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Hodnotenie časovo závislej kvality video signálu v mobilných sieťach 
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Máj 2006 
Používaním video aplikácií, s nízkymi bitovými a obrazovými rýchlosťami cez paketovú 
bezdrôtovú sieť, narastá potreba merania video kvality. Výpadkami paketov, sa video 
kvalita stáva značne časovo závislá. Subjektívne vyhodnocovanie kvality sa hlavne 
stanovuje  metrikami založenými na rozdielnosti medzi degradovanou a referenčnou 
sekvenciou. Tieto metriky sa nazývajú referenčné. Nereferenčné metriky stanovujú iba 
obmedzený  kvalitívny odhad. V tejto práci bola použitá referenčná, časovo variantná 
metrika založená na spojitosti medzi PSNR (odstup signál šum) a spriemerovaným 
hodnotením názorov respondentov. Študovali sme jednoduché periodicky sa vyskytujúce 
ľudské reakcie na artefakty a použili ich na korekciu PSNR a to na dosahovanie lepšieho 
odhadu objektívnej kvality. Výsledky našej metriky sme porovnali s výsledkami 
subjektívnych testov. Keďže sa zameriavame na bezdrôtovú komunkáciu, subjektívne testy 
boli uskutočnené na mobilných telefónoch použitím vlastnej metodológie. Metodológia 
výchádzala s doporučení ITU-R BT 500. Výsledky ukazujú značné vylepšenie 
odhadovanej kvality vzhľadom na PSNR. 
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May 2006 
With low-rate video services over packet networks, the topic of video quality measuring 
gained on importance. In the presence of packet loss, the video quality becomes highly 
time-variant. The subjective quality evaluation is in general correlated with the metrics 
based on the difference between the degraded sequence and the reference. However, it can 
differ significantly in some cases, thus it provides limited means for the appropriate quality 
estimation. In this work we focus on the relation between the peak to signal-to-noise ratio 
(PSNR) and the mean opinion score for the video streams with time-variant quality. Later, 
we studied simple human perception rules and used them to correct the PSNR accordingly, 
to achieve suitable subjective quality estimation, based on objective parameters. We 
compared the results from our metric with the mean opinion score (MOS) obtained from 
subjective tests. We focused on a mobile terminal and a video application. Thus, we 
performed assessments on mobile terminals using our proposed methodology which was 
derived from recommendation ITU-R BT 500. The results showed considerable 
improvement of the estimation quality with respect to the PSNR. 
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1 Introduction 
 

Wireless mobile systems of the 3rd generation like universal Mobil telecommunications 

System (UMTS) offers multimedia communications such as video streaming or video 

conferencing. 

 Video streaming is a multimedia service, which is becoming more and more 

popular. Furthermore, it is expected to unlock new revenue flows to mobile network 

operators. Typically, users access online video clips by clicking on a hyperlink using their 

web browser, which results in the browser opening a video player to play the selected clip. 

With streaming, the video content doesn’t need to be completely downloaded, but the 

client can begin play out the video a few seconds after it has begun receiving parts of the 

content from the streaming server. Since raw video requires high transmission bitrates, 

video compression is usually employed to achieve transmission efficiency. Video 

transmission over wireless is characterized by a specific set of requirements that include 

low bitrates, small frame sizes, and low frame rates. Finally the content is viewed at short 

distance on a small liquid crystal display (LCD) screen with a progressive display. 

Furthermore, wireless transport of real-time video streams over an error prone environment 

results in packet loss. This phenomenon leads to various kinds of error artifacts and their 

possible spatial and temporal propagation in the video stream displayed at the user 

terminal.  

 The video sequences which are to be assessed exhibit artifacts resulting not only of 

compression, but also of transmission errors. The character of the artifacts depends on the 

used compression method (MPEG 4, H.263/4), the position of the error and the decoder 

implementation (i.e. using error concealment). In order to ensure the required quality of 

service it is important to monitor the network performance on the user side. An important 

task related to network monitoring is the end-user perceived quality estimation. During the 

last decade an extensive research has been carried out in the field. In most cases, research 

focused on the broadcasting and internet applications. Thus, most recommendations 

describing the tests methodology [3] and metric synthesis [15] are based on such 

assumptions.  

However, according to what we observed and examined in various tests, the user 

evaluation of the same video shown on the PC and on the mobile phone can differ. 

Therefore, the metrics synthesized out of such tests may not reflect the user perception 
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 We focus on wireless communication and video artifacts evaluation, which arise 

throughout video streaming on wireless channel.  We use reference time-variant metric for 

evaluating the video quality. We compare the results from our metric with mean opinion 

score (MOS) obtained from subjective tests. We performed the assessments on mobile 

terminals using our proposed methodology. The results show considerable improvement of 

the estimation quality with respect to the PSNR. 

 This thesis is organized as follows: Chapter 2 outlines compression methods and 

standards. The compression and transmission of digital video entail a variety of 

characteristic artifacts and distortions, the most common of which are discussed. Chapter 3 

reviews recent vision models and the state of the art of quality metrics. In Chapter 4 the 

sequences selected for evaluation are described as well as the setup of survey performed to 

obtain the MOS values. Chapter 5 describes evaluation of the data from subjective tests, 

while chapter 6 describes the video quality metric design and metric performance. 
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2 Block based video coding 
 

This chapter starts with an overview of video essentials, today’s compression methods and 

standards. The compression and transmission of digital video for UMTS application entail 

a variety of characteristic artifacts and distortions, the most common of which are 

discussed here. 

 

2.1 Compression 

Visual data in general and video in particular require large amounts of bandwidth and 

storage space. Uncompressed Quarter Common Intermediate Format (QCIF) resolution 

video has typical data rates of several hundred Mb/s, for example 10 seconds of a 176 x 

144 pixel video sequence played at a framerate of 30 frames per second, corresponds to 

approximately 180 Mbit of data, or 18 Mbps. In UMTS is maximum speed 2Mbps per cell! 

The need for data compression is obvious. Evidently, effective compression methods are 

vital to facilitate handling such data rates. Compression is the removal of redundant 

information from data. Generic lossless compression algorithms, which assure the perfect 

reconstruction of the initial data, are used for example in dictionary codes or in run-length 

encoding. However, the results are far from optimal, because these algorithms only take 

into account the linear bit stream. When compressing video, two special types of 

redundancy can be exploited: 

 

• Spatio-temporal redundancy: Typically, pixel values are correlated with their 

neighbors, both within the same frame and across frames. This allows for using the 

spatial and temporal prediction methods and differential encoding. 

• Psychovisual redundancy: The human visual system is not equally sensitive to all 

patterns. Therefore, the compression algorithm can discard information that is not 

visible or not so important to the observer. This is referred to as lossy compression.  

 

In analog video, these two types of redundancies are exploited through vision-based color 

coding and interlacing techniques. Digital video offers additional compression methods, 

which are discussed in the following. 
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2.2  Color Coding 

Many compression schemes and video standards such as National Television Systems 

Committee (NTSC), Phase Alternating Line (PAL), or Moving Pictures Experts Group 

(MPEG), are already based on human vision in the way that color information is processed. 

In particular, they take into account the nonlinear perception of lightness, the organization 

of color channels, and the low chromatic acuity of the human visual system. 

 Conventional television cathode ray tube (CRT) displays have a nonlinear, roughly 

exponential relationship between frame buffer Red, Green, Blue (RGB) values or signal 

voltage and displayed intensity. In order to compensate for this, gamma correction is 

applied to the intensity values before coding. It so happens that the human visual system 

has an approximately logarithmic response to intensity, which is very nearly the inverse of 

the CRT nonlinearity [4]. Therefore, coding visual information in the gamma-corrected 

domain not only compensates for CRT behavior, but is also more meaningful perceptually. 

The growing popularity of flat-screen plasma and LCD monitors, which do not have 

gamma correction factors associated with electron guns, will help standardize calibration 

between the display and linear imaging devices 

 The theory of opponent colors states that the human visual system decorrelates its 

input into white-black, red-green and blue-yellow difference signals, which are processed 

in separate visual channels. Furthermore, chromatic visual acuity is significantly lower 

than achromatic acuity. In order to take advantage of this behavior, the color primaries red, 

green, and blue are rarely used for coding directly. Instead, color difference (chroma) 

signals similar to the ones just mentioned are computed. In component video, for example, 

the resulting color space is referred to as Y UV or YCB CR, where Y encodes luminance, U 

or CB the difference between the blue primary and luminance, and V or CR the difference 

between the red primary and luminance. 

 The low chromatic acuity now permits a significant data reduction of the color 

difference signals. In digital video, this is achieved by chroma subsampling. The notation 

commonly used is as follows: 

 

• 4:4:4 denotes no chroma subsampling. 

• 4:2:2 denotes chroma subsampling by a factor of 2 horizontally; this sampling 

format is used in the standard for studio-quality component digital video as defined 

by ITU-R Recommendation BT.601-5 [9], for example. 
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• 4:2:0 denotes chroma subsampling by a factor of 2 both horizontally and vertically; 

it is probably the closest approximation of human visual color acuity achievable by 

chroma subsampling alone. This sampling format is the most common in motion- 

Joint Photographic Experts Group (JPEG) or MPEG, e.g. for distribution-quality 

video. 

• 4:1:1 denotes chroma subsampling by a factor of 4 horizontally. 

 

2.3 Interlacing 

As analog television was developed, it was noted that flicker could be perceived at certain 

frame rates, and that the magnitude of the flicker was a function of screen brightness and 

surrounding lighting conditions. A motion picture displayed in the theater at relatively low 

light levels can be displayed at a frame rate of 24 Hz. A bright CRT display requires a 

refresh rate of more than 50 Hz for flicker to disappear. The drawback of such a high frame 

rate is that the bandwidth of the signal becomes very high. On the other hand, the spatial 

resolution of the visual system decreases significantly at such temporal frequencies (this is 

the sharp fall-of range of the CSF in the high spatio-temporal frequency range). These two 

properties combined gave rise to the technique referred to as interlacing. 

 The concept of interlacing is illustrated in Figure 2.1. Interlacing trades of vertical 

resolution with temporal resolution. Instead of sampling the video signal at 25 (PAL) or 30 

(NTSC) frames per second, the sequence is shot at a frequency of 50 or 60 interleaved 

fields per second. A field corresponds to either the odd or the even lines of a frame, which 

are sampled at different time instants and displayed alternately (the field containing the 

even lines is referred to as the top field, and the field containing the odd lines as the bottom 

field). Thus the required bandwidth of the signal can be reduced by a factor of 2, while the 

full horizontal and vertical resolution is maintained for stationary image regions, and the 

refresh rate for objects larger than one scanline is still suffciently high. 

 Most of the multimedia codecs for desktop computers handle only progressive 

video, which is better adapted to computer displays. Compression standards for digital 

video on the other hand have to support both interlaced and progressive video. 

 

2.6  Digital Video Compression 

Digital video is amenable to specialized compression methods. They can be roughly 

classified into model-based methods, e.g. fractal compression, and waveform-based 
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methods, e.g. wavelet compression. Most of to day’s video codecs and standards belong to 

the latter category and comprise the following stages [10]: 

 

• Transformation: To facilitate the exploitation of psychovisual redundancies, the 

pictures are transformed to a domain where different frequency ranges with varying 

sensitivities of the human visual system can be separated. This can be achieved by 

the discrete cosine transform (DCT) or the wavelet transform, for example. 

• Quantization: After the transformation, the numerical precision of the transform 

coefficients is reduced in order to decrease the number of bits in the stream. The 

degree of quantization applied to each coefficient is usually determined by the 

visibility of the resulting distortion to a human observer; high-frequency 

coefficients can be more coarsely quantized than low frequency coefficients, for 

example. Quantization is the stage that is responsible for the loss of information. 

 

 
Figure 2.1: Illustration of interlacing. The top sequence is progressive: all lines of each frame are transmitted 
at the frame rate f. The bottom sequence is interlaced: each frame is split in two fields containing the odd and 

the even lines, respectively. These fields (bold lines) are transmitted alternately at twice the original frame 
rate. 

 

• Coding: After the data has been quantized into a finite set of values, it can be 

encoded losslessly by exploiting the redundancy between the quantized coefficients 

in the bit stream. Entropy coding, which relies on the fact that certain symbols 
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occur much more frequently than others, is often used for this process. Two of the 

most popular entropy coding schemes are Huffman coding and arithmetic coding 

[11]. 

The key aspect of digital video compression is the exploitation of the similarity 

between successive frames in a sequence instead of coding each picture separately. While 

this temporal redundancy could be taken care of by a spatio-temporal transformation, a 

hybrid spatial- and transform-domain approach is of ten adopted instead for reasons of 

implementation efficiency. A simple method for temporal compression is frame 

differencing, where only the pixel-wise differences between successive frames are coded. 

Higher compression can be achieved using motion estimation, a technique for describing a 

frame based on the content of nearby frames by means of motion vectors. By 

compensating for the movements of objects in this manner, the differences between frames 

can be further reduced. 

 

2.5  Standards 

The Moving Picture Experts Group (MPEG) is a working group of International 

Organization for Standardization/ International Electrotechnical Commission (ISO /IEC) in 

charge of developing international standards for the compression, decompression, 

processing, and coded representation of moving pictures, audio and their combination. 

MPEG comprises some of the most popular and widespread standards for video coding. 

The group was established in January 1988, and since then it has produced: 

 

• MPEG-1, a standard for storage and retrieval of moving pictures and audio, which 

was approved in November 1992. MPEG-1 is intended to be generic, i.e. only the 

coding syntax is defined, and therefore mainly the decoding scheme is 

standardized. MPEG-1 defines a blockbased hybrid Discrete Cosine Transform 

/Differential Pulse Code Modulation (DCT/DPCM) coding scheme with prediction 

and motion compensation. It also provides functionality for random access in 

digital storage media. 

• MPEG-2, a standard for digital television, which was approved in November 1994. 

The video coding scheme used in MPEG-2 is again generic; it is a refinement of the 

one in MPEG-1. Special consideration is given to interlaced sources. Furthermore, 

much functionality such as scalability was introduced. In order to keep 

implementation complexity low for products not requiring all video formats 
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supported by the standard, so-called “Profiles”, describing functionalities, and 

“Levels”, describing parameter constraints such as resolutions and bitrates, were 

defined to provide separate MPEG-2 conformance levels. MPEG-2 video stream is 

hierarchically structured as illustrated in Figure 2.2 [10]. The sequence is composed 

of three types of frames, namely intra-coded (I), forward predicted (P), and 

bidirectionally predicted (B) frames. Each frame is subdivided into slices, which 

are a collection of consecutive macroblocks. Each macroblock in turn contains 4 

blocks of 8×8 pixels each. The DCT is computed on these blocks, while motion 

estimation is performed on macroblocks. 

• MPEG-4, a standard for multimedia applications, whose first version was approved 

in October 1998. MPEG-4 addresses the need for robustness in error-prone 

environments, interactive functionality for content-based access and manipulation, 

and high compression efficiency at very low bitrates. MPEG-4 achieves these goals 

by means of an object-oriented coding scheme using so-called “audio-visual 

objects”, for example a fixed background, the picture of a person in front of that 

background, the voice associated with that person etc. The basic video coding 

structure supports shape coding, motion compensation, DCT-based texture coding 

as well as a zero tree wavelet algorithm. 

 

Figure 2.2: Elements of an MPEG-2 video sequence. 

 

• MPEG-7, a standard for content description in the context of audio-visual 

information indexing, search and retrieval, which is scheduled for approval in 

September 2001. 
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• MPEG-21, work on this standard, also called the Multimedia Framework, has just 

begun. MPEG-21 will attempt to describe the elements needed to build an 

infrastructure for the delivery and consumption of multimedia content, and how 

they will relate to each other. 

• M- JPEG (Motion JPEG) JPEG stands for Joint Photographic Experts Group. It is 

also an ISO/IEC working group, but works to build standards for continuous tone 

image coding. This scheme basically combines a series of JPEG still images that 

are rapidly displayed to form a moving image. 

 

The next enhanced codec was developed by International Telecommunication Union (ITU-

T).  

• H 261 It is an ITU standard designed for two-way communication over ISDN lines 

(video conferencing) and supports data rates which are multiples of 64Kbit/s. The 

algorithm is based on DCT and can be implemented in hardware or software and 

uses intraframe and interframe compression. H.261 supports Common Intermediate 

Format (CIF) and Quater CIF (QCIF) resolutions. 

• H 264 uses the latest innovations in video compression technology to provide 

incredible video quality from the smallest amount of video data. H.264 delivers the 

same quality as MPEG-2 at a third to half the data rate and up to four times the 

frame size of MPEG-4 Part 2 at the same data rate. H.264 achieves the best-ever 

compression efficiency for a broad range of applications, such as broadcast, DVD, 

video conferencing, video on demand, streaming and multimedia messaging. And 

true to its advanced design, H.264 delivers excellent quality across a wide operating 

range, from 3G to HD and everything in between. 

• H 263, is based on H.261 with enhancements that improve video quality over 

modems. It supports CIF, QCIF, SQCIF, 4CIF and 16CIF resolutions. Will be 

better explain follow. 

 

The standard H 263 which was used for our video sequences is detailed describe 

thereinafter.  
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2.5.1  H 263 standard 

New standards such as H 263 or MPEG- 4 supported low bitrate communication solution 

for videoconferencing or streaming media. It is expected that wireless video 

communication will become a widespread and often used technology. 

The coding algorithm of H.263 is similar to that used by H.261, however with some 

improvements and changes to improve performance and error recovery. The differences 

between the H.261 and H.263 coding algorithms are listed below. Half pixel precision is 

used for motion compensation whereas H.261 used full pixel precision and a loop filter. 

Some parts of the hierarchical structure of the datastream are now optional, so the codec 

can be configured for a lower datarate or better error recovery. There are now four optional 

negotiable options included to improve performance: Unrestricted Motion Vectors, Syntax-

based arithmetic coding, Advance prediction, and forward and backward frame prediction 

similar to MPEG called P-B frames. 

 

Source Format: The source encoder operates on non-interlaced pictures with a source 

format defined in terms of: 

• The picture format, as determined by the number of pixels per line, the 

number of lines per picture, and the pixel aspect ratio 

• The timing between the pictures, as determined by the picture clock 

frequency 

 

In the H.263 video coding standard there are five standardized picture formats, sub-

QCIF, QCIF, CIF, 4CIF and 16CIF, which have sizes according to table 2.1. The different 

formats are based on the CIF format. CIF has 352 pixels per line, 288 lines, a pixel aspect 

ratio of 12:11, and a picture clock frequency of 30 000/ 1 001, which is approximately 

29.97 pictures per second. The time interval between two pictures, or frames, is specified 

by the frame rate, which is measured in the number of frames per second. The output frame 

rate from the source encoder is highly dependent on the encoder and the transmission 

capacity, and is often lower than the information source frame rate. For applications such 

as video conferencing the frame rate usually falls in the range between 10 and 20 frames 

per second. 
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Picture Format Pixels Lines 
Sub-QCIF 128 96 

QCIF 176 144 
CIF 352 288 
4CIF 704 576 
16CIF 1408 1152 

Table 2.1.: Picture formats in H.263. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
Figure 2.3: Hierarchy of picture segmentation for the CIF picture format. 

 

Picture Segmentation 

In order to provide more efficient encoding the pictures are segmented in smaller parts. 

The division of pictures used in H.263 follows the hierarchy shown in figure 2.3. 

• Picture The picture constitutes the highest entity in the picture segmentation 

hierarchy. The picture data consists of a picture header followed by either Group of 

Blocks (GOBs) or slices. The picture header begins with the Picture Start Code 

(PSC) and the temporal reference (TR) which makes it possible to keep the encoder 

and the decoder synchronized on the picture level. 

• Group of Blocks Each picture is divided in either GOBs or slices. Each GOB 

contains the picture information for one row in the picture. A GOB is comprised of 
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16 x k lines, where k depends on the number of lines in the employed picture 

format. If the CIF format is used each GOB will consist of 16 lines and thus, each 

picture will have 18 GOBs. The GOBs are numbered from the top to the bottom 

row, beginning with zero for the uppermost GOB. The GOB data consists of a 

GOB header followed by a group of macro blocks. The GOB header begins with 

the GOB start code (GBSC) and the Group Number (GN). These fields provide 

synchronisation for each GOB and contain information of its position in the picture. 

• Slices are similar to GOBs in that they consist of a group of macro blocks. The 

difference is that slices can have more flexible shape, since slices do not have to 

begin and end at specific positions in the picture. The slice data is almost equal to 

the GOB data. 

• Macro Block (MB) has the size of 16 pixels by 16 lines for the luminance 

component and 8 pixels by 8 lines for the chrominance components. If the CIF 

picture format is used, each GOB will consist of 22 macro blocks.  

• Block If the macro blocks were to be transformed with the DCT algorithm 

described below, the calculations would be very cumbersome. Therefore the MBs 

are divided into blocks with the size of 8 pixels by 8 lines. A MB thus consists of 

four luminance blocks and two corresponding chrominance blocks. 

 

Interactive and Streaming Wireless Profile (Profile 3) 

The Version 2 Interactive and Streaming Wireless Profile, designated as Profile 3, is 

defined to provide enhanced coding efficiency performance and enhanced error resilience 

for delivery to wireless devices within the feature set available in the second version of 

[19] (which did not include Annexes U, V, and W). This profile of support is composed of 

the baseline design plus the following modes: 

• Advanced INTRA Coding Use of this mode improves the coding efficiency for 

INTRA macroblocks (whether within INTRA pictures or predictively-coded 

pictures). The additional computational requirements of this mode are minimal at 

both the encoder and decoder (as low as a maximum of 8 additions/subtractions per 

8 x 8 block in the decoding process plus the use of a different but very similar VLC 

table in order to obtain a significant improvement in coding efficiency). For these 

reasons, Advanced INTRA Coding is included in this basic package of support.  
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• Deblocking Filter Because of the significant subjective quality improvement that 

may be realized with a deblocking filter, these filters are widely in use as a method 

of post-processing in video communication terminals. Annex J of [12] represents 

the preferred mode of operation for a deblocking filter because it places the filter 

within the coding loop. This placement eases the implementation of the filter (by 

reducing the required memory) and somewhat improves the coding performance 

over a post-processing implementation. As with the Advanced Prediction mode, 

this mode also includes the four-motion-vectorper- macroblock feature and picture 

boundary extrapolation for motion compensation, both of which can further 

improve coding efficiency. The computational requirements of the deblocking filter 

are several hundred operations per coded macroblock, but memory accesses and 

computational dependencies are uncomplicated. This last point is what makes the 

Deblocking Filter preferable to Advanced Prediction for some implementations. 

Also, the benefits of Advanced Prediction are not as substantial when the 

Deblocking Filter is used as well. Thus, the Deblocking Filter is included in this 

basic package of support.  

• Slice Structured Mode The Slice Structured mode is included here due to its 

enhanced ability to provide resynchronization points within the video bitstream for 

recovery from erroneous or lost data. Support for the Arbitrary Slice Ordering 

(ASO) and Rectangular Slice (RS) submodes of the Slice Structured mode are not 

included in this profile, in order to limit the complexity requirements of the 

decoder. The additional computational burden imposed by the Slice Structured 

mode is minimal, limited primarily to bitstream generation and parsing.  

• Modified Quantization: This mode includes an extended DCT coefficient range, 

modified DQUANT syntax, and a modified step size for chrominance. The first two 

features allow for more flexibility at the encoder and may actually decrease the 

encoder’s computational load (by eliminating the need re-encode macroblocks 

when coefficient level saturation occurs). The third feature noticeably improves 

chrominance fidelity, typically with little added bit-rate cost and with virtually no 

increase in computation. At the decoder, the only significant added computational 

burden is the ability to parse some new bitstream symbols. 
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2.6  Artifacts 

We would like to show the differences between compression artifacts and transmission 

artifacts in this chapter. In our work we focus on transmission artifacts, and their subjective 

and objective evaluation. As we mentioned in the introduction the reason why we analyzed 

transmission artifacts is its frequent occurrence in wireless communication. 

 

2.6.1  Compression Artifacts 

The compression algorithms used in various video coding standards are very similar. Most 

of them rely on a block-based DCT with motion compensation and subsequent 

quantization of the coefficients. In such coding schemes, compression distortions are 

caused by only one operation, namely the quantization of the transform coefficients. 

Although other factors affect the visual quality of the stream, such as motion prediction or 

decoding buffer size, they do not introduce any distortion per se, but affect the encoding 

process indirectly through the quantization scale factor. 

 A variety of artifacts can be distinguished in a compressed video sequence [13]: 

 

• Blocking effect or blockiness refers to a block pattern in the compressed sequence. 

It is due to the independent quantization of individual blocks (usually of 8×8 pixels 

in size) in blockbased DCT coding schemes, leading to discontinuities at the 

boundaries of a adjacent blocks. The blocking effect is often the most prominent 

visual distortion in a compressed sequence due to the regularity and extent of the 

pattern. 

 

 

 

 

 

 

 
Figure 2.4: Picture from compressed sequence with blocking effect.  

 

• Blurring manifests itself as a loss of spatial detail and a reduction of edge 

sharpness. It is due to the suppression of the high-frequency coefficients by coarse 

quantization. 
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Figure 2.5: Picture from compressed sequence with blurring effect.  

 

• Color bleeding is the smearing of the color between areas of strongly differing 

chrominance. It results from the suppression of high-frequency coefficients of the 

chroma components. Due to chroma subsampling, color bleeding extends over an 

entire macroblock. 

• DCT basis image effect is prominent when a single DCT coefficient is dominant 

in a block. At coarse quantization levels, this results in an emphasis of the dominant 

basis image and the reduction of all other basis images. 

• Staircase effect Slanted lines of ten exhibit the staircase effect. It is due to the fact 

that DCT basis images are best suited to the representation of horizon tal and 

vertical lines, whereas lines with other orientations require higher-frequency DCT 

coefficients for accurate reconstruction. The typically strong quantization of these 

coefficients causes slanted lines to appear jagged. 

• Ringing is fundamentally associated with Gibbs’ phenomenon and is thus most 

evident along high-contrast edges in otherwise smooth areas. It is a direct result of 

quantization leading to high-frequency irregularities in the reconstruction. Ringing 

occurs with both luminance and chroma components. 

• False edges are a consequence of the transfer of block-boundary discontinuities 

due to the blocking effect from reference frames into the predicted frame by motion 

compensation. 

• Jagged motion can be due to poor performance of the motion estimation. Block-

based motion estimation works best when the movement of all pixels in a macro 

block is identical. When the residual error of motion prediction is large, it is 

coarsely quantized. 
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• Chrominance mismatch Motion estimation is often conducted with the luminance 

component only, yet the same motion vector is used for the chroma components. 

This can result in chrominance mismatch for a macro block. 

• Mosquito noise is a temporal artifact seen mainly in smoothly textured regions as 

luminance/ chrominance fluctuations around high-contrast edges or moving 

objects. It is a consequence of the varied coding of the same area of a scene in 

consecutive frames of a sequence. 

• Flickering appears when a scene has high texture content. Texture blocks are 

compressed with varying quantization factors over time, which results in a visible 

flickering effect. 

• Aliasing can be noticed when the content of the scene is above the Nyquist rate, 

either spatially or temporally. 

 

While some of these effects are unique to block-based coding schemes, many of them are 

observed with other compression algorithms as well. In wavelet-based compression, for 

example, the transform is applied to the entire image, therefore none of the block-related 

artifacts occur. Instead, blurring and ringing are the most prominent distortions. 

Video streaming uses a family of transport protocols, namely, User Datagram Protocol 

(UDP), Real-time Transport Protocol (RTP) and Real-Time Control Protocol (RTCP). 

UDP is a lower-layer transport protocol while RTP and RTCP are upper layer transport 

protocols. UDP is employed because it provides timely delivery of packets. However, UDP 

does not guarantee packet delivery. 

 

2.6.2 Transmission Errors 

A very important and of ten overlooked source of impairments is the transmission of the 

bit stream over a noisy channel. The physical transport can take place over a wire or 

wireless, where some transport protocol such as Asynchronous Transfer Mode, 

Transmission Control Protocol/Internet Protocol or User Datagram Protocol (ATM, 

TCP/IP or UDP) ensures the transport of the bit stream and digitally compressed video is 

typically transferred over a packet-switched network. Video streaming uses a family of 

transport protocols, namely, UDP, Real-time Transport Protocol (RTP) and Real-Time 

Control Protocol (RTCP). UDP is a lower-layer transport protocol while RTP and RTCP 



 17

are upperlayer transport protocols. UDP is employed because it provides timely delivery of 

packets. However, UDP does not guarantee packet delivery. 

The bit stream is transported in packets whose headers contain sequencing and 

timing information. This process is illustrated in Figure 2.6. Streams can carry additional 

signaling information at the session level. A variety of protocols are used to transport the 

audio-visual information, synchronize the actual media and add timing information [14]. 

Most applications require the streaming of video, i.e. it must be possible to decode and 

display the bit stream in real time. 

 

 
Figure 2.6: Illustration of a video transmission system. The video sequence is first compressed by the 

encoder. The resulting bit stream is packetized in the network adaptation layer, where a header containing 
sequencing and synchronization data is added to each packet. The packets are then sent over the network of 

choice. 
 

 Two different types of impairments can occur when transporting media over noisy 

channels. Packets can be lost, or they can be delayed to the point where they are not 

received in time for decoding. In [28] assume that no packet losses, errors or congestion 

occur on either the Internet or the UMTS core network. The transfer delay introduced by 

the Internet and the UMTS core network is constant throughout the entire video streaming 

duration. Hence, the quality of the streaming video is solely attributed to the UMTS radio 

interface [28]. To the application, both have the same effect: part of the media stream is not 

available, thus packets are missing when they are needed for decoding. 

 Such losses can affect both the semantics and the syntax of the media stream. When 

the losses affect syntactic information, not only the data relevant to the lost block are 
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corrupted, but also any data that depend on this syntactic information. For example, an 

MPEG macroblock that is damaged through the loss of packets corrupts all following 

macroblocks until an end of slice is encountered, where the decoder can resynchronize. 

This spatial loss propagation is due to the fact that the DCT coefficient of a macroblock is 

differentially predicted between macroblocks and resets at the beginning of a slice. 

Furthermore, for each of these corrupted macroblocks, all blocks that are predicted from 

these by motion estimation will be damaged as well, which is referred to as temporal loss 

propagation. Hence the loss of a single macroblock can affect the stream up to the next 

intra-coded frame. These loss propagation phenomena are illustrated in Figure 2.7. 

 The effect can be even more damaging when global data are corrupted. An example 

of this is the timing information in an MPEG stream. The system layer specification of 

MPEG imposes that the decoder clock be synchronized with the encoder clock via periodic 

refresh of the program clock reference sent in some packet. Too much jitter (end-to-end 

delay) on packet arrival can corrupt the synchronization of the decoder clock, which can 

result in highly noticeable impairments. The visual effects of such losses vary a lot among 

decoders depending on their ability to deal with corrupted streams. Some decoders never 

recover from certain errors, while others apply clever concealment techniques such as early 

synchronization and spatial or temporal interpolation in order to minimize these effects 

[14]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.7: Spatial and temporal propagation of losses in an MPEG-compressed video sequence. The loss of 

a single macroblock causes the inability to decode the data up to the end of the slice. Macroblocks in 
neighboring frames that are predicted from the damaged area are corrupted as well. 
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A variety of artifacts can be distinguished in a transmitted video sequence: 

• Aliasing occurs if there is a packet loss during the rapid scene change (especially 

cut) and results in aliasing of two frames from different scenes. However, if there is 

only a slow local movement in the new scene, the user does not necessarily note 

that there should have been a scene change. This effect we call invisible aliasing 

(see Figure 2.8). 

 

   

 

 

 

 
original frame n                                    original frame n+1                               degradated frame n+1  

Figure 2.8: On the first two pictures are following frames from original video, and on last picture is 
following frame, but with lost I frame. These pictures are from test sequences coded in H.263 standard. 

 

• Spread is temporal propagation of error. P frame is lost, and moving macroblocks 

remain from previous frames. Seen in figure 2.9. 

 

 

 

 

 

 

 

 
Figure 2.9: Frame with spreading artifact. Cartoon figure has eyes from previous frame 

• Local distortions: smaller artifacts of single MB or several of them. See in figure 

2.10. 

 

 

 

 

 
Figure2.10: Local distortions 
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2.6.3  Other Impairments 

Aside from compression artifacts and transmission errors, the fidelity of digital video 

sequences can be affected by any pre- or post-processing stage in the system. These 

include: 

• conversions between the digital and the analog domain; 

• chroma subsampling, which was discussed in Section 2.2; 

• frame rate and spatial reduction ; 

• de-interlacing, i.e. the process of creating a progressive sequence from an 

interlaced one [16]. 

 

. 
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3  Perceptual visual quality metrics  
 

This chapter reviews the history and the state of the art of visual quality metrics, from 

simple pixel-based metrics such as MSE and PSNR to the advanced vision-based metrics 

proposed during recent years. Most of the metrics were design for compression artifacts 

evaluation.  

 

3.1   Pixel-Based Metrics 

The mean squared error (MSE) and the peak signal-to-noise ratio (PSNR) are the most 

popular difference metrics in image and video processing [1]. The MSE is the mean of the 

squared differences between the gray-level values of pixels in two pictures or sequences 

F and R. 

 

           (3.1) 

where: X · Y is picture’s size 

 C     is number of color components 

 

 The PSNR in decibels is defined as: 

 

           (3.2) 

 

where m is the maximum value that a pixel can take (e.g. 255 for 8-bit images). Note that 

MSE and PSNR are well-defined only for luminance information; once color comes into 

play, there is no agreement on the computation of these measures. 

 Technically, MSE measures image difference, whereas PSNR measures image 

fidelity, i.e. how closely an image resembles a reference image, usually the uncorrupted 

original. The popularity of these two metrics is rooted in the fact that minimizing the MSE 

is equivalent to maximum likelihood estimation for independent measurement errors with 

normal distribution. Besides, computing MSE and PSNR is very easy and fast. Because 

they are based on a pixel-by-pixel comparison of images, however, they only have a 

limited, approximate relationship with the distortion or quality perceived by the human 

visual system. In certain situations the subjective image quality can be improved by adding 

noise and thereby reducing the PSNR. Dithering of color images with reduced color depth, 
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which adds noise to the image to remove the perceived banding caused by the color 

quantization, is a common example of this. Furthermore, the visibility of distortions 

depends to a great extent on the image background, a property known as masking. 

Distortions are often much more disturbing in relatively smooth areas of an image than in 

texture regions with a lot of activity, an effect not taken into account by pixel-based 

metrics. Therefore the perceived quality of images with the same PSNR can actually be 

very different. A number of additional pixel-based metrics are discussed in [17]. They 

found that although some of these metrics can predict subjective ratings quite successfully 

for a given compression technique or type of distortion, they are not reliable for 

evaluations across techniques. Another study [18] concluded that even perceptual 

weighting of MSE does not give consistently reliable predictions of visual quality for 

different pictures and scenes. But we did not find evaluation of pixel based metric for low 

resolutions, low bitrate video with transmission errors.  

 In our work we will try present, that with modified pixel based metric we can 

obtain fairly good results for estimating the distortions caused by transmission errors.  
 

3.2  Single-Channel Models 

The first models of human vision adopted a single-channel approach. Single-channel 

models regard the human visual system as a single spatial filter, whose characteristics are 

defined by the contrast sensitivity function. The output of such a system is the filtered 

version of the input stimulus, and detect ability depends on a threshold criterion. 

 In [19] is the first computational model of vision was designed to predict pattern 

sensitivity for foveal vision. It is based on the assumption that the cortical representation is 

a shift invariant transformation of the retinal image and can thus be expressed as a 

convolution. In order to determine the convolution kernel of this transformation, Schade 

[19] carried out psychophysical experiments to measure the sensitivity to harmonic 

contrast patterns. From this CSF the convolution kernel for the model can be computed, 

which is an estimate of the psychophysical line spread function. Schade’s [19] model was 

able to predict the visibility of simple stimuli but failed as the complexity of the patterns 

increased. In [20] the first image quality metric for luminance images was developed. They 

realized that simple pixel-based distortion measures were not able to accurately predict the 

quality difference s perceived by observers. On the basis of psychophysical experiments on 

the visibility of gratings, they inferred some properties of the human visual system and 

came up with a closed-form expression for the contrast sensitivity as a function of spatial 
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frequency, which is still widely used in HVS-models. The input images are filtered with 

this CSF after lightness nonlinearity. The squared difference between the filter outputs for 

the two images is the distortion measure. It was shown to correlate quite well with 

subjective ranking data. Despite its simplicity, this metric was one of the first works in 

engineering to recognize the importance of applying vision science to image processing. 

 In [22] is the first video quality metric was developed. It is based on a spatio-

temporal model of the contrast sensitivity function using an excitatory and an inhibitory 

path. The two paths are combined in a nonlinear way, enabling the model to adapt to 

changes in the level of background luminance. Masking is also incorporated in the model 

by means of a weighting function derived from the spatial and temporal activity in the 

reference sequence. In the final stage of the metric, an Lp-norm of the masked error signal 

is computed over blocks in the frame whose size is chosen such that each block covers the 

size of the foveal field of vision. The resulting distortion measure was shown to 

outperform MSE as a predictor of perceived quality.  

 Single-channel models and metrics are still in use today because of their relative 

simplicity and computational efficiency, and a variety of extensions and improvements 

have been proposed. However, they are intrinsically limited in prediction accuracy. They 

are unable to cope with more complex patterns and cannot account for empirical data from 

masking and pattern adaptation experiments. 

 These data can be explained quite successfully by a multi-channel theory of vision, 

which assumes a whole set of different channels instead of just one. The corresponding 

multi-channel models and metrics are discussed in the next section. 

 

3.3  Multi-Channel Models 

 Multi-channel models assume that each band of spatial frequencies is dealt with by 

an independent channel. The CSF is just the envelope of the sensitivities of these channels. 

Detection occurs independently in any channel when the signal in that band reaches 

a threshold criterion. 

 Watson [32] also was the first to outline the architecture of a multi-channel vision 

model for video coding. The model partitions the input into achromatic and chromatic 

opponent-color channels, into static and motion channels, and further into channels of 

particular frequencies and orientations. Bits are then allocated to each band taking into 

account human visual sensitivity to that band as well as visual masking effects. In contrast 

to the spatial model for images, it has never been implemented and tested, however. 
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 In [30] is proposed a number of video quality metrics based on multichannel vision 

models. The Moving Picture Quality Metric (MPQM) is based on a local contrast 

definition and filters for the spatial decomposition, two temporal mechanisms, as well as a 

spatio-temporal contrast sensitivity function and a simple intra-channel model of contrast 

masking. A color version of the MPQM based on an opponent color space was presented 

as well as a variety of applications and extensions of the MPQM [30]. Due to the MPQM’s 

purely frequency-domain implementation of the spatio-temporal filtering process and the 

resulting huge memory requirements, it is not practical for measuring the quality of 

sequences with duration of more than a few seconds, however. The Normalization Video 

Fidelity Metric (NVFM) by [30] avoids this shortcoming by using a steerable pyramid 

transform for spatial filtering and discrete time-domain filter   approximations of the 

temporal mechanisms. It is a spatio-temporal extension image distortion metric and 

implements inter-channel masking through an early model of contrast gain control. Both 

the MPQM and the NVFM are of particular relevance here because their implementations 

are used as the basis for the metrics developed in the framework of this thesis. 

 

3.4  Specialized Metrics 

Metrics based on multi-channel vision models such as the ones presented in Section 3.3 are 

the most general and potentially the most accurate ones is in [1]. However, quality metrics 

need not necessarily rely on sophisticated general models of the human visual system; they 

can exploit a priori knowledge about the compression algorithm and the pertinent types of 

artifacts (cf. Section 3.3) using ad-hoc techniques or specialized vision models. While such 

metrics are not as versatile, they normally perform well in a given application area. Their 

main advantage lies in the fact that they of ten permit a computationally more efficient 

implementation. 

 Watson [30] recently extended the DCTune metric to video. In addition to the 

spatial sensitivity and masking effects considered in DCTune, this so-called Digital Video 

Quality (DVQ) metric relies on measurements of the visibility thresholds for temporally 

varying DCT quantization noise. It also models temporal forward masking effects by 

means of a masking sequence, which is produced by passing the reference through a 

temporal low-pass filter.  

 In [2] is developed a video quality assessment system that is based on 

a combination of three low-level features. These features were selected empirically from a 

number of candidates so as to yield the best correlation with subjective data for a given test 
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set. The features compute the spatial and temporal activity using spatial gradients and 

frame difference s and are combined linearly to a measure of video quality. 

 In [25] is developed another video distortion metric that uses reduced reference 

information in the form of low-level features extracted from spatio-temporal blocks of the 

sequences. These features were selected empirically from a number of candidates so as to 

yield the best correlation with subjective data. First, horizontal and vertical edge 

enhancement filter’s are applied to facilitate gradient computation in the feature extraction 

stage. The resulting sequences are divided into spatio-temporal blocks. A number of 

features measuring the amount and orientation of activity in each of these blocks are then 

computed from the spatial luminance gradient. To measure the distortion, the features from 

the reference and the distorted sequence are compared using a process similar to masking. 

 In [29] is presented a measurement tool for MPEG video quality. It first computes 

the perceptual impairment in each frame based on contrast sensitivity and masking with the 

help of spatial filtering and Sobel-operators, respectively. Then the PSNR of the masked 

error signal is calculated and normalized. The interesting part of this metric is its second 

stage, a cognitive emulator, which simulates higher-level aspects of perception. This 

includes the delay and temporal smoothing effect of observer responses, the nonlinear 

saturation of perceived quality, and the asymmetric behavior with respect to quality 

changes from bad to good and vice versa. This metric is one of the few models targeted at 

measuring the temporally varying quality of video sequences. While it still requires the 

reference as input, the cognitive emulator was shown to improve the predictions of 

subjects’ SSCQE ratings. 

 

3.5  Model Based on HVS Characteristics 

The structure of the vision model [5] is shown in Figure 3.1. After conversion of the input 

to opponent-colors space, each of the resulting three components is subjected to a spatio-

temporal perceptual decomposition, yielding a number of perceptual channels. They are 

weighted according to contrast sensitivity data and subsequently undergo a contrast gain 

control stage. Both the reference sequence and the processed sequence are used as input to 

the model and go through identical stages. Finally, all the sensor differences are combined 

into a distortion measure. Each of these stages is explained in more detail below. 
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Figure 3.1: Block diagram of the perceptual distortion metric. After conversion to opponent-colors space, 

each of the resulting three components is subjected to a perceptual decomposition, yielding several 

perceptual channels. Subsequently they undergo weighting and contrast gain control, after which all the 

sensor differences are combined into a distortion measure. 

 

Color Space Conversion: Y’C’BC’R is defined in ITU-R Recommendation 601.13 Y’ 

encodes luminance, C’B the difference between the blue primary and luminance, and C’R 

the difference between the red primary and luminance. Conversion from Y’C’BC’R to 

opponent-colors space requires a number of transformations as illustrated in Figure 3.2. 

 

 

 

 

 

 
Figure3.2: Color space conversion from component video Y’C’BC’R to opponent-colors space. 

 

Perceptual Decomposition: The perceptual decomposition is performed first in the 

temporal and then in the spatial domain. While this separation is not entirely 

unproblematic, these two domains can be consolidated in the fitting process as described 

below. 

 The temporal filters used in this distortion metric are based on the temporal 

mechanisms with derivatives of the following impulse response function: 

 

(3.3) 
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The temporal mechanisms are modeled by two Infinite Impulse Response (IIR) filters. The 

low-pass filters are applied to all three color channels, but the band-pass filter is applied 

only to the luminance channel in order to reduce computing time. This simplification is 

based on the fact that color contrast sensitivity is rather low for higher frequencies. 

 The spatial Mechanisms- the decomposition in the spatial domain is carried out by 

means of the steerable pyramid transform. This transform decomposes an image into a 

number of spatial frequency and orientation bands; its basis functions are directional 

derivative operators. For use within a vision model, it has the advantage of being rotation-

invariant and self-inverting, and it minimizes the amount of aliasing in the subbands.  

 

Contrast Gain Control Stage: contrast gain control model can be extended to color and to 

sequences as follows: Let a = a(t, c, f, θ, x, y) be a coefficient of the perceptual 

decomposition in temporal channel t, color channel c, frequency band f, orientation band θ, 

at location x, y. Then the corresponding sensor output s = s(t, c, f, θ, x, y) is computed as 

 

(3.4) 

 

The excitatory path in the numerator consists of power-law nonlinearity with exponent p. 

The inhibitory path in the denominator controls the gain of the excitatory path. In addition 

to a nonlinearity with a possibly different exponent q, filter responses are pooled over 

different channels by means of a convolution with the pooling function h = h(t, c, f, θ, x, y). 

In its most general form, this pooling operation may combine coefficients from the 

dimensions of time, color, temporal frequency, spatial frequency, orientation, space, and 

phase.  

 

Detection and Pooling: The pooling stage combines the elementary differences between 

the sensor outputs s = s(t, c, f, θ, x, y) for the reference (s0) and the processed sequence (s1) 

over several dimensions: 

 

(3.5) 

 

In principle, any subset of dimensions can be used for this summation, depending on what 

kind of result is desired.  
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 In general, the development of computational HVS-models itself is still in its 

infancy, and many issues remain to be solved. Most importantly, more comparative 

analysis of different modeling approaches is necessary. Human visual perception is highly 

adaptive, but also very dependent on certain parameters such as color and intensity of 

ambient lighting, viewing distance, media resolution, and others. It is not possible to 

design HVS-models that try to meticulously incorporate all of these parameters. 

 Our focus, low resolutions, low bitrate video with transmission errors until recently, 

the issue was not addressed in a sufficient manner, and existing metrics were not applied to 

deal with the problematic either. 
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4 Tests of subjective quality 
 

In order to be able to design reliable visual quality metrics, it is necessary to understand 

what “quality” means to the viewer. One method to determine the viewer’s quality opinion 

is obtained by MOS. To obtain MOS we performed the subjective perceptual quality tests, 

the users evaluated the quality changing in time. Thus, we determine viewer’s opinion in 

any time point during the video sequence. This information will be helpful during the 

Metric Design. 

 Obtaining the MOS curves can be subdivided into the two steps: The first step was 

selection of the appropriate sequences. A viewer’s enjoyment when watching video 

depends on many factors. One of the most important is of course program content and 

material. We needed sequences with different parameters and content. The second step was 

preparation of the testing conditions (laboratory), choose a suitable hardware and software 

corresponding to the internationally standardized testing methodology. The methodology 

for performing and evaluating of the time-variant video quality tests is described in 

Recommendation ITU-R BT.500 [3].  

 

4.1   Test Material 

For the subjective video quality tests we selected five video sequences to cover a wide 

range of typical content for mobile application, such as news or sports. Furthermore, they 

were selected to contain various temporal and spatial characteristics such as flat areas, 

object and camera motions, and faces landscapes. Consequently, the scenes span a wide 

range of coding complexity. 

 The “News” video sequence contains various different scenes with both, static and 

moving camera (moderator reading news, scenes illustrating the news content). The scenes 

are usually separated by scene cuts, in three cases by fast zooming-in/zooming-out scene 

change. The video sequence ”Football” is a typical soccer match, containing wide-angle 

panning camera as well as close-up scenes, separated from each other by cuts. The 

“Cartoon” sequence contains two different short cartoons. Scene separation is performed 

mostly by transitions, in some cases by cuts or wipes. The “Town” sequence is a picture 

guide over the town. Different scenes are separated by slow transitions (dissolving).  
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Figure 4.1: Screenshots of some video test sequences used in the scrutinize: “News”, “Football” and 

“Cartoon”. 

 

 All sequences were encoded using H.263 profile 0 and level 10. For subjective 

quality testing we used combinations of bit rates and frame rate of 7.5 fps as shown in 

Table 4.1 together with the number of cuts in these sequences and the packet loss (PL). We 

used PL because it is coincident with wireless network, like 3rd generation mobile 

telecommunication system (3G). Contrary to BER (bit error rate), the bit errors do not 

necessarily lead to dropped slices/frames or delays in the decoded video [5]. The PSNR in 

the Table 4.1 determines the overall degradation of the video sequence; it is averaged over 

the time, test persons and their runs.  
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# Sequence  Name Scenes Bit rate Packet loss PSNR [dB] 

1 News  15 56kb/s 8% 22,96 
2 Football 7 105kb/s 1% 36,88 
3 Town 39 80kb/s 5% 25,14 
4 Cartoon 25 44kb/s 10% 23,83 

Table 4.1:  Test sequences and their parameters. 

 

4.2   Test Setup 

Subjective testing for visual quality assessment has been formalized in ITU-R 

recommendation BT.500-10 [3], which suggests standard viewing conditions, criteria for 

the selection of observers and test material, assessment procedures, and data analysis 

methods. The three most commonly used procedures are the following: 

• Double Stimulus Continuous Quality Scale (DSCQS) The presentation sequence 

for a DSCQS trial is illustrated in Figure 4.2(a). Viewers are shown multiple 

sequence pairs consisting of a “reference” and a “test” sequence, which are rather 

short (typically 10 seconds). The reference and test sequence are presented twice in 

alternating fashion, with the order of the two chosen randomly for each trial. 

Subjects are not informed which is the reference and which is the test sequence. 

They rate each of the two separately on a continuous quality scale ranging from 

“bad” to “excellent” as shown in Figure 4.2(b). Analysis is based on the difference 

in rating for each pair, which is calculated from an equivalent numerical scale from 

0 to 100. This differencing removes a lot of the subjectivity with respect to scene 

content and experience. 

• Double Stimulus Impairment Scale (DSIS). The presentation sequence for a 

DSIS trial is illustrated in Figure 4.3(a). As opposed to the DSCQS method, the 

reference is always shown before the test sequence, and neither is repeated. 

Subjects rate the amount of impairment in the test sequence on a discrete five-level 

scale ranging from “very annoying” to “imperceptible” as shown in Figure 4.3(b). 

• Single Stimulus Continuous Quality Evaluation (SSCQE) The introduction of 

digital television compression will produce impairments to the picture quality 

which are scene-dependent and time-varying. Even within short extracts of 

digitally-coded video, the quality can fluctuate quite widely depending on scene 

content, and impairments may be very short-lived. Conventional ITU-R 

methodologies alone are not sufficient to assess this type of material. Furthermore, 
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the double stimulus method of laboratory testing does not replicate the SS home 

viewing conditions.( In SS methods, a single image or sequence of images is 

presented and the assessor provides an index of the entire presentation.) It was 

considered useful, therefore, for the subjective quality of digitally coded video to be 

measured continuously, with subjects viewing the material once, without a source 

reference. 

As a result, the following new SSCQE technique has been developed and tested [3]. 

Recording device and set-up [3]: 

An electronic recording handset connected to a computer used for recording the 

continuous quality assessment from the subjects. This device has the following 

characteristics: 

• slider mechanism without any sprung position, 

• linear range of travel of 10 cm, 

• fixed or desk-mounted position, 

• samples recorded twice a second. 

 

 

 

 

 

 

 

 

 

 

 (b) Rating scale     (a) Presentation sequence 
Figure 4.2: DSCQS method. The reference and the test sequence are presented twice in alternating fashion 
(a). The order of the two is chosen randomly for each trial, and subjects are not informed which is which. 
They rate each of the two separately on a continuous quality scale ranging from “bad” to “excellent” (b). 
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 (a) Presentation sequence    (b) Rating scale 
Figure4.3: DSIS method. The reference and the test sequence are shown only once (a). Subjects rate the 

amount of impairment in the test sequence on a discrete five-level scale ranging from “very annoying” to 

“imperceptible” (b). 

 

 These three methods generally have different applications. DSCQS is the preferred 

method when the quality of test and reference sequence is similar, because it is quite 

sensitive to small differences in quality. The DSIS method is better suited for evaluating 

clearly visible impairments such as artifacts caused by transmission errors. Both DSCQS 

and DSIS method share a common drawback, however: Changes in scene complexity, 

statistical multiplexing or transmission errors can produce substantial quality variations 

that are not evenly distributed over time; severe degradations may appear only once every 

few minutes. The standard DSCQS and DSIS methods with their single rating are not 

suited to the evaluation of such long sequences because of the regency phenomenon, a bias 

in the ratings toward the final 10 - 20 seconds due to limitations of human working 

memory[1]. Furthermore, it has been argued that the presentation of a reference as well as 

the repetition of the sequences in the DSCQS method puts the subjects in a situation to 

removed from the home viewing environment by allowing them to become familiar with 

the material under investigation. SSCQE has been designed with these problems in mind, 

as it relates well to the time-varying quality of today’s compressed digital video systems. 

On the other hand, program content tends to have a significant influence on SSCQE scores. 

Also, SSCQE scores of different tests are harder to compare because of the lack of a 

reference. 
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We decided to adopt the SSCQE as a basis for our tests, respecting following 

modifications: 

• In addition to the original SSCQE method recommendations, we portray original 

(compressed) sequence (without transmission artifacts) to the observers, without 

letting them know about it. 

• Our video sequences duration is only about 1 minute. 

• Video sequences with typical content for mobile applications, are played back on 

mobile terminal to the observers. 

 

Herewith we wanted to obtain only observers reaction to transmission artifacts (see 

Chapter 2.6.2) and not to the compression artifacts (see Chapter 2.4). This will be more 

comprehensively explained in Chapter 3. 

We did the subjective assessment of the video quality with 38 paid test persons. They 

are non-experts, in the sense that they are not directly concerned with digital picture 

quality as a part of their normal work. The observers were all university students (50 % of 

them from the Technical University and 50 % from the University of Economics). We 

chose the group to reflect the major part of the video services customers. The age range of 

all the test persons was from 20 to 30 years. The test persons are evaluating more critically 

if the video is played-back at the PC (Personal Computer) [7]. Therefore, our test 

sequences were played-back on the UMTS mobile terminal Sony-Ericsson Z1010. The 

screen specification of Sony-Ericsson Z1010 is: LCD with 65.536 colors and the display 

resolution 176x220. The Sony-Ericsson Z1010 can be seen in the Figure 4.6. As a response 

capturing interface we choose sliding bar the sliding bar tool seems to be the most 

appropriate for time-variant video quality testing. This is given by its simple design, 

obvious functionality and comfortable size. The test persons presented clear preferences 

for the sliding bar tool that in turn also best correspond to the design and usability [8]. The 

picture of sliding bar can be seen in Figure 4.4. Signal from the interface device was 

captured by “Aestethic Quality Recorder” software written at the Institute of 

Communications and Radio-Frequency Engineering, Vienna University of Technology 

[27]. Screenshot of the program is illustrated in Figure 4.5. Synchronization between 

mobile phone and software was provided by assessor. The overall testing environment can 

be seen in Figure 4.7. 
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 The display distance was chosen by the test person according to his/her 

convenience. All tests were performed in the same laboratory. The interval between each 

two samples was 150 ms, the quality scale was between 0 (lowest quality) and 255 (highest 

quality). With each test person we performed three runs: the second run took place one 

hour after the first run, the third run followed two weeks later. 

 Results from the subjective assessment are presented in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

   

 

Figure 4.4: User interfaces to capture 
the evaluation: joystick, sliding bar 

Figure 4.5: Screenshot of a capture program 
controlled by a standard mouse or any of the user 

interface devices software 

Figure 4.6: Sony-Ericsson Z1010 Figure 4.7: Testing environment: the test person holding 
the mobile phone, evaluating with the slider. 
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5 Tests evaluation  
 

In [3] data processing from subjective assessment of the quality and data presentation is 

described as well. We had this on mind, but we also needed to adapt the data evaluation 

method on our modified testing method as will be shown in the following. 

A test consisted of L = 114 presentations. Each presentation had two test conditions 

(J=2) applied to one of a six test sequences (K=6). Each combination of test sequence was 

repeated three times (R=3). 

The first step of the analysis of the results is the calculation of the mean score u jkr 

for each of the presentations: 

 

(5.1) 

where: 

uijkr : score of observer i for test condition j, sequence/image k, repetition r 

N: number of observers, in our case N=38. 

 

In the Figure (5.1) mean score for sequence “News” with PL (curve MOS_deg) and also 

without PL (curve MOS_ori) is shown 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1: Average value for sequence “News“ 

 

 By comparing single runs of the same observer or observers between them we 

found, that there were big differences between them. We calculated standard deviation to 

find observers who have produced votes significantly distant from the average score. 
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The standard deviation for each presentation, Sjkr, is given by: 

 

(5.2) 

 

In Figure (5.2) mean score of degraded sequence „ Cartoon “ and standard deviation of all 

observers are presented. Maximum value of 180 is 101.38.  
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Figure 5.2: Average value and standard deviation of MOS for degraded sequence “News” 

 

 

For verification the consistency of our data we calculated 95 % confidence interval 

for all sequences. We performed 95 % screening as recommended in [3] and we used the 

next algorithm. 

It must be first ascertained whether this distribution of scores for each time window 

of each test configuration is “normal” or not, using the β2 test. If β2 is between 2 and 4, the 

distribution may be considered as “normal”. Then the process applies for each time 

window of each test configuration as mathematically expressed hereafter. For each time 

window of each test configuration and using the votes uijkr of each observer, the mean jklr 

u standard deviation, Sjklr, and the coefficient, β2jklr, are calculated. β2jklr is given by: 

 

2
2

4
2 )(m

m
jklr =β   with        (5.3) 
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_
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For each observer, i, find Pi and Qi, i.e.: 

for j, k, l, r = 1, 1, 1, 1 to J, K, L, R  

 

  if 2 ≤ β2jklr ≤ 4, then: 

   if jklrjklrijkr Suu 2
_

+≥   then Pi = Pi +1 

   if     then Qi = Qi +1 

  else: 

   if jklrjklrijkr Suu 20
_

+≥  then Pi = Pi +1 

   if jklrjklrijkr Suu 20
_

+≤  then Qi = Qi +1 

    if  %X
RLKJ

Pi >
⋅⋅⋅

 or %X
RLKJ

Qi >
⋅⋅⋅

 then reject observer i 

 

with: N : number of observers 

J : number of time windows within a test combination of test condition and 

sequence 

K : number of test conditions 

L : number of sequences 

R : number of repetitions. 

This process allows discarding observers who have produced votes significantly distant 

from the average scores. 

We find out there was no observer to be discarded. As a quality indicator of the 

subjective data, the distribution of the 95 % confidence intervals is shown in Figure 5.3. 

Where 
N

S jkr
jkr 96.1=δ    for MOS_deg test sequence “News”. 
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Figure 5.3.: Distribution of 95% confidence intervals for MOS_deg test sequence “News”. 

 

As we mentioned in the Chapter 4.2, we did time-variant test to obtain MOS as a reaction 

to transmissions artifacts. But there was ability that the observers will evaluate also 

compression artifacts. Therefore we made time-variant test also with sequences, without 

transmission artifacts and than we reduced this value in sequences with transmission 

errors. We used formula (5.4) to obtain corrected MOS. 

 

(5.4) 

 

where  MOS_deg is average of sequence with PL (depredated) counted by (5.1) 

 MOS_ori is average of sequence without PL (original) counted by (5.1) 

 max (MOS_ori) is the highest value from MOS_ori 

 

The MOS for test sequence “News” is in Figure 5.4. We printed also histogram and 

empirical CDF (Cumulative Distribution Function) for the same sequence. There are 

depicted in Figures 5.5 and 5.6, respectively 

 

 

 

δ
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Figure 5.4: Mean opinion score for sequence “News” 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5: Distribution of MOS for sequence “News” 

 

 

 

We have final MOS curve of each video sequence. It shows users perceptive sensibility 

to video quality in time. The data obtained in our experiments will be used to estimate 

MOS. The MOS obtained with the subjective testing for visual quality will help us to 

understand viewers’ reaction to transmission artifacts and this information will be very 

helpful during metric design. 
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Figure 5.6: Empirical Cumulative distribution 
function for sequence “News” where F(x) = 

(Number of observations <= x)/(Total number of 
observations) 
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6 Metric design 
 

As we mentioned in Chapter 3 an objective quality assessment is possible. Most of them 

are to evaluate compression artifacts or noise in video. There exist [5] also metrics to 

evaluate transmission errors in Internet communication, but we pay attention to evaluate 

artifacts in digital video (with low resolution and low bitrate) incurrence by transmission 

errors in wireless networks. In the era of a rapid expansion of the 3G networks in many 

countries, this phenomenon represents a common problem. Streaming video is one of the 

most popular advantages of this network. 

 Until recently, the issue was not addressed in a sufficient manner, and existing 

metrics were not applied to deal with the problematic either. Nevertheless, two basic image 

objective evaluations exist, pixel-based (such as MSE and PSNR), and vision-based quality 

metrics have been developed. Realizing this deficiency, novel specific quality metrics for 

video processing applications are to be designed and analyzed. 

We choose to explore the pixel base one in fact, that it is simple and with compare with 

vision-based does not need a difficult HVS simulations.  

 

The first step is to adapt the PSNR curve to the scale of MOS. To avoid infinite values of 

PSNR resulting from zero MSE if there was no error, we perform clipping of the PSNR to 

the value of 48dB, corresponding to MSE = 1. According to our experience with subjective 

tests, people do not perceive the improvements resulting from higher PSNR. 

  

 

 

 

 

 

 

 

 

 

 
Figure 6.1.: MOS and PSNR with clipping to the value of 48dB for test sequence “News” 
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The PSNR curve needs to be smoothed and subsampled. Smoothing is necessary due to the 

human reaction time and the memory of the human eye; the PSNR curve contains a lot of 

sharp edges. To smooth the curve, we used moving average (formula 6.1). The moving 

average definition: Given a sequence{ }N
iia 1= , an n –moving average is a new sequence 

{ } 1
1

+−
=

nN
iis  defined from the ai by taking the average of subsequences of n terms 

∑
−+

=

=
11 ni

ij
ji a

n
s  [31]  

           (6.1) 

We set size of moving window relevant to 1.5 sec. The size of moving window 

corresponded to the human reaction time. After the clipping and smoothing, the PSNR 

curve is normalized in the MOS scale by scaling factor a (formula 6.2). The scaling factor 

a have the form:  

    a = max (MOS) / max (PSNR)   (6.2) 

a = 5.3 

We obtain the MOS estimation PSNR_f based on the PSNR by Formula 6.3: 

     MOSestPSNR_f = a*PSNR_f    (6.3) 
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Figure 6.2: MOS and smoothed and sampled PSNR (MOSestPSNR_f) for test sequence “News” 
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The measured MOS curve is usually steepest when ascending than descending. This 

is caused by the fact, that in many cases, the user needs time to recognize an impairment 

from the real content. On the contrary, as soon as the error free key frame arrives, it is a 

clearly visible improvement of the meanwhile distorted stream. Especially critical are user 

to the effect we call ”aliasing”. It occurs if there is a packet loss during the rapid scene 

change (especially cut) and results in aliasing of two frames from different scenes. 

However, if there is only a slow local movement in the new scene, the user does not 

necessarily note that there should have been a scene change. This effect we call invisible 

aliasing (see Figure 2.6). If the impairment itself is almost as large as the whole screen, the 

correct part (movement) will be considered as impairment. Invisible aliasing results to a 

time shift between the measured and estimated MOS. Gradual scene changes like zooming 

or transition can also ”conceal” some errors - it is not clear, what should be the part of the 

new scene and therefore end-user is not as critical to the error as is the PSNR based 

estimation. Table 6.1 summarizes the scenarios at which we systematically observed 

misalignments. 

 
scenario condition to correct 

invisible aliasing low motion scene change time 
aliasing packet loss in scene cut value 
zooming packet loss in zooming value 

 

Table 6.1:  Rules for correction of MOSestPSNR_f, based on the human perception. 

 

Having observed these simple rules, we can correct the misalignments. We perform 

following corrections: 

1) In case of invisible aliasing the shift ns is added. The ns seconds missing after the 

shift we replace by the last value. 

2) Aliasing is penalized (without gradual changes) by multiplying all values with 

( )1,0∈ak . 

3) Gradual scene changes are compensated by multiplying the minima with kg > 1. 

 

We obtained the parameters ns = 2s by averaging over our measured values for all 

sequences. We further obtained the parameters ka = 0.7 and kg = 1.5 by linear minimum 

mean square estimation applied to all tested sequences. The resulting predicted MOS 
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(MOSestPSNR_m)can be seen in Figure 6.3. Note that our corrections do not correct each 

misalignment, but in general (for different sequences) the similarity to the MOS curve is 

considerably increased. After analyzing more test sequences with different contents and 

compression parameters the similarity would be much more improved.   

 

 

 

 

 

 
 

 

 

 

 

 
Figure 6.3: MOS, smoothed and sampled PSNR (MOSestPSNR_f) and PSNR after all modifications 

(MOSestPSNR_m) for test sequence “News” 
 

6.1  Aliasing detection  

We need to modify PSNR values during aliasing. Therefore we perform aliasing detection 

in video. As mentioned in Chapter 2.6.1, aliasing occurs if there is a packet loss during the 

rapid scene change which results in aliasing of two frames from different scenes. When we 

compare original frames with degraded frames most of the picture is corrupt. Mathematic 

definition of aliasing can be: If number of different pixels between original and degraded 

frame is higher than 1/5, there is an aliasing in the video. We use differential quadratic 

metric (Formula 6.4) to detect differences between original and degraded sequence for all 

pixels and all colors. 

 

           (6.4) 

 

where Ok is original frame with resolution i x j for k color 
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 Dk is degraded frame with resolution i x j for k color 

When was M(i,j) higher then 0 we increase the value of the bad pixels and when was 

number of bad pixel higher than 15 000 for one frame, we know, that there is an aliasing in 

the frame. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.4.: Number of bad pixels in depend on frames for sequence “News” 

 

6.2  Evaluation of metric results 

To evaluate the performance of the video quality estimation, we perform the linear 

(Pearson) correlation Rlin to express the prediction accuracy and outlier ratio R2σ (Formula 

6.5) to check the consistency.  

      N
NOUT=σ2R     (6.5) 

where N is the length of the data vector 

 NOUT is the number of outliers for which MOSmPSNR iMOSestiMOS σ*2][][ _ >−  

and  2
MOSσ  is the variance of the MOS 

 

The evaluation of the proposed metric, we perform correlation (1) between the MOS and 

the PSNR, correlation (2) between MOS and MOSestPSNR_f and correlation (3) between 

MOS and MOSestPSNR_m for different videos and besides for all the video sequences. The 

results can be found in Table 6.2.  
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Table 6.2: Goodness of fit for the proposed metric. Correlation (1) is between MOS and PSNR, correlation 

(2) MOS and smoothed and sampled PSNR and correlation (3) MOS and PSNR after all modifications 
 

 In [1], the Perceptual Distortion Metric PDM is presented. The PDM is based on a 

model of the human visual system (describe in Chapter 3.5). In [1] the PDM was evaluated 

by means of subjective experiments using different video sequences. The sequences were 

coded in H. 263 and other standards with and without transmission errors.  The correlations 

for video sequences coded in H263 are less than 70% and correlations for sequences with 

transmission errors are less than 75 %. As shown our results are comparable or better than 

the more complicated PDM metric. 

 As a visual illustration of the effect of the corrections to the PSNR for the ”News” 

video sequence can be seen on the scatter plots before (figure 6.6) and after the correction 

(figure 6.5.). It can be seen that the simple corrections are able to compensate the biggest 

mismatches between the perceived quality and the quality estimated by modified PSNR 

(scaled, clipped and smoothed). Rest of the test sequences are in figures 6.7 – 6.12. Scatter 

plot for all sequences are in figure 6.13 (before the corrections) and 6.14 (after the 

corrections). 

 

 

 

 

 

 

 

 

 

 

  Correlation (1) Correlation (2) Correlation (3) R2σ 

Football 0.33 0.65 0.66 12% 

News 0.50 0.86 0.89 0% 

Town 0.27 0.66 0.67 6% 

Cartoon 0.52 0.77 0.80 0% 

All sequences 0.42 0.69 0.77 1% 
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Figure 6.5: Scatter plots of MOS vs. estimated MOS (MOSestPSNR_m) model predictions for the complete 
data set. The 0 symbols indicate scores obtained in the low quality quadrants of the subjective test and the 

256 symbols indicate scores obtained in the high quality quadrants of the subjective test. 
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Figure 6.6: Scatter plots of MOS vs. MOSestPSNR_f model predictions for the test sequence “News”. The 0 
symbols indicate scores obtained in the low quality quadrants of the subjective test and the 256 symbols 

indicate scores obtained in the high quality quadrants of the subjective test. 
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Figure 6.7: Scatter plots of MOS vs. MOSestPSNR_m model predictions for the test sequence “Town” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.8: Scatter plots of MOS vs. MOSestPSNR_f model predictions for the test sequence “Town” 
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Figure 6.9: Scatter plots of MOS vs. MOSestPSNR_f model predictions for the test sequence “Football” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.10: Scatter plots of MOS vs. MOSestPSNR_m model predictions for the test sequence “Football” 
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Figure 6.11: Scatter plots of MOS vs. MOSestPSNR_f model predictions for the test sequence “Cartoon” 
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Figure 6.12: Scatter plots of MOS vs. MOSestPSNR_m model predictions for the test sequence “Cartoon” 
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Figure 6.13: Scatter plots of MOS vs. MOSestPSNR_f model predictions for the all test sequences 

 

0 50 100 150 200 250
0

50

100

150

200

250

MOS

All sequences

 
Figure 6.14: Scatter plots of MOS vs. MOSestPSNR_m model predictions for the all test sequences 
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7 Conclusion  
 

The foundations of digital imaging systems were discussed. Image and video coding 

standards exploit certain properties of the human visual system to reduce bandwidth and 

storage requirements. Compression as well as transmission errors lead to artifacts and 

distortions affecting video quality. Guaranteeing a certain level of quality has thus become 

an important concern for 3G networks providers. However, perceived quality depends on 

many different factors. It is inherently subjective and can only be described statistically. 

Existing visual quality metrics were reviewed. Pixel-based metrics such as MSE and PSNR 

are popular despite their inability to reliably predict perceived quality across different 

scenes and distortion types. Many vision-based quality metrics have been developed, 

especially over the last few years that try to improve on prediction accuracy. Nevertheless, 

they still leave much to be desired. Comparative analyses are rare, and so far no video 

quality metric for the low rate and low resolution video sequences, displayed on the mobile 

terminal has been found that is able to replace subjective testing.  

In this work we presented a PSNR-based estimator of the time-variant video quality 

for the low rate and low resolution video sequences, displayed on the mobile terminal. To 

obtain the mean opinion score, we performed subjective perceptual quality tests on UMTS 

mobile terminals using several video sequences with various data rates and packet loss 

probabilities. For these tests and obtaining MOS out of the user evaluations, we used a 

methodology adapted to the testing on mobile terminals, different to the methods 

recommended for the tests on PC screens. Using the proposed methodology, we were also 

able to obtain a consistent set of data. We mapped the resulting MOS curve on the 

appropriately scaled and smoothed PSNR (MOSestPSNR_f) and analyzed the differences. 

PSNR provided 27-52% correlation with the measured data. Several differences turned out 

to be caused by the simple human perception rules. After summarizing them, we proposed 

a new reference-based video quality metric – the PSNR corrected using simple rule-based 

algorithm and we obtain 66%-89% correlation with the measured data. We evaluated the 

performance of our estimator by checking its accuracy and consistency. The results show a 

considerable improvement compared to the PSNR. 

 The future tasks in this area are to perform tests including more different content 

types, more data rate and error rate combinations. This would allow for investigating the 

dependency between the error rate and the appropriate PSNR scaling. 
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