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ABSTRACT

In many modern wireless communication systems, the as-
sumption of a locally time-invariant (block-fading) channel
breaks down due to increased user mobility, data rates, and
carrier frequencies. Fast time-varying channels feature sig-
nificant Doppler spread in addition to delay spread. In this
tutorial paper, we review some characterizations and sparse
models of time-varying channels. We then discuss several
models and methods recently proposed for communications
over time-varying wireless channels, and we point out some
related open problems and potential research directions.

1. INTRODUCTION

Wireless communications with mobility of transmitter, re-
ceiver, and/or reflecting (refracting, diffracting) objects have
become ubiquitous. This is why linear time-varying (LTV)
channels have recently attracted considerable interest in the
signal processing, communications, propagation, and infor-
mation theory communities. LTV channels are furthermore
important in underwater acoustic communications. They
are also called time and frequency (TF) dispersive or doubly
dispersive, as well as TF selective or doubly selective.

Here, we discuss some fundamentals, recent developments,
and open problems regarding LTV wireless (mobile ra-
dio) channels. In Section 2, we review basic determinis-
tic and stochastic characterizations of LTV channels. Some
low-dimensional (sparse) parametric representations are dis-
cussed in Section 3. Section 4 presents a survey of several
models and methods recently proposed for communications
over LTV channels. In addition, some open problems are
outlined and suggestions for future research are given.

2. FUNDAMENTALS

First, we review some basic characterizations of LTV chan-
nels. We consider the complex baseband representation of a
wireless system operating at carrier frequency fc.

2.1 Deterministic Channel Characterization

Delay-Doppler Domain. An intuitive and physically
meaningful characterization of LTV channels is in terms of
delays and Dopper shifts. Delays are due to multipath prop-
agation and time dispersion, while Doppler shifts are caused
by mobility as well as carrier frequency offsets and oscilla-
tor drift. Let us first assume an LTV channel H with P
propagation paths and receiver movement only. The chan-
nel output signal (receive signal) r(t) = (Hs)(t) for a channel
input signal (transmit signal) s(t) is here given by

r(t) =
P
X

p=1

ap s(t−τp) ej2πνpt, (1)
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where ap, τp, and νp denote, respectively, the complex at-
tenuation, delay, and Doppler frequency associated with the
pth path. We have τp = dp/c and νp = v cos(φp)fc/c, where
dp is the distance travelled, φp is the angle of arrival, v is
the receiver velocity, and c is the wave propagation speed.

Eq. (1) models the effect of P discrete specular scatterers
(ideal point scatterers). This expression can be generalized
to a continuum of scatterers as (e.g., [1–3])

r(t) =

Z

τ

Z

ν

SH(τ, ν) s(t−τ ) ej2πνt dτ dν , (2)

where integration is from −∞ to ∞. The weight function
SH(τ, ν) is termed the (delay-Doppler) spreading function.
It characterizes the attenuation and scatterer reflectivity as-
sociated with paths of delay τ and Doppler ν. Thus, the
spreading function describes the channel’s TF dispersion
characteristics. We emphasize that (2) can be used to char-
acterize any LTV channel. In fact, it is equivalent to the
generic time-delay domain relation

r(t) =

Z

τ

h(t, τ ) s(t−τ ) dτ , (3)

in which h(t, τ ) =
R

ν
SH(τ, ν) ej2πνt dν is the impulse re-

sponse of the LTV channel H.

TF Domain. Time dispersiveness corresponds to fre-
quency selectivity and frequency dispersiveness corresponds
to time selectivity. The joint TF selectivity of an LTV chan-
nel is characterized by the TF transfer function [1, 4]

LH(t, f) =

Z

τ

Z

ν

SH(τ, ν) ej2π(tν−fτ) dτ dν . (4)

This extends the relation H(f) =
R

τ
h(τ ) e−j2πfτdτ valid for

a time-invariant channel to the time-varying case. According
to (4), the TF echoes described by SH(τ, ν) correspond to
TF fluctuations of LH(t, f), which are known as (small scale)
fading. For underspread channels (to be defined presently),
the TF transfer function LH(t, f) can be interpreted as the
channel’s complex gain at time t and frequency f .

2.2 Statistical Channel Characterization

Often, statistical channel characterizations have to be used
because a deterministic description is not feasible. We
restrict to the case where the channel’s system functions
SH(τ, ν), LH(t, f), and h(t, τ ) are 2-D complex Gaussian
random processes with zero mean (Rayleigh fading).

WSSUS Channels. In general, the correlation function
E
˘

SH(τ, ν) S∗

H(τ ′, ν′)
¯

of the spreading function depends on
four variables. A significant simplification is obtained with
the assumption of wide-sense stationary uncorrelated scatter-
ing (WSSUS) [1–3]. For WSSUS channels, the reflectivities
of any two scatterers with different delay or different Doppler
are uncorrelated, i.e.,

E
˘

SH(τ, ν)S∗

H(τ ′, ν′)
¯

= CH(τ, ν) δ(τ−τ ′) δ(ν−ν′) . (5)
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Thus, the spreading function SH(τ, ν) is a 2-D white process
with mean intensity CH(τ, ν) ≥ 0, which is known as the
channel’s scattering function [1, 3].

Due to the Fourier transform relation (4), an equivalent
TF-domain formulation of the WSSUS assumption is

E
˘

LH(t, f) L∗

H(t′, f ′)
¯

= RH(t−t′, f−f ′) .

This means that the TF transfer function LH(t, f) is a sta-
tionary process. The TF correlation function RH(∆t, ∆f)
is related to the scattering function CH(τ, ν) as

CH(τ, ν) =

Z

∆t

Z

∆f

RH(∆t, ∆f) e−j2π(ν∆t−τ∆f) d∆t d∆f.

(6)

Hence, the scattering function is the power spectral density
of the stationary process LH(t, f).

Dispersion and Coherence Parameters. In practice,
a statistical channel description by just a few global param-
eters is often desired. An important parameter is the dis-
persion spread [2] dH = τmaxνmax, where τmax and νmax

are the channel’s maximum delay and maximum Doppler,
respectively, i.e., the largest τ and ν for which CH(τ, ν)
is nonzero. Other definitions of dispersion spread use mo-
ments like the root-mean-square (rms) delay spread and rms
Doppler spread instead of τmax and νmax. The dispersion
spread dH measures the size of the (effective) support re-
gion of CH(τ, ν), and hence quantifies how much the channel
smears out the transmit signal in time and frequency.

A channel is called underspread if dH is (much) less than
one, and overspread otherwise [2, 3]. “Underspread” does not
necessarily mean “slowly time-varying”: a rapidly varying
channel (large νmax) with short delays (small τmax) may be
underspread. Since delay and Doppler of any resolvable path
are inversely proportional to the propagation speed c, we
have dH ∝ 1/c2. Wireless channels are always underspread
since c2 ≈ 9 · 1016 m/s. However, underwater channels only
have c2 = 2.2 ·106 m/s and hence are potentially overspread.

For an underspread channel, it follows from (4) that the
TF transfer function LH(t, f) is a smooth function. Sim-
ilarly, it follows from (6) that the TF correlation function
RH(∆t, ∆f) has slow decay and, thus, LH(t, f) features sig-
nificant temporal and spectral correlations. The temporal
correlations are usually quantified by the coherence time [3],
which is the duration for which the channel is strongly cor-
related and thus can be considered approximately constant.
In a similar way, the spectral correlations are quantified by
the coherence bandwidth [3].

3. SPARSE CHANNEL REPRESENTATIONS

Sparse (parsimonious, low-dimensional, low-rank) represen-
tations of LTV channels are useful in many applications. We
will study sparse representations in a discrete-time setting.
The channel’s input-output relation now reads

r[n] =
M−1
X

m=0

h[n, m] s[n−m] , (7)

where s[n], r[n], and h[n, m] are sampled versions of s(t),
r(t), and h(t, τ ) in (3), with sampling frequency fs larger
than the system bandwidth, and M = ⌈fsτmax⌉.

3.1 Basis Expansion Models

A popular class of low-rank channel models uses an expan-
sion of h[n, m] with respect to n into a basis {ul[n]}l=0,...L−1

[5, 6], i.e.,

h[n, m] =
L−1
X

l=0

cl[m]ul[n] . (8)

cL−1[m]

s[n] r[n]
u0[n]

uL−1[n]

c0[m]

Figure 1: Basis expansion model for an LTV channel.

The coefficients are obtained as cl[m] = 〈h[ · , m], ũl〉 =
P

n
h[n, m] ũ∗

l [n], where {ũl[n]}
l=0,...L−1 is the biorthogonal

basis (i.e., 〈ul, ũl′〉 = δ[l − l′]). Choosing complex exponen-
tials and polynomials for the ul[n]’s results in Fourier and
Taylor series, respectively. These two representations were
essentially already proposed in [1].

Inserting the basis expansion (8) into (7) gives

r[n] =
L−1
X

l=0

ul[n]
M−1
X

m=0

cl[m]s[n−m] .

Hence, the LTV channel can be viewed as a bank of time-
invariant filters cl[m] whose outputs are multiplied by the
basis functions ul[n] and added (see Fig. 1).

Complex Exponential (Fourier) Basis. Today, the
term “basis expansion model” (BEM) is mostly used when
the basis consists of complex exponentials [5, 6], i.e.,

h[n, m] =

L−1
X

l=0

cl[m] ej2πνln.

For uniform Doppler spacing, i.e., νl = (l−⌈L/2⌉)ν1, the co-
efficients cl[m] are essentially samples of the spreading func-
tion SH(τ, ν). A BEM with nonuniform Doppler spacing is
more flexible but requires estimation of the “active Doppler
frequencies” νl, which may be difficult.

If the BEM is used within a block of length N , the Doppler
resolution is given by ν1 = 1/N . However, the finite block
length results in a “Doppler leakage effect” that necessitates
an increased model order L. This effect can be reduced by
using longer observation windows (possibly overlapping with
adjacent blocks) or windowing techniques [7, 8]. Another ap-
proach is to replace the Fourier basis functions by discrete
prolate spheroidal sequences [9], which are finite-length or-
thonormal functions of maximum spectral concentration. Al-
though originally proposed for the (flat fading) channel co-
efficients of individual OFDM subcarriers, the same idea is
applicable in the time-delay domain in the sense of (8).

Polynomial Basis. Polynomial basis expansions result
from a Taylor series approach. The channel impulse response
h(t, τ ) can be approximated about any time instant t0 as

h(t0 + t, τ ) ≈
L−1
X

l=0

cl(t0, τ ) tl, with cl(t0, τ ) =
1

l!

dlh(t, τ )

dtl

˛

˛

˛

˛

t0

.

For underspread channels that evolve smoothly with time,
the cl(t0, τ )’s decrease quickly with increasing l so that typi-
cally a small order L (e.g., L = 2) is sufficient. The discrete-
time version of the polynomial basis expansion is given by

h[n0 + n, m] =

L−1
X

l=0

cl[n0, m]nl, (9)

with cl[n0, m] = cl(n0Ts, mTs) T l
s (Ts is the sampling period).



3.2 Sparse Statistical Models

Sparse (parsimonious) models for the channel statistics are
also of interest. A frequently used model for the scattering
function is given by the following separable function with
Jakes Doppler profile and exponential power profile [2, 3]:

CH(τ, ν) =

8

<

:

10−

ρ2
H

10
e
−

τ
τ0

τ0

1√
ν2
max

−ν2
, |ν| < νmax

0 , |ν| > νmax .

This model is very simple—it involves only the path loss ρ2
H,

rms delay τ0, and maximum Doppler νmax—but often does
not agree well with real propagation environments.

More flexibility is obtained with the autoregressive moving
average (ARMA) channel model [10–12]. For WSSUS chan-
nels, the channel taps h[n, m] are stationary processes with
respect to n and mutually uncorrelated for different m. The
ARMA model is then given by

h[n, m] = −
rAR
X

i=1

am[i]h[n−i, m] +

rMA−1
X

i=0

bm[i]em[n−i] ,

where the em[n]’s are normalized white innovations processes
that are uncorrelated for different m, and am[i] and bm[i]
are the (nonrandom) parameters of the AR and MA part,
respectively. The scattering function follows as

CH(m,ξ) =

˛

˛

˛

˛

Bm(ξ)

Am(ξ)

˛

˛

˛

˛

2

,

with Am(ξ) = 1+
rAR
P

i=1

am[i]e−j2πξi, Bm(ξ) =
rMA−1
P

i=0

bm[i]e−j2πξi.

Hence, the second-order channel statistics are characterized
by rAR + rMA complex parameters per channel tap.

Another reasonably sparse description of the channel
statistics can be based on a BEM (8). Using a discrete
version of the WSSUS assumption, the correlation of the
BEM coefficients cl[m] is given by E

˘

cl[m]c∗l′ [m
′]
¯

= rc[l −
l′, m]δ[m − m′], with some correlation function rc[∆l, m],
∆l = −L+1,−L, . . . , L−1, m = 0, . . . , M−1.

4. RECENT DEVELOPMENTS AND OPEN
PROBLEMS

Next, we review a subjective selection of recent developments
in the area of communications over LTV channels, and we
indicate some related open problems bearing potential for fu-
ture research. For convenience, we will freely switch between
continuous-time and discrete-time formulations.

4.1 Channel Estimation and Equalization

Recent Developments. Most of the recent work on LTV
channel estimation (e.g. [6, 7, 9, 13–15]) is based on sparse
channel representations as discussed in Section 3. Because
these models are linear in the coefficients, least-squares (LS)
and minimum mean-square error (MMSE) methods can eas-
ily be applied for estimating the coefficients. The sparseness
of the model tends to result in a smaller estimation variance;
however, model mismatch may result in a bias. BEMs have
also been used to design LTV equalizers for doubly-selective
channels (e.g. [5, 14, 16]).

As an example (e.g. [9]), consider the flat fading channel

y[n] = h[n] x[n] + w[n] . (10)

(This model also applies to the individual subcarriers of an
OFDM system transmitting over a non-flat fading channel.)
The goal is to estimate and equalize the channel coefficients
h[n] within the block n = 0, . . . , N−1. The transmit sequence
x[n] contains Np equispaced pilot symbols at positions ni =

⌊N/(2Np)⌋+ iN/Np, i = 0, . . . , Np −1. With a BEM, h[n] =
PL−1

l=0 cl ul[n] and thus, at the pilot positions,

y[ni] =

 

L−1
X

l=0

cl ul[ni]

!

x[ni] + w[ni] , i = 0, . . . , Np−1 .

The LS estimate of the coefficients cl is hence obtained as
ĉ = U#ỹ, where [ĉ]

l
= ĉl, [ỹ]

i
= y[ni]/x[ni], [U]

i,l
= ul[ni],

and U# is the pseudo-inverse of U. The channel esti-

mate then follows as ĥ[n] =
PL−1

l=0 ĉl ul[n]. Note that L
can be chosen smaller when the channel varies more slowly;
this results in a reduced estimator variance. If channel
statistics are available, an MMSE estimator can be used
instead of an LS estimator. If the noise w[n] in (10) is
white, then maximum likelihood (ML) detection is equiv-
alent to simple scalar equalization followed by quantization,
i.e., x̂[n] = Q{y[n]/h[n]}, where Q{·} denotes quantization
according to the symbol alphabet. In practice, h[n] is re-
placed by the channel estimate ĥ[n].

Several modifications of this basic channel estimation and
equalization method have been proposed. For a BEM with
complex exponential basis, it was proposed to improve the
Doppler decay and thus reduce the BEM order L by ap-
plying a window to the received sequence y[ni] (e.g. [7, 8]).
Furthermore, larger observation intervals that overlap with
neighboring blocks can be used. These modifications can
however be avoided by using a BEM with a basis of discrete
prolate spheroidal sequences [9].

For doubly selective channels, the simple pilot structure
considered above is no longer optimal. Indeed, optimal pilot
placement requires that the pilot and data subspaces at the
channel output are orthogonal and that the channel modes
ul[n] are uniformly excited by the pilots [17, 18]. Examples
of optimal pilot patterns are the above time-domain pilots
augmented with guard periods or frequency-domain pilots
with guard bands [18]. The first (second) option is prefer-
able when the maximum delay in samples is larger (smaller)
than the maximum Doppler in samples. With these specific
training schemes, doubly selective channels can be estimated
in a similar way as outlined above for the flat fading case.

Open Problems. The estimation and equalization of
multiple-input multiple-output (MIMO) LTV channels still
present many unresolved questions. For example, what is
the optimal training for doubly dispersive MIMO channels?
What is the best BEM? How can MMSE gains (relative
to LS) be leveraged through online learning of the chan-
nel statistics? Should equalization be performed in the time
domain or in the frequency domain?

In rapidly varying scenarios, LTV channel prediction [19,
20] is beneficial for link adaptation and precoding schemes
using channel state information (CSI) at the transmitter.
Some open questions in this context are: What are the ulti-
mate limits (in terms of delay and estimation error) of chan-
nel prediction with and without training? How should the
placement and power of training data be chosen? What is the
relevance of predicted CSI to the capacity of rapidly varying
channels with feedback? When will transmission schemes
with mismatched (inaccurate) CSI at the transmitter out-
perform schemes without CSI?

4.2 Intercarrier Interference in OFDM Systems

Recent Developments. OFDM systems operating in
highly mobile scenarios have recently gained importance.
An example is DVB-T [21], which is now being studied in
mobile environments with speeds >100 km/h. Here, signifi-
cant channel variations within a single OFDM symbol cause
strong intercarrier interference (ICI).

Consider an OFDM system with K subcarriers and a cyclic
prefix that is longer than the channel length L. The trans-



mitted OFDM symbol a = [a1 . . . aK ]T is mapped to the
demodulated receive vector y = [y1 . . . yK ]T as

y = H′a + w with H′ = FHFH , (11)

where [H]n,n′ = h[n, (n′ −n) mod K] and F is the K ×K
DFT matrix. The off-diagonals of H′ are due to ICI. ZF or
MMSE equalization of (11) requires the inversion of a K×K
matrix, which has complexity O(K3). However, because H′

exhibits off-diagonal decay, it can be approximated by a band
matrix with b sub- and superdiagonals (b is usually chosen
proportionally to νmax) [8, 22]. Inverting the band matrix
reduces complexity to O(b2K) operations.

An alternative to banded equalization is based on the poly-
nomial model (9) for the channel taps h[n, m] (i.e., the diag-
onals of the time-domain matrix H) [23]. The receiver uses
iterative ICI cancellation for data detection and multistage
channel estimation where the model coefficients cl[n0, m] are
estimated one after another considering higher-order terms
(larger l) as white interference.

A different approach to reducing ICI and thereby allowing
for higher mobility is pulse-shaping OFDM (e.g. [24–26]).
Pulse shaping also reduces out-of-band emissions and the
sensitivity to narrowband interference and synchronization
errors. In [24, 25], pulse optimization procedures for channels
with a given scattering function are proposed; the transmit
(TX) pulse and receive (RX) pulse are constrained to satisfy
a biorthogonality condition. In [24], the TX pulse is designed
such that the non-ICI term is maximized and the RX pulse is
chosen to satisfy the biorthogonality condition. In contrast,
[25] proposes to prescribe the TX pulse and optimize the
biorthogonal RX pulse such that ICI is minimized. Alterna-
tively, a joint nonlinear optimization of TX and RX pulses
is presented that achieves even smaller ICI by omitting the
biorthogonality condition. In [26], a rectangular RX pulse is
used and the TX pulse is optimized such that ICI is limited
to a few adjacent subcarriers.

Open Problems. Avoiding ICI is closely related to finding
transmit and receive pulses that are almost eigenfunctions of
the channel and thus approximately diagonalize the channel
[24]. Some questions in this context include the following:
How is the off-diagonal decay of the channel matrix H′ linked
to channel and pulse parameters? What is the tradeoff be-
tween equalizer complexity and system performance when
varying the width of the banded channel approximation?
Which type of training is optimal for ICI estimation and
equalization? Which BEM is most suitable for ICI suppres-
sion? Can MIMO-OFDM transmissions be designed to suffer
less from ICI than SISO systems?

4.3 Non-WSSUS Channels

Recent Developments. The WSSUS assumption simpli-
fies the statistical characterization of LTV channels. How-
ever, it is satisfied in practice only approximately within cer-
tain time and frequency intervals. For non-WSSUS channels,
the spreading function SH(τ, ν) is no longer white and the
TF transfer function LH(t, f) is no longer stationary. A sta-
tistical characterization of non-WSSUS channels is given by
the local scattering function (LSF) [27]

CH(t, f ; τ, ν) =

Z

∆t

Z

∆f

E
˘

LH(t−∆t, f)L∗

H(t, f+∆f)
¯

× e−j2π(ν∆t−τ∆f) d∆t d∆f ,

which describes the power of multipath components with
delay τ and Doppler shift ν occurring at time t and frequency
f . For WSSUS channels, CH(t, f ; τ, ν) = CH(τ, ν) (cf. (6)).

A channel correlation function A(∆t, ∆f ; ∆τ, ∆ν) gener-
alizing the TF correlation function RH(∆t, ∆f) is given by

the 4-D Fourier transform of the LSF. This function char-
acterizes the correlation of multipath components separated
in time by ∆t, in frequency by ∆f , in delay by ∆τ , and
in Doppler by ∆ν. The channel’s stationarity time and
stationarity bandwidth are defined as Ts = 1/∆νmax and
Fs = 1/∆τmax, respectively, where ∆τmax and ∆νmax are
the delay and Doppler correlation widths as defined by the
support of A(∆t, ∆f ; ∆τ, ∆ν). For a given TF point (t0, f0),
we have CH(t, f ; τ, ν) ≈ CH(t0, f0; τ, ν) in a local stationarity
region Rs = [t0 −αTs, t0 + αTs]× [f0 −αFs, f0 + αFs] (here,
the parameter α controls the accuracy of approximation).

One can also define a local coherence region Rc within
which LH(t, f) is approximately constant. Wireless channels
are doubly underspread [27], which means that Rs is much
larger than Rc and the area of Rc is > 1. The practical
relevance of this property was discussed in [27]. In particular,
it was shown that the size of Rs is crucial for achieving
ergodic capacity and that delay-Doppler correlation has a
negative impact on delay-Doppler diversity schemes.

The LSF and related descriptions are 4-D functions. The
high complexity of these descriptions can be avoided by para-
metric statistical models for non-WSSUS channels. A non-
stationary vector AR model for the channel taps of a non-
WSSUS channel has been proposed in [28]. Tap correlation
alone was previously considered e.g. in [29].

Open Problems. Non-WSSUS channels still pose many
questions. For example, what is the most parsimonious para-
metric LSF model? How much nonstationarity and tap cor-
relation need to be modeled for practical propagation scenar-
ios? Further questions concern the impact of nonstationarity
and delay-Doppler correlation on system design: How much
delay-Doppler diversity is supported by realistic non-WSSUS
channels? How can non-WSSUS channels be decomposed
into independently fading subchannels, and what are corre-
sponding signaling schemes? What is the operational mean-
ing of the ergodic capacity of non-WSSUS channels, and how
does the outage capacity vary over time?

The extension of the LSF and channel correlation func-
tion to MIMO channels is another open issue. How are the
spatial, temporal, and spectral stationarity and correlation
parameters related, and what is their relevance to MIMO
system designs? What are parsimonious parametric models
for non-WSSUS MIMO channels? How do antenna configu-
ration and polarization affect channel nonstationarity?

4.4 Wideband Systems

Recent Developments. While for narrowband systems
the Doppler effect can be approximately represented as a
frequency shift, it must be exactly characterized by a time
scaling (compression/dilation) in the case of wideband trans-
mit signals s(t) like the signals used in ultrawideband (UWB)
communications. Therefore, (1) has to be replaced by [3]

r(t) =
P
X

p=1

ap
1√
αp

s
“ t− τp

αp

”

, with αp = 1 − cos(φp)
v

c
.

Generalization to a continuum of scatterers yields

r(t) =

Z

τ

Z

α

FH(τ, α)
1√
α

s
“ t− τ

α

”

dτ dα , (12)

where the α integration is from 0 to ∞. Here, FH(τ, α)
denotes the delay-scale spreading function [30, 31], which is
usually supported in a small delay-scale region [0, τmax] ×
[αmin, αmax]. Like (2), the expression (12) can represent any
LTV channel, but it is most appropriate for wideband sys-
tems. In analogy to WSSUS channels (cf. (5)), different de-
lays and scales are usually assumed to be uncorrelated, i.e.,

E
˘

FH(τ, α) F ∗

H(τ ′, α′)
¯

= BH(τ, α) δ(τ−τ ′) δ(α−α′) .



Here, BH(τ, α) is the wideband scattering function [30–32].
In [30], the notion of delay-Doppler diversity introduced in

[33] was extended to the wideband regime. Consider spread
spectrum transmission of a binary symbol b over a wide-
band channel (12) with white Gaussian noise. The transmit
signal is s(t) = bx(t) with some chip spreading sequence
x(t). The wideband delay-scale rake receiver correlates the
receive signal r(t) with delayed and scaled versions xm,n(t) =

1√
αm

0

x
`

t
αm

0

−ntc

´

of x(t). Here, tc is the chip duration,

α0 = 1 + 1/Ns with Ns denoting the spreading factor, and
m = −M, . . . , M , n = 0, . . . , N with M, N chosen to cap-
ture most of the energy of r(t). The resulting 2-D sequence
rm,n = 〈r, xm,n〉 is then linearly combined to obtain a symbol

estimate b̂ =
P

m,n fm,nrm,n that is subsequently quantized.

This scheme can realize significant delay and Doppler (scale)
diversity gains provided that sufficient channel variations oc-
cur within a single symbol period [30, 31].

Open Problems. Without constraints on the support
of SH(τ, ν) and FH(τ, α), the narrowband and wideband
channel characterizations (2) and (12) are mathematically
equivalent. However, up to which bandwidths is the nar-
rowband representation preferable? Which representation is
more parsimonious and/or achieves better decorrelation of
multipath components for specific (measured) channels? Is
the narrowband or wideband WSSUS assumption more ap-
propriate in certain scenarios? What is the ergodic capacity
of wideband channels and which type of signaling should be
used (e.g., a wavelet-transform counterpart of OFDM)?

5. CONCLUSIONS

We reviewed some fundamentals and recent developments in
the area of communications over time-varying channels. It
was seen that sparse channel representations enable an effi-
cient characterization of such channels and a simplified de-
sign of corresponding transceiver algorithms. In spite of the
progress made in recent years, numerous unsolved problems
remain to be addressed by future research.
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