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Abstract. Combining visual shape-capturing and vision-based object
manipulation without intermediate manual interaction steps is impor-
tant for autonomic robotic systems. In this work we introduce the concept
of such a vision system closing the chain of shape-capturing, detecting
and tracking. Therefore, we combine a laser range sensor for the first
two steps and a monocular camera for the tracking step. Convex shaped
objects in everyday cluttered and occluded scenes can automatically be
re-detected and tracked, which is suitable for automated visual servoing
or robotic grasping tasks. The separation of shape and appearance in-
formation allows different environmental and illumination conditions for
shape-capturing and tracking. The paper describes the framework and
its components of visual shape-capturing, fast 3D object detection and
robust tracking. Experiments show the feasibility of the concept.

1 Introduction

A lot of detection and tracking methods have been introduced to computer
vision, visual servoing gets more and more important in robotic applications and
some approaches for visual learning techniques have been presented. However,
these techniques are usually dissociated from each other and the connections
between them are manually at best.

In this work we present a concept of a vision system that guides the manip-
ulation of convex shaped objects. Robotic applications such as visual servoing
or grasping tasks are the goal. Our main contribution is the closing of the gap
between shape-capturing, detecting and tracking the object, integrating the indi-
vidual vision steps in a fully automatic way. The approach is to show the object
once to the robot vision system. It is scanned by a laser range sensor that derives
a volumetric object description for further detection and tracking. Performing
the detection in a totally different environment (e.g. in a home environment on
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potential object places) is possible and results in the object pose, which is the
starting pose for the subsequent tracker. This monocular tracker uses the 3D-
pose as well as the 3D-object model delivered during the shape-capturing step
for continuously updating the pose of the object. Appearance information for
the tracker (cues in any form, i.e., interest points in the system proposed) is de-
rived not until now, i.e., from the actual scene – discoupling the illumination and
environmental conditions of the shape-capturing and the manipulation steps.

The paper is structured as follows: After an overview of related approaches
in the next section, the main concept, the reasons for using Superquadrics and
the discrete vision steps are described in detail in Section 2. First experiments
are given in Section 3 and further work is outlined in Section 4.

1.1 State of the Art

Kragic and Christensen [7] clearly outline the desire for a fusion of shape and
appearance information in robotic servoing and grasping. They emphasize the
lack of robustness of model based techniques when trying to track line features
of highly textured objects. Their solution is the usage of training images and
their projection into the eigenspace. In contrast to this, we are integrating two
different sensors, namely a laser scanner for providing the object model (= shape-
capturing step) as well as the starting pose of the object in the scene (= detection
step) and a CCD-camera (= tracking step). In contrast to the former (shape),
the latter exploits appearance information. The problem of line features lies
in our understanding not only in textured objects but also in situations where
occlusions occur and especially when handling non-rectangular objects. We aim
to solve both with our framework.

Currently information for the different tasks is often provided manually.
In [5], [6], model databases are required containing local information about the
model. Our contribution is a framework that allows model data, initial pose in-
formation as well as interest points for the tracking part to be automatically
provided by the sensors.

Moreover our framework operates an automatic vision system including the
object capturing process for size and shape parameters without any user interac-
tion. Pioneer work in learning for 3D object recognition was done by Mukherjee
et al. [14] and an approach for vision-based active learning for robot grasp-
ing tasks was introduced by Salganicoff [16]. Our learning – we call it shape-
capturing – differs from the latter contributions in that way that we understand
the learning process as a coded object description temporarily stored for further
processing rather than classifying objects to similar groups by comparing them
in a database.

A recent work by Taylor et al. [18] uses a similar full system assembly as
we do. They, too, combine a laser scanner with vision but stereo instead of
monocular. Their approach is finding geometrically primitive objects (bowls,
cylinders, boxes) in a scene without previous learning. To achieve this, a scene
segmentation is performed using surface curvature. The main difference to our
work is that we divide this step into two parts: shape-capturing (see Sec. 2.1)



Lecture Notes in Computer Science 3

Fig. 1: Concept of our perceptual system: The fully automatic sequence starts with
the object capturing where the size and shape parameters are gained that are used for
subsequent object detection and tracking in an occluded and cluttered scene.

and detection of the learned object in the scene (Sec. 2.2). That way, we avoid
the computational expensive segmentation and enable the handling of convex
objects with less geometric constraints than [18].

Concerning the tracking part, we like to pick a recent paper by Yoon et al. [19]
who presented a combination of a laser scanner and a camera for a tracking task.
The selection of line features for the tracking is done manually from the range
image – allowing to track complex objects (such as a toy lorry).

2 Concept

Fig. 1 shows the overall concept. First, the target object is shown unoccluded to
the laser scanner which automatically derives shape and size parameters storing
them in terms of a Superquadric model description (see Sec. 2.1). Detection
(Sec. 2.2) is performed in the real-world scene without further user interaction
as the parameters are already known from shape-capturing. The detection leads
to the pose (position and orientation) of the object, starting the tracking part
(Sec. 2.3) that additionally uses the object dimension acquired in the capturing
step. The output, i.e., the updated pose, can be used for any further robotic task:
grasping, visual servoing and so on. Fig. 2 shows the experimental assembly of
the system with the vision equipment and the linear axis.

Stereo vision is usually prone to show weak accuracy and problems arise
when dealing with not or weakly textured objects. Our approach aims at deliv-
ering the pose of an object with respect to the robot arm in order to be able
to perform visual servoing, grasping tasks etc., which all needs high accuracy.
The combination of a laser scanner and a colour camera requires a single para-
metric description of the object to be handled that can be passed along the
different steps. Multiple parametric models have been introduced for 3D object
recovery. Superquadrics are perhaps the most popular because of several rea-
sons. The compact shape can be described with a small set of parameters ending
up in a large variety of different basic shapes. The recovery of Superquadrics
has been well investigated and even global deformations can be easily adopted
[17]. Additionally, they can be used as volumetric part-based models desirable
for robotic manipulations. These advantages cannot be found in other geomet-
ric entities, which predestine the Superquadric model for our application. For
further information regarding Superquadrics, please refer to [1].
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Fig. 2: Experimental sensor assembly with laser source and the ranger camera, the CCD
camera for the tracking and a measurement table where the scene for the experiment
in Fig. 4 is arranged.

The usage of Superquadrics for a system such as ours has several advantages.
First of all, Superquadrics are purely shape-based, which frees us from using
approximately the same illumination conditions when acquiring the shape, de-
tecting and tracking the object. Second, it enables the possibility to describe
a large variety of different objects especially with the extension of global de-
formations. Most everyday objects such as commodity boxes, cups or tin cans
can be described or well approximated. Third, Superquadrics use only a small
set of parameters therefore providing a very compact description of the object’s
surface. This implies a fourth advantage: The computation of the 3D-model co-
ordinates that is necessary for the tracking part, can numerically be solved in a
straight-forward manner.

2.1 Capturing the Shape of the Object

Before a robot can handle a convex shaped object, the vision system needs
information about it. We propose a shape-capturing step by showing the object
to the system and extracting its geometric properties. We use a laser range finder
to acquire a range image in which the 3D shape of the object has to be directly
recovered. As many sides of the object as possible (i.e., no degenerate view) and
no other objects should be visible to the laser scanner. Due to the symmetry of
most every-day objects one view is sufficient.

2.2 Detecting the Object

The task of this module is to scan the scene of interest to obtain a single-view
range image and detect the object in process real time. The method needed for
this purpose must robustly handle object occlusions in a cluttered scene. In order
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to achieve fast detection results a probabilistic approach is used to verify pose
hypotheses of the learned model. For keeping the computational effort low, the
search process is structured in a two-level hierarchy.

First the low-level search (probabilistic pose estimation) is RANSAC-based
[3] with samples on sub-scaled raw data to speed up the Superquadric recovery
using the Levenberg-Marquardt [13] minimization. The best fit of the low level
search is again refined finding the optimal pose which is saved.

Second the high level selection (pose verification) is necessary due to faulty
detections in the low level search results. To resolve these ambiguities a ranked
voting [15] of the pose hypotheses is applied considering three constraints: the
quality of fit, the number of points on the Superquadric surface and the number
of the Superquadric’s interior points.

The hierarchical two-level search achieves a fast and robust detection result
especially in cluttered scenes. Because of fitting the learned object model to
local surface patches and verify them globally within the refinement step, dis-
connected surface patches can be associated to one entire part. This enables a
robust detection of partly occluded objects. For more details on this algorithm
please refer to [2]. The detected pose of the object is the initialization for the
subsequent tracking with a monocular camera and the recovered shape and size
parameters from the shape-capturing process provide the required model to the
tracker.

2.3 Tracking the Object

Provided with starting pose information from the detection step, our tracker
projects the Superquadric, acquired during the shape-capturing step, into the
current camera image. The usage of Superquadrics involves the possibility of a
fast computation of the convex hull which provides the boundaries of the pro-
jected object, within which interest points are now searched using any detector,
e.g. hessian-laplace or harris-affine (a very good comparison can be found in [11]).
For each detected point, a descriptor [12] is saved that contains its properties.
Here again, any descriptor may be used, e.g. SIFT [9]. The main focus lies on
good repeatability as the majority of detected points should be found again in
the next frame with a very similar descriptor. However, timing behaviour is of
course also a very important issue. Note that the appearance information of
the object for the tracking is obtained directly from the actual scene situation,
enabling the handling of different illumination and occlusion conditions of the
model acquisition and the tracking step. The interest points are finally repro-
jected into the image for computation of the object coordinates. Here another
strength of the used model stands out: A Superquadric describes the closed sur-
face of an object, hence, the computation of the intersection point of the ray
of sight through the interest point and the model immediately delivers the 3D-
model coordinates of this point. This enables the association of every detected
interest point in 2D with its 3D-coordinates on the object.

The tracking loop works as follows: Interest points are searched in the 2D-
neighborhood of the points found in the previous image. Correspondences be-
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tween the points in the two frames are established via comparing their signa-
tures. Finally, the pose is determined using the algorithm by Lu et al. [10]. The
image points from the current image are taken as observed 2D-points and the
corresponding points from the previous tracking step provide the 3D object co-
ordinate information. For handling wrong matches, the RANSAC [3] method is
applied using the number of point votes and selecting the best result respec-
tively the mean of the largest pose cluster in case of multiple equal votes. The
interest points of the current frame are again projected onto the object model
and the interest point positions are stored in object coordinates for the next
tracking step. All interest points are used for the matching with the next frame,
independently of whether they have been used when matching with the previous
image or not. Thus, the overall number of points for the tracking may vary and
newly appearing points are seamlessly integrated into the tracking process. This
way, appearing sides of the object that were occluded before are available for
supporting the tracking process. In this way problems with rotational motions
are reduced.

2.4 Calibrating the system

First, the sensors have to be calibrated individually for the sake of accuracy.
Second, the coordinate systems of the scanner and the camera must be registered
onto each other for executing an automatic sequence of the different steps.

The calibration of the laser scanner is done using the geometrical approach.
With a 3D calibration object with markers on at least two different planes,
the pose of the laser plane and the extrinsic parameters of the camera can be
calculated as described in [4].

The tracking camera is calibrated with the calibration tool Camcalb, intro-
duced in [20]. This tool provides the intrinsic camera parameters in order to
undistort the camera images for enhancement of tracking robustness and addi-
tionally gives the extrinsic parameters (position and orientation of the calibration
plate) for fulfilling the last calibration step:

Laser coordinate system and camera coordinate system are finally registered
via transformation between the respective world coordinate systems. This leads
to the possibility of transforming the target object’s position and orientation ob-
tained by the laser scanner during the detection step into the coordinate system
of the tracking camera.

3 Experimental Results

Fig. 3 shows an uncluttered scene for tracking a cylinder (one of the basic
Superquadric shapes). The object (3a) is scanned (3b) and a Superquadric is
fitted (3c). Scanning the scene (3d) leads to the location of the learned Su-
perquadric (3e). This provides the starting pose (3f) for the tracker (3g–3i).

Table 1 shows the parameters of the Superquadric – both ground-truth and
the captured values.



Lecture Notes in Computer Science 7

(a) Object of interest (b) Range image of object (c) Fitted Superquadric

(d) Range image of scene (e) Detection of the object (f) Tracker starting frame

(g) Tracking frame #7 (h) Tracking frame #11 (i) Tracking frame #16

Fig. 3: Experiment 1: Handling of a cylinder. Capturing model (first row), Detecting
(second row) and Tracking (last row). The reprojected pose is depicted as mesh-grid.

Fig. 4 shows another whole vision sequence as presented in this paper for a
more complex example. Again, we chose an every-day commodity item as object
to be retrieved and tracked, this time a rectangular rice box. Table 2 sums up
the parameters retrieved by the shape-capturing step. Although the accuracy of
the shape-capturing is deficient on the shortest side of the object, tracking is not
affected. This leads back to the derivation of the tracking cues, i.e. the interest
points, from the actual scene whereas an edge-detector would be misdirected.

Note that during detection (second row of Fig. 4), the rice box now lies in
an arbitrary position and is partially occluded by the white bowl, the tin can as
well as the mallet shaft. The reprojected white lines in the last two rows refer
to the pose of the tracker. The white points are the locations of the interest
points. The matching example on the right of the third row is a zoomed clip
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parameter size [mm] shape
a1 a2 a3 ǫ1 ǫ2 kx ky

model 24.5 24.5 85.2 0.1 1.0 0.0 0.0

true object 26.5 26.5 86.5 0.0 1.0 0.0 0.0

Table 1: Summarized learned Superquadric size and shape parameters of the tin can.

parameter size [mm] shape
a1 a2 a3 ǫ1 ǫ2 kx ky

model 96.8 74.9 27.1 0.2 0.1 0.0 0.0

true object 95.0 75.0 22.5 0.0 0.0 0.0 0.0

Table 2: Summarized learned Superquadric size and shape parameters of the rice box.

of frame #18. The black dots indicate the positions where interest points have
been found in the previous step, the white dots the locations of the points in the
current frame. Note that there are some white points that have no match with
black ones (no white chain). Nevertheless, these points are stored for the next
iteration as they may possibly be matched with points of frame #19.

Furthermore the occlusion caused by the mallet shaft is dynamic during
tracking due to the motion of the rice box. Additionally, the hand coming from
the left also occludes a part of the box. Finally, even the number of visible faces
of the box changes. Nevertheless, the pose is recovered with sufficient accuracy.

4 Conclusion and further work

With this work we presented a vision concept that closes the gap between cap-
turing the shape of a convex object and handling it in a cluttered and occluded
scene – in an automatic way. The fusion of shape and appearance proved to be
well suited for this purpose. A laser range scanner for retrieving object parame-
ters as well as for detecting the object in the scene, is combined with a monocular
CCD camera that is liable for the tracking part. This concept has been shown
to provide a stable solution for shape-capturing, detecting and tracking different
Superquadric shapes as cylinders and boxes.

As further work, tests – including timing analysis and quantitative evalua-
tion – of the system will be done on our existing pan-tilt laser range sensor.
Accessibility and grasping analysis will follow as soon as we mount the unit on a
mobile platform. As extension for this concept, the shape-capturing and detec-
tion of more complex objects will be tackled. These objects may be expressed
by a composition of several Superquadrics. This requires a learning process that
parses subparts of an object automatically [8]. The current bottleneck of the
tracker as far as timing is concerned is the 3D pose estimation. To achieve cam-
era frame rate, code optimization has to be done and matching robustness must
be increased in order to reduce the number of required RANSAC-iterations. Fur-
thermore, the additional usage of cues as for example edges may also support
the robustness of the monocular pose estimation.
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(a) Object of interest (b) Object range image (c) Fitted Superquadric

(d) Occluded object (e) Scene range image (f) Detected object

(g) Starting pose (h) Matching example

(i) Frame #1 (j) Frame #18 (k) Frame #23 (l) Frame #28

Fig. 4: Experiment 2: Fig. (a) to (c): Capturing the object parameters; Fig. (d) to (f):
Detection of the object in the scene; Fig. (g): Starting pose of the object; Here, the
pose is depicted as white lines; Fig. (h): Matching example: Black dots from frame #17
are matched with white dots from frame #18; Fig. (i) to (l): Some tracking frames.
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