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Abstract— In recent years designers of embedded computer
systems face a tremendous growth in complexity of their systems.
This, together with the fact that the used system clock frequencies
rise and that the real time required to see features start up
and work correctly in an embedded system also increases,
let skyrocket the simulation times of event based simulation
engines. Performing these simulations on register transfer level
(RTL), however, is crucial to achieve functional verification of
embedded computer systems. The acceleration of such event
based simulations thus is the aim of the work presented in this
paper. To this end a methodology called clock suppression is pre-
sented and thoroughly discussed. To underpin the feasibility and
performance of this approach, evaluation results of simulation
experiments for several designs will be shown.

I. INTRODUCTION

With shrinking feature sizes of semiconductor process tech-
nologies today embedded computer systems are often made up
of several microprocessors, digital signal processors, mem-
ories, and application specific circuitry, which are typically
integrated on a single chip forming a system on a chip (SoC).
Of those embedded systems an increasing large number is dis-
tributed in space and interconnected via a local area network,
e.g. in factory automation systems, building automation, or
sensor networks.

Not only the design of such complex systems is a challenge,
but especially ensuring functional verification is of utmost im-
portance. And it is time consuming, with the cost of undetected
design errors tremendously increasing at the same time the
later they are found. This is further aggravated by the fact
that system clock frequencies of embedded computer systems
keep steadily increasing, thus requiring event based simulation
engines to simulate a lot more events to progress the same
amount of real time for verifying the system’s functions. And
even worse, the new features of e.g. multi-media applications
or higher-level communication protocols require simulations
to span longer and longer intervals of real time.

This is why methodologies like hardware-software co-
verification or virtual prototypes are in frequent use to speed
up and enhance the overall quality of the verification process
[1], [2], [3]. But as always, there is a trade-off between simu-
lation speed and the detail in which the models represent the
actual physical entities of the system. And often - especially
for real-time systems - it is crucial to have reliable timing
information available. This is the case e.g. when using an

instruction set simulator for a certain processor to execute the
software to be verified against not only functional but also
timing constraints.

As soon as the refinement process comes to the register
transfer level (RTL), where synthesis tools automatically com-
pile the hardware description language code to a certain in-
tegrated circuit technology, simulation run times dramatically
increase. Even if only parts of the embedded computer system
are simulated in that detail.

A gain in simulation performance is possible, if portions of
the hardware design that are coded in a hardware description
language (typically VHDL or Verilog) on RTL and are run by
an event-driven simulation engine, can be turned off1 during
the time they are not needed. This is exactly what the proposed
clock suppression (CS) technique, which has been used for the
simulation runs under consideration in this work, does.

Generally speaking, the simulation time tsim depends on the
number of events Ne to be simulated during a run, the number
of activities Na whose evaluation is initiated by those events,
and the rate R at which the simulation engine can evaluate
these activities [4]:

tsim =
Ne ∗ Na

R
(1)

Increasing R is accomplished with increasing computing
power of the workstations and optimizing the simulation
engines. Keeping Ne and Na low can be achieved by higher
abstraction levels for modeling, which is not always possible,
as motivated earlier. Consequently the remainder of this paper
is devoted to the discussion of how to minimize Equation 1
by means of shrinking Ne and is structured as follows.
Section II deals with related scientific work and Section III
presents the proposed clock suppression methodology in depth.
Section IV shows how clock suppression works using a simple
design example and Section V discusses prerequisites of this
methodology. Thereafter Section VI eventually presents results
of simulation experiments with real life design examples and
Section VII finally concludes this paper.

1Just like for power saving in power sensitive devices, where clock signals
literally are switched off, turning off a clock signal during an RTL simulation
saves a lot of simulation events and thus can tremendously speed up the
simulation.



II. RELATED WORK

Gravenstein [4] presents several techniques to speed-up
Verilog HDL simulation and among them is a similar ap-
proach to the one presented herein. It is called emulation of
linear function. This solution, however, is not generic and
is restricted to the optimization of counters with no sort
of input condition and a constant increment of one. The
approach described in the work at hand can be considered as
a generalization and improvement of the emulation of linear
function technique.

Ulrich [5] first introduced the term clock suppression, when
sequential clock-driven circuits like transmission gates, flip-
flops and registers were temporarily disconnected from their
clock source and reconnected as soon as such circuits received
new data input. However, its application is in the field of
fault simulation, where low level circuit netlists are simulated
rather than register-transfer level (RTL) models. Furthermore
this approach was not able to suppress data-dependent peri-
odic signals, as opposed to the clock suppression technique
presented in this paper.

A state-based prediction of oscillating signals (a third signal
state represents an oscillating signal) is introduced in [6],
where a clock distribution tree is traversed before simulation
begins and the clock inputs along the tree are disconnected as
required. This optimization strategy has been integrated in the
Creator simulator [7].

A similar approach is shown in [8], where a static analysis of
the circuit is done before simulation and the results are used to
augment a modified simulator engine. An average performance
increase of a factor of 5 is reported.

In [9] Takamine et. al. introduced clock suppression for
gate level simulations using a special purpose hardware for
simulation.

Optimization strategies on a higher abstraction level are
shown in [10] and [11]. In [10] Gezel, a language for syn-
chronous hardware description, is presented, which supports
co-simulation including a cycle-skip detection mechanism to
optimize the co-simulation interface.

In the field of low power design for synthesis Babighian et.
al. [11] introduced automatic clock gating insertion at RTL to
eliminate redundant computations performed by temporarily
unobservable blocks.

In [12] a method is described to suppress clock events and
even aperiodic events without large modifications of the simu-
lator. It is claimed that VHDL programs can be automatically
optimized by elimination of insensitive events. However, based
on the classifications stated in Park’s work [12] an expert
VHDL programmer can optimize VHDL models by hand.

All before mentioned papers, however, do not optimize the
linear behavior of adders and counters as opposed to the
method presented in this work. They therefore all have a
limited upper bound of optimization potential and typically
do not achieve a shortening of simulation run times in excess
of more than a factor of 10.

III. CLOCK SUPPRESSION METHODOLOGY

Simulations at RTL or even gate level spend a considerable
amount of time for the generation of the clock signal and
re-evaluating clocked signals even if they don’t need to be
processed because no events will happen on them. On gate
level about 70 percent of the overall simulation time is spent
for the processing of clock events [9].

For example a one second simulation run of a single
periodic signal with a frequency of 100 MHz without enabled
debugging or tracing support takes 40 seconds to complete
on a workstation with a computing performance of more than
1000 MIPS. It is clear that the resulting maximum event rate of
5 Mega Events/s strongly depends on the underlying simulator
kernel, but still this is a limiting factor, especially for the
simulation of the high clock rates seen in todays embedded
computer system designs.

Listing 1 Simple counter in VHDL

1 psyn: process (clk, reset)
2 begin
3 if reset = ’1’ then
4 s <= (others => ’0’);
5 elsif clk’event and clk = ’1’ then
6 if enable = ’1’ then
7 s <= s + conv unsigned(1, 1);
8 end if;
9 end if;
10 end process psyn;

Simple counter structures as shown in Listing 1 are very
frequent in RTL designs. Especially in control-centric designs
lots of counters and adders are instantiated to generate the
required timing for interfaces, keep track with external events,
support the internal control flow, and the like.

To further motivate the strategy of clock suppression in
embedded computer system simulations the results of a survey
on recently developed designs regarding the utilization of
adder structures like the one in Listing 1 are summarized
in Table I. It is important to note that the figures for the
adder count recognize only once multiple instances of the
same adder in the source code. The adder to size ratio in
the last column is an indicator for the type of the design, i.e.
control vs. data flow dominated ones. For example the design

Design Description Adder Size Adders /
Count (LUTS) 1000 LUTs

D1 PCI UART Controller 123 3405 36.12
D2 DDR2 Controller Test 92 5224 17.61
D3 Telecom Controller 91 5527 16.46
D4 LED Controller 9 633 14.22
D5 Ethernet Switch 137 10426 13.14
D6 8051 Microcontroller 23 3133 7.34
D7 IEEE1588 Clock Core 25 5155 4.85

TABLE I

COMPARING DESIGNS WITH RESPECT TO THEIR ADDER UTILIZATION



D1 with its relatively high adder count has a greater potential
for optimization through clock suppression than the design D6.

A. Introduction of Clock Suppression

For a more formal description of the clock suppression
methodology we define a synchronous vectored signal s,
whose representing value is of type signed or unsigned integer.
s depends on a set of synchronous input signals I

s = s(I), I = i1, i2, ..., in. (2)

Note, that s itself could be part of I . This property is essential
for the following optimization strategy, since it focuses on
the linear behavior of counter and accumulator structures as
exemplified in line 7 of Listing 1.

We further define a complete set of output conditions OC
for s

OC(s) = oc1(s), oc2(s), ..., ocn(s), (3)

which are utilized as input logic for subsequent signals. An
output condition means any signal or condition that depends
on the synchronous vectored signal s. These output conditions
depend on s and possibly additional other signals. OC(s) has
to be complete in that way as every subsequent, on s depending
condition must be listet herein.

Events on the clock signal can be suppressed if and only if
none of the output conditions is fulfilled (oc1(s) = oc2(2) =
...ocn(s) = false). Thus a change of (i.e. an event on) signal
s won’t cause further events in circuit paths to which s is an
input – generated events on s do not propagate.

After times where the clock signal has been suppressed, the
reactivation value of s must be calculated. To this end detailed
knowledge of the functional behavior of s is necessary. This is
why counters and, as a generalization, adders are well suited
for this approach. Their behavior is predictable, which offers
the following optimization strategy.

The derivation of the time interval ∆t, during which CS
is applied, starts from the definition of the differential for
computing the value of s for a future reactivation.

st+∆t = st + s′t∆t, (4)

with s′t being the gradient of s at time t and assuming s′t to
be constant within the simulation time interval [t, t+∆t], and
st+∆t denoting the value of signal s at simulation time t+∆t.
Rewriting of Equation 4 results in an equation for the timeout
∆t for continuous systems

∆t =
(st+∆t − st)

s′t
, (5)

which has to be adapted for discrete systems with a granularity
of tclk to

∆t = [(st+∆t − st) div ∆st]tclk. (6)

Here the operator div stands for the integer division without
remainder and s′t is replaced by the increment ∆st. This
timeout is the nearest point in future where the clock signal has
to be activated depending on the value of s for a reactivation in

the future st+∆t. The special case ∆st = 0 leads to a division
by zero and must be overruled to a ∆t = ∞, i.e. when one
summand of an adder function is zero no clock activation is
necessary.

The value of s after a period of clock suppression is
calculated to

st+∆t = sc − (sc − st) mod ∆st, (7)

where sc is the value of s for the condition to which the
timeout has been calculated. If an input event in I occurred
before the timeout has expired, the new value of s will be
calculated to

st+∆t = st + (∆t div tclk)∆st. (8)

The clock signal must be reactivated if any of the following
events occur:

• a signal from the set of input signals I changes
• an output condition OC(s) changes
• the calculated timeout expires

B. Clock Suppression Algorithm

The pseudocode for the algorithm for clock suppression
is shown in Listing 2. Though it looks like C syntax, there
is no limitation to the language used despite the fact that it
must support event-driven simulation features like sequential
statements or waiting on a list of events or conditions (waitOn,
waitUntil), like Verilog, SystemC, or SystemVerilog do.

By default the clock is turned on and the simulation
remains unaffected by the clock suppression algorithm. If no
output condition is satisfied and there exist scheduled timeouts
(line 5) a phase of deactivated clock will be entered after
the calculation of the future signal value (sc) (by calling the
function nextEvent) and the timeout value ∆t, which will be
infinity if the increment of the adder is zero. In this case the
wait statement in line 14 will terminate only on changes in the
input signal list or in the output conditions. After the period of
clock suppression the new value of s will be forced depending
on the presence of a timeout (line 15).

In the activated phase (starting from line 23) an activation
signal for the clock is asserted until the occurrence of a deact-
event, which indicates that no more state changes besides the
optimized signal happen. As the checking of this property
can be very expensive in terms of computing performance an
optimized solution would be the integration of the state change
observation into the simulator kernel, where this comes almost
for free. Alternatively the deactivation could take place after a
certain timeout. While this solution needs some knowledge
about the design under test (behavior of the operands of
the adder) it could be applied efficiently, especially for huge
designs.

Every time the operand of an adder changes, the new
value must also be assigned to the local increment variable
(assignIncrement in line 30).

As the presented algorithm can be clearly implemented in
a single process within the testbench but outside the design
hierarchy, no modification of the original design code is



Listing 2 Clock Suppression Algorithm

1 // Initialization
2 clockActivate = true;
3 ∆t = ∞ ;
4 loop{
5 if (not(OC(s)) and ∆t <> 0) {
6 // deactivated phase
7 tmp = s;
8 sc = nextEvent(s);
9 if (∆st == 0) {

10 ∆t = ∞;
11 } else {
12 ∆t = [(st+∆t − st) div ∆st] · tclk;
13 }
14 waitOn(I, OC, ∆t);
15 if (timedOut()) {
16 tmp = sc − (sc − st) mod ∆st;
17 } else {
18 tmp = st + ((now − t) div tclk)∆st;
19 }
20 // force s, be aware of multiple drivers
21 s = tmp;
22 } else {
23 // activated phase
24 clkActivate = true;
25 waitUntil(deact);
26 clkActivate = false;
27 ∆t = ∞;
28 }
29 // conditional increment assignment
30 ∆st = assignIncrement(I);
31 t = now;
32 } // loop

neccessary. Hence, synthesis can be done on the same code
base.

Listing 3 shows the modified clock generation process. The
lines 2 – 5 are inserted to prohibit the generation of clock
events if the activation signal clkActivate is not asserted.

IV. A SIMPLE EXAMPLE

To give further insight into the methodology and to evaluate
the theoretical work, a simple example consisting of two
sequential elements with adders, is discussed in this section
(see Figure 1). The first adder C1 with its input logic en
and INC1 will be optimized through an external entity CS,
instantiated in the testbench. The second adder C2 serves as
output logic, which is activated on a set of output conditions
for C1. While any synchronous logic could have been placed
instead of C2, choosing an parameterisable adder gave the
possibility to easily adjust the ratio between turn on and
turn off time of the clock signal through modification of the
conditions set (cd1 and cd2 in Figure 2).

A big advantage of the proposed methodology is that the
design code is not affected by the optimization, as it takes

Listing 3 PseudoCode for Clock Generation

1 loop {
2 if (clkActivate == false) {
3 waitOn(clkActivate);
4 waitFor(tclk);
5 }
6 clk = 1;
7 waitFor(tclk/2);
8 clk = 0;
9 waitFor(tclk/2);
10 }
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Fig. 1. Two cascaded adders as an example for a linear function with input
signals and output conditions.

place only in the testbench. Even entity declarations remain
unmodified as indicated in Figure 1.

For verification of the correct behavior of the proposed
clock suppression algorithm two identical instances of the test
example were simulated, one of them enhanced through clock
suppression. Example signal traces are shown in Figure 3.
Note, that the optimized version of C1 differs from the
reference design, when the clock is turned off, but is set to
the correct value (marked by an x) before the clock is turned
on. The signal C2 always has correct values.

The duration of a 20 ms simulation run of both reference
and optimized designs are compared in Figure 4. While the
simulation performance of the reference design remains nearly
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t
tnow tnext

Fig. 2. Output conditions and deactivation of the clock signals between them.
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Fig. 3. Sample signal traces

unaffected by the amount of activity on C2, the speedups of
the optimized version are – as expected – proportional to the
turn off time (less activity of C2). The break-even point is
above 50 percent, i.e. if the turn on time gets equal to the
turn off time, the overhead of the clock suppression algorithm
will eliminate any speedup. The break even point will shift
to the right if the frequency of the turn on - turn off cycles
increases. In the next section a more detailed discussion on the
prerequisites for the application of clock suppression is given.
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Fig. 4. Gain of clock suppression

V. PREREQUISITES AND REMARKS

Though the presented approach has a great potential for
optimization, some restrictions limit its application in verifi-
cation environments. As mentioned before, this optimization
methodology makes use of specific properties of signals, e.g.
partly constant behavior of the operands of accumulators. For
example traditional accumulators known from CPU’s normally
don’t have a partly constant summand and are therefore not
suitable for this approach.

The following two conditions must be satisfied to accelerate
a simulation:

f1
CLK_EN

f2

f3

CLK

f1

CLK_EN
f2

f3

Wired OR

CLK

a.)  logic gate connection

b.)  use of resolution function

Fig. 5. Grouping of clock suppression modules

• The average event rate of the input signal list I(s) has to
be low compared to the clock frequency:

fclk =
1

tclk
� fI (9)

• The average event rate of activations due to satisfied
output conditions has to be low compared to the clock
frequency:

fclk =
1

tclk
� fOC (10)

To even suppress any clock event within a given time period,
thus allowing jumps in time, the whole logic driven by that
clock must be supplied with clock suppression. Hence, for
hierarchical designs a mechanism for synchronizing two or
more clock suppression modules within a clock generation
process is necessary. Figure 5 shows two methods. Either an
explicit logic OR function or the implicit resolution function
of multi-driver signals (std logic in VHDL) can be used to for
this purpose. The latter has the advantage of easy extensibility
and eliminates the need for a feedback of the activation signal,
because the activation signal needs to be readable by all other
clock suppression modules in order to set the correct state of a
deactivated module if another module needs clock activation.

To prevent the designer from modifying the source code,
forcing and reading of signals over component hierarchies has
been used in the previous section. Both Verilog and SystemC
have natively built-in support for setting and reading signals
from foreign entities. The current VHDL standard forbids this
type of action, but simulators usually can deal with it2.

VI. RESULTS

To underpin the feasibility and performance of the presented
clock suppression technique, the results of three different
simulation runs of a distributed embedded computer system
consisting of a 4-port Ethernet switch and four computers with
network interface cards are summarized. Results for a 300

2e.g. for Modelsim the Foreign Language Interface (FLI) as well as the
SignalSpy feature are available.



Design, abstraction
level

Simulation Time [sec]

(BFM . . . Bus Functional Model)

(RTL . . . Register Transfer Level)

without CS
(estimated)

using CS Speedup

D 7, BFM (Switch +
4 NICs) 9,0 . 104 8,0 1,1 . 104

D 7, BFM (4 NICs) +
RTL (Switch) 2,7 . 108 7,8 . 103 3,5 . 104

D 7, RTL (Switch +
NIC) 4,5 . 108 3,0 . 104 1,5 . 104

TABLE II

COMPARISION OF SIMULATION PERFORMANCE FOR A 300 SECONDS

SIMULATION RUN WITH AND WITHOUT CLOCK SUPPRESSION (CS) FOR

DESIGN 7 FROM TABLE I

seconds simulation run on a Pentium 4 CPU with 3.4 GHz
and 1 GB main memory running a 32-bit Linux operating
system are listed in Table II.

Depending on the actual configuration and the detail of
modeling, a speedup factor of up to four orders of magnitude
has been reached. In this case the simulation of the RTL
design of an Ethernet switch together with four connected
nodes including RTL designs of the network interface cards
and the interconnecting bus system has been brought down
from several days to minutes without giving up any detail of
the simulated models. The evaluation of other designs, like the
ones mentioned in Table I, is subject to ongoing research.

VII. CONCLUSION AND FUTURE WORK

This paper revisited the clock suppression technique used to
significantly speed up simulation runs, which are mandatory
to verify the functionality of nowadays embedded computer
systems. After formally introducing the problem, results of
applying clock suppression to real life simulations have been
presented. They deliver a convincing impression of the poten-
tials of the presented clock suppression methodology. And it
is important to note that all this comes without the necessity
to modify neither the event simulation engine itself nor the
design, but by using existing means that state of the art
hardware description and modeling languages and simulators
offer.

To even squeeze the last performance out of this technique,
it is planed for the near future to add the presented clock

suppression algorithm to the simulation kernel of an event
based simulation engine.
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