halfband 0 < < 1/2 to which the model is re-
stricted; in fact, the out-of-band components are seen to be even
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Fig. 5. Time-frequency model function.
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Fig. 6. Simulation results: (a) global signal synthesis without phase
matching; (b) halfband signal synthesis; (c) global signal synthesis fol-
lowed by HAA phase matching; (d) global signal synthesis followed by
SSA phase matching.
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Fig. 7. Simulation results: pseudo-Wigner distribution of results of (a)
global signal synthesis and (b) halfband signal synthesis.

stronger than the in-band components. This, of course, is caused
by aliasing due to relative phase mismatch (compare (2.12)).
The result of halfband signal synthesis is given in Fig. 6(b); it
is seen to be properly confined to the halfband 0 < 6 < 1/2.
Figs. 6(c) and (d) then present the spectra obtained by global
signal synthesis and subsequent phase matching by means of
HAA and SSA, respectively. These results are seen to be very
similar even though the model is not halfband consistent. It is
evident that both autonomous phase matching algorithms suc-
ceed fairly well in suppressing the out-of-band components.
Figs. 7(a) and (b) show the pseudo-Wigner distribution [1] of
the results of global signal synthesis and halfband signal syn-
thesis, respectively. A pseudo-Wigner distribution with a Ham-
ming window of length 99 was used instead of DTWD itself in
order to reduce inner interference [8]. Note that the pseudo-
Wigner distribution is invariant with respect to phase matching;
thus Fig. 7(a) corresponds to the signals of Figs. 6(a), (c) and
(d). Finally, Fig. 8 shows the time evolution of the relative
phase estimates y (n) for the on-line versions of HAA and SSA
with window w(k) = u( —k). For increasing time index n, the
phase estimates are seen to converge to the optimal phases as
discussed in Section V.

VII. CONCLUSION

The two different methods for signal synthesis in the case of
discrete-time Wigner distribution (or smoothed versions thereof)
give rise to different phase ambiguities of the synthesized sig-
nal. While the result of halfband signal synthesis contains only
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Fig. 8. Simulation results: time evolution of relative phase estimate y (n)
for on-line versions of HAA and SSA.

an ‘‘absolute’’ phase ambiguity which produces a phase rota-
tion of the entire signal and can often be tolerated, the result of
global signal synthesis contains, in addition, a *‘relative’’ phase
ambiguity which produces a phase rotation of even-indexed and
odd-indexed signal samples relative to each other and thus gives
rise to severe signal distortion. Both phase ambiguities can be
resolved by ‘‘reference-based’’ phase matching algorithms,
provided that a meaningful reference signal is available. If a
reference signal is unavailable, the relative phase ambiguity of
global signal synthesis can still be resolved by means of ‘‘au-
tonomous’’ phase matching algorithms. Two optimality criteria
for autonomous phase matching have been considered, both of
them being motivated by DTWD’s aliasing property. These cri-
teria have provided a unified framework in which certain prop-
erties of autonomous phase matching have been studied. ‘‘On-
line’” versions of both reference-based and autonomous phase
matching algorithms have then been developed; these are com-
patible with the on-line mode of operation featured by certain
synthesis algorithms for pseudo-Wigner distribution. The per-
formance of the phase matching algorithms has finally been as-
sessed by simulation results.
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