
Statistical Detection of Alarm Conditions in Building Automation Systems

Brian Sallans
Information Technologies

ARC Seibersdorf research GmbH
1220 Vienna, AUSTRIA
brian.sallans@arcs.ac.at

Dietmar Bruckner
Institute of Computer Technology
Vienna University of Technology

1040 Vienna, AUSTRIA
bruckner@ict.tuwien.ac.at

Gerhard Russ
Information Technologies

ARC Seibersdorf research GmbH
1220 Vienna, AUSTRIA
gerhard.russ@arcs.ac.at

Abstract— A method for the automatic detection of
abnormal behavior in a building automation system is
compared to a standard system for problem detection. The
automated method is based on statistical models of sensor
behavior. A model of normal behavior is automatically
constructed. Model parameters are optimized using an
on-line maximum-likelihood algorithm. Incoming sensor
values are then compared to the model, and an alarm is
generated when the sensor value has a low probability
under the model. The alarms generated by the automated
system are compared to alarms generated by pre-defined
rules in a standard automation system. The performance,
strengths and weaknesses of the automated detection
system are discussed.

I. INTRODUCTION
Automation systems have seen widespread deploy-

ment in modern buildings, and include systems for
environmental control, energy management, safety, se-
curity, access control, and remote monitoring. As the
cost of automation systems falls, and the technology
converges towards standardized protocols, we can expect
automation to move from the office into the home.
It will also encompass not just building management
technology, but also entertainment, kitchen appliances
and communications devices.
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Today’s building sensor and control systems are pri-
marily based upon the processing of sensor information
using predefined rules. The user or operator defines, for
example, the range of valid temperatures for a room by
a rule – when the temperature value in that room is
out of range (e.g. caused by a defect), the system reacts
(for example, with an error message). More complicated
diagnostics require an experienced operator who can
observe and interpret real-time sensor values. However,
as systems become larger, are deployed in a wider variety
of environments, and are targeted at technically less-
sophisticated users, both possibilities (rule-based systems
and expert users) become problematic. The control sys-
tem would require comprehensive prior knowledge of
possible operating conditions, ranges of values and error
conditions. This knowledge may not be readily available,
and will be difficult for an unsophisticated user to input.
It is impractical for experienced operators to directly
observe large systems, and naive users can not interpret
sensor values. The goal of this work is to automatically
recognize error conditions specific to a given sensor,
actuator or system without the need of pre-programmed

error conditions, user-entered parameters, or experienced
operators. The system observes sensor and actuator data
over time, constructs a model of “normality”, and issues
error alerts when sensor or actuator values vary from
normal. The result is a system that can recognize sensor
errors or abnormal sensor or actuator readings, with
minimal manual configuration of the system. Further, if
sensor readings vary or drift over time, the system can
automatically adapt itself to the new “normal” condi-
tions, adjusting its error criteria accordingly.

The system, called BASE (Building Automation sys-
tem for Safety and Energy efficiency) [1], was tested in
a building automation system consisting of 248 sensors
spread across four systems (a heating and three ven-
tilation systems). The data was collected over a time
period of five months. This paper presents the results
of this trial, highlights the strengths and weaknesses
of the automated system, and suggests future areas of
improvement.

II. BACKGROUND
In this trial the diagnostic system BASE is compared

to a standard building automation system. The building
automation system consists of a number of sensors and
actuators connected by the LonWorks fieldbus (LON)
[2]. It offers a visual interface using a Management
Information Base (MIB) for retrieving and manipulating
system parameters and for the visualization of system
malfunctions.

The diagnostic system BASE is based on statistical
“generative” models (SGMs). Statistical generative mod-
els attempt to reproduce the statistical distribution of
observed data. The model can then be used to determine
how likely a new data value is or to “generate” new data
(i.e. draw samples from the model).1

Recent work in generative models has focused on
non-Gaussian models (see for example [3], [4]). The
diagnostic system BASE uses a number of different
SGMs to capture the distribution of sensor data, includ-
ing histograms, Gaussian mixture models [5], and hidden
Markov models [6].

Sensor and control data poses several challenges. The
data can be anything from very low level temperature

1For probability density models, which are functions of real-valued
variables, the probability of the input value is not directly computed
from the model. Rather the probability of either exceeding the given
value, or of generating a value within a small neighborhood of the
given value is computed.



readings to higher level “fault” detectors or occupancy
data from building entry systems. This very different
data must be fused into a single system. The volume
of data requires fast algorithms [7], [8], and algorithms
that can work with on-line data as it arrives [9]. The data
values are time-dependent, so a model must (explicitly
or implicitly) take time into account [10], [6], [11].

Previous work in applying statistical methods for fault
detection includes the use of methods from statistical
quality control (SQC) (see [12] and [13], for example),
and statistical process monitoring and control [14]. Sta-
tistical quality control methods compare sensor values
to prepared statistical ”charts”. If the sensor values vary
from their expected values over a prolonged period of
time, the charts can detect this variation. These methods
are appropriate when it is sufficient to reliably detect a
small variation after collecting a large number of sam-
ples, but are inappropriate for detecting abnormalities in
real time. Methods from statistical process monitoring
have been applied to a number of systems including
chemical processes monitoring [15], monitoring of en-
gines [16], and monitoring of communications networks
[17]. Typical statistical methods used include principal
components analysis and partial least squares models fit
to historical batch [15] or online data [14]. Deviations
from normality are then detected using standard statisti-
cal tests.

There are several other approaches to fault detec-
tion. In classical model-based detection, detailed domain
knowledge is used to build a model of the system. De-
viations between model predictions and system behavior
are flagged as faults (see [18] for a survey). In pattern
matching detection, faults are induced in a system, and
the resulting sensor values are recorded. A classifier,
such as a neural network, is trained using this data set of
normal and abnormal behavior to detect failures (see [19]
for example). These methods require either a working
system for experimentation, or an in-depth knowledge
of the system in question, both of which are lacking for
large building automation systems.

Despite their success in other domains, SGMs have not
been applied to error detection for building automation
sensor and control data. There are two reasons for
this. First, it has only recently become possible (and
economical) to collect a wide range of cross-vendor
sensor data at a central location. Second, most algorithms
to optimize the parameters of SGMs are quite compute-
intensive. Many algorithms have been of only theoretical
interest, or are restricted to small toy problems. Only
recently have powerful approximation algorithms and
powerful computers become available that can handle
large quantities of data in real-time. To our knowledge,
this paper is the first case study of the use of statistical
process monitoring in a building automation system.

III. THE DIAGNOSTIC SYSTEM
The goal of the diagnostic system BASE is to au-

tomatically detect sensor errors in a running automation
system. It does this by learning about the behavior of the
automation system by observing data flowing through

the system. The diagnostic system builds a model of
the sensor data in the underlying automation system,
based on the data flow. From the optimized model,
the diagnostic system can identify abnormal sensor and
actuator values. The diagnostic system can either analyze
historical data, or directly access live data.

We use a set of statistical generative models to repre-
sent knowledge about the automation system. A statisti-
cal generative model takes as input a sensor value, status
indicator, time of day, etc., and returns a probability
between zero and one.

Using SGMs has several advantages. First, because
the model encodes the probability of a sensor value
occurring, it provides a quantitative measure of “nor-
mality”, which can be monitored to detect abnormal
events. Second, the model can be queried as to what
the “normal” state of the system would be, given an
arbitrary subset of sensor readings. In other words, the
model can “fill in” or predict sensor values, which can
help to identify the source of abnormal system behavior.
Third, the model can be continuously updated to adapt
to sensor drift.

A. Error Detection

Given an SGM, implementation of this functionality
is straight-forward. The system assigns to each newly-
observed data value a probability. When this probability
is high, the system returns that the new data value is
a “normal” value. When the probability falls below a
specific threshold, the system rates the value as “abnor-
mal”. The SGM system generates alarm events when it
observes abnormal sensor values. This leaves open the
question of how to assign the threshold for normality.
In practice, the user sets the threshold using a graphical
interface. Initially, before the system has learned normal
system behavior, many alarms are generated, and the user
may decide to set the threshold to a value near zero. As
the system acquires a better model of the sensor system,
the threshold can be raised. In any case, the threshold
parameter tells us how improbable an event should be to
raise an alarm. The system can also use a log-probability
scale, so that the threshold can easily be set to only
register extremely unlikely events.

B. Statistical Generative Models

The BASE system implements a number of SGMs (see
Table I).

TABLE I
STATISTICAL GENERATIVE MODELS

Model Variable Type Parameters

Gaussian Real µ,σ2

Histogram Discrete, Real Bin counts

Mixture of Gaussians Real µi,σ2
i ,πi

Hidden Markov model Real Tij ,µi,σ2
i

Hidden Markov model Discrete Tij ,Bin counts



The more complex models add additional capabilities,
or relax assumptions in comparison to a simple Gaussian
model.

The diagnostic system uses SGMs of automation data
points. For any given data value x, model M assigns a
probability to x: PM (x) → [0, 1].

Note that, for discrete distributions such as a his-
togram, the value assigned to x by the model PM (x)
is a well-defined probability, since the set of possible
assignments to x is finite. For a probability density, such
as a Gaussian or mixture of Gaussians, the probability
value assigned to x by the model is the probability
density at that value. In order to convert this density
to a probability, the probability of generating a value
within a neighborhood ±δ around x is computed as∫ δ
−δ PM (x + φ)dφ, and approximated as 2δPM (x) for

small δ. Alternatively the probability under the model
of equaling or exceeding the observed value can be
computed: PM (x′ ≥ x) =

∫ φ+∞
φ PM (x + φ)dφ.

The data x can be a sensor reading such as an air
pressure sensor, contact sensor, temperature sensor, and
so on. Given a new data value, the system assigns a
probability to this value. When the probability is above
a given threshold, the system concludes that this data
value is “normal”.

Given a sequence of sensor readings x = {x1, ..., xT }
from times 1 to T , the system must create a model
of “normal” sensor readings. The system uses an on-
line version of the expectation maximization algorithm
for maximum-likelihood parameter estimation. Given a
model M with parameters θ, the log-likelihood of the
model parameters given the data x is given by:

L(θ) = log PM (x|θ) (1)

where the notation P (x|θ) denotes the conditional prob-
ability of x given the current values of the parameters
θ.

The maximum-likelihood parameters are defined as
the parameter values which maximize the log-likelihood
over the observed data:

θML = argmax
θ

{log PM (x|θ)}

C. On-line Parameter Updates

In order for the system to continually adapt the model
parameters, the parameter update algorithm must incre-
mentally change the parameters based on newly observed
sensor values. Such “on-line” updates have the advantage
that there is no time during which the system is in an
“optimization” phase, and unavailable for diagnostics.

For the tests described in this paper, mixture of Gaus-
sians models were used. For the mixture of Gaussians
model, the BASE system uses a simple stochastic esti-
mation method, based on an expectation-maximization
algorithm. As each new data value xi is observed, the
parameters are adjusted in a two-step process. First, the
posterior probability of each element of the mixture
given the data value is computed. Second, the parameters

are adjusted so as to increase the expected joint log-
probability of the data and the Gaussian mixture com-
ponent. See section 2.6 of [5] for details.

IV. RESULTS

The diagnostics system was used to analyze sensor
and actuator values from a building automation system
consisting of a heating system and three ventilation sys-
tems. The BASE diagnostic system monitored the values
of 248 sensors and actuators. These included forced air
temperatures, room temperatures, air pressures, the status
of control valves, and so on. The data was collected
over a period of five months (mid December to mid
May), thus including the seasonal transition from winter
to summer.

The BASE system was allowed to adapt models to
each of the 248 sensors. Each sensor model consisted of
12 mixtures of Gaussians models, one model for every
two hours of a 24 hour day. During this time period, the
alarm messages from the standard building automation
system were also recorded. Because of the relatively
simple nature of the individual models, we were able to
simultaneously fit a large number of models in real time.
In our case, in any particular 2 hour period, 248 sensor
models were being fit simultaneously, and the system
optimized 248× 12 = 2976 sensor models in total.

In the following sections we describe and show exam-
ples of model parameter optimization, optimized models,
and compare alarms delivered by BASE and by the
traditional building automation system.

A. Parameter Optimization

The model log-likelihood, given by Eq.(1), is a mea-
sure of model quality. As the parameter values are op-
timized on-line, the log-likelihood of the sensor models
increases. Fig. 1 shows the average log-likelihood during
parameter optimization, on average, for the sensor mod-
els in the test system. The log-likelihood increases with
time, indicating that the models improve over time. The
log-likelihood does not consistently increase, however,
due to the on-line fitting of parameters simultaneously
with reporting of abnormal sensor values. If sensors
receive abnormal values, the log-likelihood decreases,
until the values return to their normal range or the sensor
model adapts to the new range of values.

Fig. 2 shows an example from a single sensor. The
upper figure shows the sensor value, and the lower shows
the corresponding log-likelihood as a function of time.
The large disturbance in the center (a power fluctuation)
registers an alarm. So do the two small ”spikes” near the
end of the graph.

B. Comparison to Standard System

During the test period, each sensor model’s log-
likelihood was computed for each new sensor value. This
log-likelihood was compared to a threshold. If the log-
liklihood fell under threshold, an alarm was emitted.
These alarms were then analyzed to discover if they
corresponded to alarms emitted by the standard system.
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Fig. 1. Average learning curve for sensor models. On average the
log-likelihood for the model improves over time. The three large
drops in average log-likelihood correspond to large modifications of
the system (addition of equipment, changes in system parameters).
Smaller drops correspond to system-wide disturbances (such as a
power outage).
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Fig. 2. Sensor value and log-likelihood for a single sensor from the
system. Unusual sensor values register as drops in the log-likelihood,
causing alarms.

Over the 5 month test period, the standard system
emitted 2521 Alarms (excluding the lowest priority in-
formational messages). The number of alarms delivered
by BASE depends on the alarm threshold selected by the
user. The number of BASE alarms ranged from 198 at
the lowest alarm threshold to 1599 at the highest tested
alarm threshold.

The BASE system, or any automatic system for alarm
detection, can deliver “false” alarms, that is, alarms that
are considered unimportant by the operator. This can
occur if the sensor value makes a statistically significant
but in reality unimportant deviation from normality, or
if the sensor model does not sufficiently capture the true
variation in sensor values. With the standard system,
alarms are by definition not “false”, because they occur
for exactly defined situations. However, alarms from
standard systems can also be “false” in the sense that
they are considered unimportant by the operator. In order
to compare the BASE and standard alarms, an equivalent
to “false” alarms must be defined for the standard

building automation system. In this paper, an alarm from
the standard system is considered unimportant if it is
cancelled by the operator within five minutes of its
occurrence. We call these alarms “quick” alarms. We
also label BASE alarms considered unimportant by the
operator “quick” alarms.

Of the BASE alarms, a subset of approximately 10%
of alarms was classified by hand into “quick” or “nor-
mal” alarms. In order to compare to the standard alarms,
a subset of approximately 10% of the standard alarms
were also classified into “quick” and “normal”, using
timing information from the alarm log. In both cases, the
subsampled alarms were uniformly randomly selected,
and it was assumed that the subsample of classified
alarms were representative of the set of all alarms.

Fig. 3 shows an analysis of alarms emitted by both
systems. The bar graph shows clusters of bars, one
cluster for each of 9 different alarm thresholds. The error
bars indicate confidence values, taking the subsampling
of hand-analyzed alarms into account.

As the threshold increases, the number of alarms
delivered by BASE increases. After a threshold value
of −4.2, the number of BASE alarms does not increase,
indicating that the data from the automation system is
either classified by BASE as quite unlikely (probability
less than 0.05) or likely (probability greater than 0.15)
with little in between. This suggests that the BASE
models describe the observed data well. Also, the num-
ber of BASE alarms which correspond to alarms from
the standard system, the number of unique good BASE
alarms, and the number of BASE false alarms all increase
as threshold increases.

In general, the standard system delivers a surprising
number of alarms that are quickly dismissed, much
more so than by BASE. This may simply be because
of greater familiarity with the standard system, so the
operator can quickly decide between alarms that they
often see and new, problematic situations. The number
of BASE false alarms is low in comparison, indicating
that the BASE system does deliver useful information.
The large but not complete overlap between BASE and
standard alarms suggest that true alarms can be sorted
into three categories: Alarms where a value crosses a
pre-defined threshold, without deviating from historical
values (for example, an alarm indicating that a fuel tank
is nearly empty); alarms that deviate from normality but
do not cross threshold (see the alarms in Fig. 2 or Fig.
4 for example); and alarms that do both. The BASE
and standard systems largely complement one another
and give the operator additional information which they
would not otherwise have.

C. User Comfort
One case in which BASE can deliver useful informa-

tion is to enhance user comfort. In the test environment,
users receive heated air from the central heating system,
and are then able to increase air temperature with an
additional local system. It is therefore difficult to set
global thresholds indicating a local heating problem. The
BASE system detects local problems quickly, since each
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Fig. 3. Analysis of BASE alarms and alarms from the Standard building automation system. Both systems deliver alarms that are non-critical
(those labeled “Quick” alarms) as well as alarms that are considered important by the user. As the threshold increases, the number of good
alarms, but also the number of false alarms delivered by BASE increases.

sensor model is adapted to the local environment. Fig.
4 shows an example of local problem detection. The
upper figure shows outside temperature, and the lower
figure shows local room temperature. The dark stripes
indicate normal working hours, and the number indicates
average temperature over the 12 hour period. On the third
day the indoor temperature drops to an abnormal (and
uncomfortable) 18C, triggering a BASE alarm (vertical
line). Without this alarm, the occupants of the room must
alert the building managers themselves.

D. System Adaptation

The BASE system adapts model parameters to changes
in the environment. That is, when there are repeated
examples of an abnormal situation, BASE will adapt the
sensor models such that the new situation is no longer
considered abnormal. Fig. 5 shows an example of this
behavior. When the temperature in a room is abnormally
high (on date 11.02), this is detected by the system,
and an alarm is delivered (vertical line). However, the
next time that this temperature is reached (on 14.02),
the system has already adapted to this circumstance,
and does not deliver an alarm. How many repetitions
of a situation are required before an alarm is no longer
generated depends on the system learning rate, and
how unusual the situation was. More unusual situations
require more repetitions before the system adapts.
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Fig. 4. An example of detecting a change in local conditions. On
the third day (third dark stripe) average indoor temperature drops,
triggering an alarm.

V. CONCLUSION
This paper describes a test of statistical methods for

the automatic detection of abnormal sensor values. The
BASE system can automatically build a model of normal
sensor behavior. It does this by optimizing model para-
meters using an on-line maximum-likelihood algorithm.
Incoming sensor values are then compared to the model,
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Fig. 5. An example of system adaptation. On 11.02 the temperature
is abnormally high, and an alarm is generated. On 14.02 a similar
temperature is reached, and no alarm is generated.

and an alarm is generated when the sensor value has a
low probability under the model. The model parameters
are continuously adapted on-line.

We found that the traditional system and the BASE
system complement one another. While the traditional
system was able to detect statistically insignificant but
important deviations using thresholds, BASE was able
to detect deviations that were within the thresholds
used by the traditional system, but were nevertheless
significant deviations from normality. These alarms have
implications for system reliability, safety, efficiency and
user comfort.
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