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TWO SIGNAL SYNTHESIS ALGORITHMS FOR PSEUDO WIGNER DISTRIBUTION
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Abstract - The pseudo Wigner distribution (PWD) is a time-
frequency signal representation particularly suited for analyzing
and processing “long" signals. Signal processing by means of
PWD involves a signal synthesis step. This paper presents two
signal synthesis algorithms for PWD, the pseudo power method
which allows optimal signal synthesis but is computationally
expensive for longer signals, and the partial sum method which
is suboptimal but suited for the synthesis of signals with
arbitrary length. The performance of the two algorithms is
demonstrated by simple synthesis experiments.

1. INTRODUCTION

Wigner distribution (WD) is a time-frequency signal represen—
tation which has been successfully used for signal analysis,
detection and estimation, and signal processing. In the case
of “long” signals (e.g. speech), however, a short-time modifi-
cation of WD known as pseudo Wigner distribution (PWD) is
better suited [1]. To perform signal processing by means of
PWD, the PWD of the input signal is modified in some meaning-
ful manner, yielding a new time-frequency function that is
generally not a valid PWD of any signal. The output signal is
then synthesized from this "non-valid" function (called mode/
henceforth). Ideally, the synthesized signal is such that its
PWD is closest (in a least-squares sense) to the model; this
will be referred to as optimal synthesis [2]. Unfortunately,
optimal signal synthesis requires the entire model to be
known; all signal samples must be synthesized simultaneously,
rather than sample-by-sample. This sets practical limits to
the optimal synthesis of long signals and, at the same time,
establishes the importance of suboptimal synthesis schemes
with sequential mode of operation.

While methods for optimal signal synthesis are known for WD
[21.[31, no optimal PWD synthesis algorithm has been reported
so far. Two suboptimal algorithms have been presented in
[4]: 1) The “outer product approximation” synthesizes longer
signals on a segment-by-segment basis. A difficulty with this
scheme (not discussed in [4]) seems to be the adequate
combination of the synthesized segments. 2) The “overlapping
method” has the advantage of synthesizing signals recursively
and sample-by-sample; as demonstrated in [5], however,
synthesis results may be very poor.

This paper presents two new PWD signal synthesis algorithms.
The pseudo power method (PPM; briefly presented in [6]) is
an optimal synthesis method where all signal samples are syn-
thesized simultaneously. The partial sum method (PSM) is a
suboptimal scheme for recursive sample-by-sample synthesis.
While practical applications of the PPM will be limited to
“short” signals, the PSM is suited for synthesizing signals
with arbitrary length.

2. THE PWD SIGNAL SYNTHESIS PROBLEM

WD and PWD. The (discrete-time) WD of a signal x(n) is de-
fined as [1]

WDL(n,0) = 2 T x(ntk) x*(n-k) e12K® (2.0

where n is discrete time and © is normalized angular frequen-
cy; summation is infinite unless otherwise indicated. WD has
unique mathematical properties, but its practical application is
restricted to “"short” signals for three reasons: 1) When
calculating WD, all signal samples have to be known simulta-
neously, i.e. the total signal has to be stored; 2) The summa-
tion length in (2.1) equals the signal length; 3) Signal compo-
nents give rise to WD interference terms (7] irrespective of
their time distance; these interference terms may make WD
results unreadable. All these problems are avoided or alleviated
by a short-time WD version known as PWD and defined as

K .
PWD(n,@) = 2.2 x(nk) x*5(n-k) h2(k) & 12<®

where h(k) is a real-valued, even window of length 2K+1; we
assume h(0)=1. WD and PWD are real-valued and m-periodic
w.r.t. ©. Formally, WD is a PWD with K=o and h(n)=1.

PWD _signal synthesis. The problem of optimal PWD signal
synthesis is formulated as follows: given a real-valued model
Y(n,0) defined for -n/2<@«n/2, find the signal x(n) whose
PWD (with given window h) is closest to this model, ie.
which minimizes the error norm

n/2
2 - 1 _ (h) 2
NG = 23 1, Yo - PwD e de .
Using Parseval's theorem and separating the even-indexed
signal samples x4(n)=x(2n) and the odd-indexed signal samples
Xo(n)= x(2n-1), this error norm can be rewritten as

NZ= NZ_+NE (2.2)
where
2 ™ 2
NI = 230 3 |yelim - xg ) xdmy h2G-m) [P (2.3)
i m=i-K
with
j2k@

/2
yeli,m) =y(i+m,i-m) , yin,k) = 2‘—.” f/zY(n.Q) e 0;
-T

a similar expression involving x(n) holds for N2, . According
to (2.2), the minimization problem N, >min splits up into two
separate and independent minimization problems N, -min and
N,o>min yielding the even- and odd-indexed signal samples,
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respectively (note that this decoupling of even and odd indices
causes troublesome phase ambiguities in the synthesis result
[21,[3]). As the two minimization problems have identical
structures, we shall further consider minimization for x only.
Letting the gradient of (2.3) be zero [2] feads to the following
necessary condition for the synthesis solution:

[+K
§|‘_ [ o) = xg (0 xZ(m) h2l=m) | xglm) h2(=m) = 0 . (2.4)
m=i-K

This equation must be satisfied for all i.

3. THE PSEUDO POWER METHOD

Since a closed-form solution of the third-order equation (2.4)
does not seem to be available, we try to solve (2.4) iteratively.
Our iteration scheme is motivated by an iterative synthesis
method for WD.

Optimal WD_synthesis - the power method. For WD (PWD
with K=o and h(n)=1), eq. (2.4) reduces to

3 ylimixtm) = (3 1xm)f2) x()
m m

(the index e has been suppressed for the sake of simplicity)
or, with obvious vector-matrix notation, to the eigenvector-
eigenvalue equation

Yx = lIx[ex . (3.1)

It is thus necessary that the optimal x is an eigenvector of
the (hermitian) matrix Y, with ||| equal to the corresponding
eigenvalue, and it can be shown that the error norm s
minimized if the maximal eigenvalue is taken [2]. The following
iterative scheme yields the looked-for vector: starting with
some initial vector X, calculate

_ Xn .
Doz = YR (3.2)
) xpey = R (3.3)
1Z1

This, in fact, is essentially the well-known power method for
calculating the eigenvector corresponding to the maximal
eigenvalue; the normalization has been chosen such that,
after convergence, [Ix||? equals that eigenvalue.

Optimal PWD synthesis ~ the pseudo power method. In the
general PWD case, eq. (2.4) can be written similar to (3.1),

YPx = [xIPx (3.4)

where, unlike the WD case, the matrix Y now depends on
x according to

Y = YO 4 p_HDX (3.5)

with  (Y®), = y(i,m) h2(i-m) ,
(H)y = 1-h4G-m)
(Dx i = x{m) &y -
To solve (3.4) iteratively, we use the E&ower—method recursion

(3.2), (3.3) but update the matrix Y in each step according
to (3.5):

N = Y®ep, HDE (36)
2) oz, =yn  Xooo }
Zn+1 Yxn PR (3.7)
3 xq = e 3.8)
lzsf

We call this the pseudo power method (PPM). When the
iteration (3.6)-(3.8) converges, X,+1=X,=X , the resulting vector
x is guaranteed to solve (3.4) since
XoemXmx 2 Y% = |x|2x .

In experiments, convergence has invariably been observed with
practically arbitrary initial vector x,. Note, also, that the
power method for WD synthesis (where convergence is
guaranteed) is a special case of the PPM with h(n)=1. The
convergence speed of the PPM strongly depends on the PWD
window length: fonger windows (i.e., closer similarity to WD)
yield faster convergence. Storage requirements and computa-
tion per iteration of the PPM are O(L?), where L is the
length of the synthesized signal and thus also the dimension
of matrices and vectors. This sets practical limits to the
signal length. In principle, PPM can be adapted to longer
signals by a segment-by-segment mode of operation but then
a method for segment combination has to be found and,
anyway, optimality is lost.

A _PPM synthesis experiment. Fig. 1 shows the synthesis of a
signal of length L=100; the PWD window is a Hamming window
of length 2K+1=63. A noise signal is used for the initial vector
X,. From the iteration signals X, and the sequence of error
norms, it is seen that convergence is essentially complete
after some fifteen iterations. The non-zero residual error Ny
is due to the fact that the model is not a valid PWD.

4. THE PARTIAL SUM METHOD

The following suboptimal algorithm, termed partial sum method
(PSM), is particularly suited for the synthesis of long signals
since it operates sample-by-sample. Computational expense
per synthesized sample is independent of the total signal
length, and only a local model interval must be known (stored)
at any time.

The error norm of even-indexed signal samples can be rewrit-
ten as

NG = B ANZ (),

i-1
where ANie(i) =43

m=i-

lye(i,m) = X i) x&(m) h2(i-m) |2 +
K

+2]yeli, 1) - x (D) x2 () [2 (4.1

will be termed causal error component since it only depends
on the signal samples x.(n) for n<i. Suppose, now, that the
synthesized signal x(n) is already known for n<i-1. Based on
this knowledge, we calculate the sample x.(i} such that the
i~th causal error component (4.1) is minimized, AN, (i)>min.
We obtain as a necessary condition

p

[ yetim) = xg i) x2(m) h2li=m) | xg{m) h2(-m) = 0 . (4.2)
K

This third-order equation has to be solved for xg(i). Letting
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Fig. 1: A PPM Synthesis Experiment

a) time-frequency model

b) start signal x, and its PWD

c)-e) iteration signals Xz, X4, X15
and their PWDs

f) convergence of error norm
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p = [ xgmyh2(i-m) 2 = yo(i,) ¢ R
m=j—-K

-

It

q = Ye(i,m) xo(m) h2(i-m) ,
m=i-K

[}

magnitude and phase of xg(i) are given by

Ixe@M 2 + plxg®l - lql =0,

Arg{x.(} = Arg{q} - Arg{p+Ix.(I?} .

It follows from peR and Igl20 that (4.3) has a unique real-

(4.3)

valued and non-negative solution

2 3
o) = Y376 + %3 with a=-l, b:/Lgl+—g7 :

With the PSM, the samples of the synthesized signal minimize
individual error norms AN, (i) which are local and causal; the
total error N, , on the other hand, is generally not minimized.
PSM results are thus suboptimal. Note that the necessary
condition (4.2) of PSM equals the necessary condition (2.4) of
optimal synthesis apart from the fact that the summation
range i-K<ms<i+K of (2.4) has been replaced by the partial
(causal) range i-Ksmsi ("partial sum”). In general, the optimal
synthesis solution will not be a solution of (4.2); however, in
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the special case of signal reconstruction where the model
Y(n,®) is a valid PWD, the optimal solution satisfies

Yeli,m) = xg (i) xX(m) h2(i-m) = 0

and is thus also a solution of (4.2). The PSM is hence an
exact method for signal reconstruction from valid PWDs and
an approximate method in the signal synthesis case where
the model is non-valid.

A simplified version of the PSM is obtained if the summation
range i-K<msi of (4.2} is replaced by i~Ksms<i-1; (4.2) is then
linear in xg(i) and can directly be solved by

i=1
> yelim) xglm) h2(i-m)

m=i-K

xg(i) =

> I xglm) h2(i-m) |2
K

m=[—|

The synthesis performance of this simplified method is slightly
inferior to the original PSM. It has been compared with the
“overlapping method" of [4] in [5].

A PSM syntheslis experiment. Fig. 2 demonstrates the synthe-
sis of 500 signal samples from a model which simulates the
PWD of a sinusoidal FM signal; the model is clearly not a valid
PWD since inner interference terms [7] are lacking. The PWD
window was defined to be a Hamming window of length
2K+1=63. To start the PSM recursion, the first K=31 signal
samples have to be initialized; these were chosen as xg(n)=0
for 1<n<30 and xo(31)=1. it is seen that the PSM duly adapts
to the model in spite of these extremely faulty initial values.

5. CONCLUSION

Two quite different signal synthesis algorithms for PWD have
been presented: the pseudo power method (PPM) yields optimal
synthesis results but synthesizes all signal samples simultan-
eously, using the entire model. The PPM is thus best suited
for off-line processing of short signal records. The partial
sum method, on the other hand, is suboptimal but operates
recursively and sample-by-sample, using a local mode! segment
only. In this sense, the PSM is similar to the way PWD is
calculated. With the PSM, signal processing schemes can be
devised which allow sequential time-frequency processing of
signals with unrestricted length; the PSM is thus suited for
real-time applications.
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