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Abstract – A novel miniaturized sensor for the online measurement of the mechanical properties of a viscous
liquid utilizing a resonating beam has been designed and fabricated in silicon technology. The modeling of the
electromagnetic actuation of the device is discussed and the response of a first prototype was experimentally
characterized using impedance spectroscopy.
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INTRODUCTION

Micromachined vibrating structures are becoming
more attractive for sensing applications due to their
size and cost–effectiveness. Single–ended cantilever
structures are commonly used in atomic force mi-
croscopy [1], as mass–sensitive devices [2], and
biosensors [3] in both, liquid and gaseous environ-
ments. A precise modeling of the solid–liquid interac-
tion and the measurement of the frequency response
enables the measurement of the density and the rheo-
logical behaviour of liquids [4] in a way comparable to
quartz–disk viscosity sensors [5], [6]. As demonstrated
in [7] the usually lower resonance frequency and differ-
ent flow field characteristics make the measurements
more comparable to those performed with laboratory
viscometers, even for liquids showing non–Newtonian
behaviour [8].
In this contribution, we investigate the vibrational be-
haviour of an immersed doubly–clamped beam excited
by the Lorentz force emerging from a sinusoidal current
through the conductive path in a static magnetic field.
Vibrating viscosity sensors usually measure a quantity
proportional to the product of the fluid density and vis-
cosity by analyzing the frequency shift and damping of
a single mode. Utilizing normal and torsional modes,
the viscosity and density values can potentially be de-
termined seperately. For modeling the liquid–solid in-
terface, a numerical method based on Green’s func-
tions in the spatial frequency domain was implemented
for calculating the flow around a harmonically vibrat-
ing, infinitely thin plate providing the viscous damp-
ing force and added mass for each mode of interest.
Based on the equivalent spring constant and damping
coefficient, an electrical equivalent circuit model is de-
rived, describing a small but measurable effect in the
impedance spectrogram.
A first prototype of a vibrating viscosity sensor was
manufactured in silicon technology and characterized
without liquid loading.

THEORY

The fluid is described by the Navier–Stokes and the
continuity equations
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where v, p, µ, λ, ρf describe flow velocity, pressure,
first and second coefficient of viscosity, and density of
the liquid respectively. The convective term ρ(v · ∇)v
is neglected, because its influence on the solution at
small vibration amplitudes is negligible [9].

Considering the equation of motion of the vibrating
beam, the interaction with the viscous fluid can be mod-
eled by adding a viscous damping term per unit length,
α, and an added mass term per unit length, mf , to
the Bernoulli–Euler beam equation (see below). The
added mass term accounts for the fluid, which follows
the oscillation of the beam and therefore increases the
actual vibrating mass, whereas the viscous damping
term considers the damping due to the induced pres-
sure waves on both faces of the beam and the friction
in the induced flow. Since the beam is doubly clamped,
intrinsic stresses are present, which are considered by
means of a prestress term in the beam equation [10]
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where w, N , ρb, EJ , A, Lb describe the deflection,
the prestressing force, the mass density, the product
of Young’s modulus and geometrical inertia, the cross–
sectional area, and the length of the beam respectively.
The resulting resonance angular frequencies are given
by
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where κn for a certain vibration mode n is obtained by
the nth root of the equation cos(κnLb) cosh(κnLb) = 1,



which can be approximated by κn
∼= (1/2+n)π/Lb. The

added mass and the damping coefficients are deter-
mined by computing the actual resistance of the fluid
on the vibrating structure by means of

∮

S
p(s)ds, where

S is the enclosed surface of the cantilever and p(s) the
pressure, respectively. In [11] Tuck calculates the re-
sistance force per unit length on a circular cylinder of
the diameter B vibrating harmonically in the y-direction
in incompressible fluid as (using complex notation)

Fres(t) = (k− jk′)ρπ(B/2)2ω2Uy,0e
jωt, (4)

where Uy,0 is the maximum y-deflection, and k is the
ratio between added and displaced mass. The param-
eters k and k′ depend on the Reynold’s number of the
flow Re = B2ωρ/4µ

k− jk′ = 1− 4K1(
√

jRe)√
jReK0(

√
jRe)

, (5)

where K0 and K1 are the modified Bessel functions of
the second kind. From Eqn. 4 the added mass and the
damping can be obtained as mf = −kρπ(B/2)2 and
α = −k′ωρπ(B/2)2.

In this work the beam shows a rectangular cross–
section and is approximated by an infinitely thin plate
along the x–axis vibrating in a compressible fluid (in
y–direction), where the convective term is neglected.
By using the adiabatic compressibility coefficient ζs =
ρ−1(∂ρ/∂p)s, assuming small perturbations pe and ρe

about their equilibrium values p0 and ρ0, and by in-
troducing time–harmonic values of pressure p and dis-
placement u (e. g. u = ℜ{u0e

jωt}) the system

∇2
u + γ∇(∇·u)+βu = 0 (6)

pe = −ζ−1
s (∇·u) (7)

with the constants β = −jωρ0/µ and γ = 1 + λ/µ −
j/(ωµζs) arises [9]. After applying a spatial Fourier
transform with respect to x, e. g.

ux(x, y) = F−1{Ux(kx, y)} =

∫
∞

−∞

Ux(kx, y)e−jkxxdkx

on Eqn. 6, a linear system in the Fourier
domain ∂Ψ/∂y = A.Ψ with the variables Ψ =
[Ux, Uy, ∂Ux/∂y, ∂Uy/∂y]T results. These equations
are used to expand the fields in terms of spectral eigen-
modes.

Using this expansion in both halfspaces (y+ > 0 ,
y− < 0) and imposing discontinuities of ∂Uy/∂y at the
interface (y+, y− = 0), the displacement field Uy due
to an y–oriented surface force distribution F s,y(x) at
the interface can be obtained. Choosing F s,y(x) =
δ(x) yields a Green’s function G(kx, y). For a spec-
ified diplacement of the infinitely thin beam at y = 0,
uy(x,0)|x=−B/2..B/2 = Uy,0, the integral equation

uy(x,0) =

∫ B/2

−B/2

F−1{G(kx,0)}|x−x′F s,y(x′,0)dx′ (8)

has to be solved to obtain the force distribution
F s,y(x,0) on the beam. The resulting resistance force
Fres on the beam per unit length is determined by

Fres =

∫ B/2

−B/2

F s,y(x,0)}dx, (9)

and consequently mf = −ℜ{Fres}/ω2 and α =
ℑ{Fres}/ω.

We solve this integral equation numerically by using
the method of moments with rectangular basis func-
tions and δ–weighting functions, where the area is dis-
cretized to N = 2n elements to take advantage of the
FFT–algorithm (see, e. g. [12]).

NUMERICAL RESULTS
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Figure 1. Resistance force Fres due to the added mass
term (A: negative real part) and due to the damping
coefficient (B: imaginary part) depending on the fluid

properties ρ and µ on a thin beam of the width W = 40µm

vibrating at a frequency of 10kHz

Fig. 1 shows the calculated resistance on an in-
finitely long and thin beam of the width W = 40µm de-
pending on the fluid parameters. While the resistance
on a vibrating cylinder (Eqn. 4) depends on the ratio
of µ/ρ only, the resistance on the vibrating thin beam
depends on variations of µ and ρ seperately. Com-
pared to the resistance due to viscous damping, the
resistance due to added mass shows a stronger de-
pendance on the density. This allows both, density and
viscosity sensing with a single device.

ELECTRICAL MODEL

In the vicinity of a resonant mode, the added mass
term mf as well as the damping coefficient α in Eqn. 2
are almost constant, so the vibrating beam structure
can be approximately represented by a single lumped,
damped spring–mass oscillator for each mode. The
governing differential equation is

mn · ẍ + dn · ẋ + kn · x = f(t) (10)

where mn = Lb(ρbA + mf ) (cf. Eqn. 3) is the total
equivalent mass of mode n, dn = Lbα is the respec-
tive damping coefficient, kn = Lb(EJκ4

n + Nκ2
n) is the



equivalent spring constant, and x is a generalized dis-
placement coordinate. The driving Lorentz force is
generated according to ~FL(t) = i1(t) · (~l × ~B), where
i1(t) is the time–varying current in the conductor of
length |~l|. A permanent magnet is used to generate the
external magnetic field ~B. The driving term in Eqn. 10
is the total force, f(t) = | ~FL| acting on the beam. For
the mechanical oscillator, an equivalent electrical par-
allel resonance circuit can be derived since it is char-
acterized by the same differential equation:

Cn · ÿ + Gn · ẏ + Ln · y = i2(t) (11)

where Cn, Gn, and Ln are the parameter values of the
parallel resonance circuit shown in Fig. 2, represent-
ing mn, dn, and kn of the mechanical oscillator respec-
tively, and i2(t) is the driving current representing the
Lorentz force f(t). An immersion of the beam in the
liquid under investigation yields an additional damp-
ing and a shift in the resonance frequency, which is
modeled by an additional parallel resistance RL and
an additional capacitance CL in the equivalent circuit.
The electro–mechanical coupling factor results from

mn

kn dn Rn Cn Ln RL CL

liquid loading

RC

R C L

electromechanical coupling
K : 1i1 i2

> >

uw u2

⇒

Figure 2. Equivalent electrical circuit of the coupled system.

the Lorentz force on the conductive path:

K =
i2
i1

∝ B · Lb·, (12)

where B is the strength of the permanent magnetic
field. In the equivalent circuit, the voltage u2 corre-
sponds to the generalized velocity ẋ and thus the dis-
placement is proportional to the current iL through the
inductance, i. e. xn ∝ iL. The equivalent circuit model
of the coupled system is depicted in Fig. 2, where the
conductive path is represented by the resistance RC ,
neglecting its inductance and the capacitance between
electrodes. The measurable impedance on the primary
side is thus given by

Z(ω) = RC + K2 · 1
1
R + jωC + 1

jωL
︸ ︷︷ ︸

∆Z(ω)

. (13)

To identify the basic resonant modes and the associ-
ated resonance frequencies of the beam, a 3D simula-
tion of the mechanical structure without liquid loading

using the finite element method (FEM) was carried out.
The simulation results depicted in Fig. 3 show three
(unsymmetrical) normal modes (N1, N3, N5), two tor-
sional modes (T1 and T3), and the fundamental shear
mode (S1). The orientation of the external magnetic
field determines which modes are excited preferably
(see arrows in Fig. 3). Each mode is characterized by
different electrical parameters Cn, Gn, and Ln in the
electrical equivalent circuit.
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Figure 3. The eigenmodes of the beam structure. The
arrows indicate the orientation of the magnetic field used to

excite the respective modes.

FABRICATION

To fabricate the micromachined sensor chip shown
in Fig. 4, a 350 µm thick (100) silicon wafer has been
coated with silicon nitride (Si3N4) on both sides fea-
turing a thickness of 320 nm. Next, a Ti–Au–Cr layer
with a thickness of 50–100–30 nm has been deposited
and structured to create the connection leads and the
bond pads. A low stress silicon nitride (SiNx) protective
film of 1000 nm has been applied using a low temper-
ature PECVD process. After creating the apertures for
the bonding pads and the backside etch windows by
means of reactive ion etching, thin membranes have
been manufactured using a KOH based anisotropic
backside wet etching process. In order to obtain the re-
quired bridges, the membranes have then been struc-
tured from the frontside using a reactive ion etching
process. Finally, the chromium has been removed from
the bond pads by means of wet–etching. Both silicon
nitride layers form the bridge featuring a total thickness
of 1.3 µm.

MEASUREMENTS

At the resonance frequencies, the displacement am-
plitude reaches a local maximum. In general, an opti-
cal readout is well suited to detect the resonant be-
haviour of cantilevers [13]. However, in order to reduce
the number of external devices and to eliminate the



Figure 4. SEM micrograph of the beam structure. The
bridge carries the conductive excitation path. The length is
Lb = 720 µm, cross–sectional dimensions are 40× 1.3 µm.

The particles are considered to be process artefacts.

need for calibration procedures, an electronic readout
circuit is preferred. A common successful approach is
based on the piezoresistive effect [14]. In the current
setup, the change in the resistance of the metallic con-
ductor was estimated to be in the range of milliohms.
The piezoresistive effect could be increased by using
semiconductor materials for sensing mechanical strain
[15]. This piezoresistive response is not covered by our
equivalent circuit, which considers only inductive ef-
fects, which can be measured by means of impedance
spectroscopy. In our case of an electromagnetically
driven beam, the change in the impedance ∆Z(ω)
at resonance is small but measurable with an Agilent
4294A impedance analyzer.
Thus, measurements of the impedance spectrogram
were carried out to identify the resonant modes in air.
In Fig. 5 the impedance spectra for the two orthogonal
arrangements of the magnetic field are shown. It can
be seen, that for each arrangement different dominant
modes appear, which can be associated with dominant
normal or torsional modes. The shear mode (S1), how-
ever could not be detected this way.

SUMMARY AND OUTLOOK

In this contribution a model of a vibrating doubly
clamped beam was presented which allows to simu-
late the effect of a liquid load. An electrical equiva-
lent model was presented which allows to estimate the
effect on the measurable change in impedance at the
resonance frequencies. This allows a readout of the
relative vibrational amplitude by means of impedance
spectroscopy.
Due to the variety of vibrational modes offered, the
doubly clamped beam structure is particularly suited
as a viscosity and density sensor.
Further improvements in the readout are necessary
to use the device as a sensor. For instance increas-
ing the length of the conductive path used for the
electro–mechanical coupling will result in a quadratic
increase of the sensor signal when pursuing the induc-
tive readout. Accurate measurements of the frequency
response will allow an extraction of the parameters of
the electrical model and consecutively the calculation
of the forces caused by the liquid loading. The fluid
model then allows a determination of the mass density
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Figure 5. Measured impedance spectra of the sensor in air
using both the (a) normal excitation (left in Fig. 3) and the

(b) shear excitation (right in Fig. 3).

and viscosity of the liquid under investigation.
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